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Climate change a�ects animal physiology. In particular, rising ambient

temperatures reduce animal vitality due to heat stress and this can be observed

at various levels which included genome, transcriptome, and microbiome. In a

previous study, microbiota highly associated with changes in cattle physiology,

which included rectal temperature, drooling score and respiratory score, were

identified under heat stress conditions. In the present study, genes di�erentially

expressed between individuals were selected representing di�erent additive

genetic e�ects toward the heat stress response in cattle in their production

condition. Moreover, a correlation network analysis was performed to identify

interactions between the transcriptome and microbiome for 71 Chinese

Holstein cows sequenced for mRNA from blood samples and for 16S rRNA

genes from fecal samples. Bioinformatics analysis was performed comprising:

i) clustering and classification of 16S rRNA sequence reads, ii) mapping cows’

transcripts to the reference genome and their expression quantification, and

iii) statistical analysis of both data types—including di�erential gene expression

analysis and gene set enrichment analysis. A weighted co-expression network

analysis was carried out to assess changes in the association between gene

expression and microbiota abundance as well as to find hub genes/microbiota

responsible for the regulation of gene expression under heat stress. Results

showed 1,851 di�erentially expressed genes were found that were shared by

three heat stress phenotypes. These genes were predominantly associated

with the cytokine-cytokine receptor interaction pathway. The interaction

analysis revealed three modules of genes and microbiota associated with

rectal temperature with which two hubs of those modules were bacterial

species, demonstrating the importance of the microbiome in the regulation of

gene expression during heat stress. Genes and microbiota from the significant

modules can be used as biomarkers of heat stress in cattle.
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1. Introduction

Humans induce global warming that negatively influences

all organisms on the Earth, e.g., by the occurrence of heat

stress (HS) in livestock, which negatively affects its vitality,

physiological responses, and behavior. Heat stress can inhibit

milk production in dairy cattle which can result in significant

losses to the industry (Garner et al., 2020). Moreover, HS in cows

results in further economic losses by reducing reproduction

(Macciotta et al., 2017). Currently, phenotypes such as rectal
temperature, drooling score, and respiration rate score are
standard physiological indicators of HS (Brito et al., 2020; Luo
et al., 2021). Recently, due to genomic selection being targeted

to increased milk production in cattle, cows tend to be more

susceptible to HS (Biffani et al., 2016). The phenomenon of HS

from the molecular perspective is a complex challenge and still,

many mechanisms are unknown. A previous study focusing on

the differential abundance of microbiota already demonstrated

that HS affects the microbial composition of the colon (Czech

et al., 2022). Only a few studies have demonstrated the effect of

HS on the transcriptome profile of cattle, and have identified

genes potentially associated with the HS response. Gao et al.

(2019) pointed out that amino acid and glucose transport were

downregulated by HS. In another study looking at the effect of

HS on the transcriptome profile of mammary glands of cows

(Yue et al., 2020), the authors indicated that HS affects dairy

cows’ immunity and thus has a potential impact on milk yield.

Sigdel et al. also presented the association analysis of HS cattle

using SNPmarkers from the Cooperative Dairy DNARepository

and the Council on Dairy Cattle Breeding, and identified genes

HSF1, MAPK8IP1, and CDKN1B that were directly involved in

the cellular response to HS (Sigdel et al., 2019).

In general, the impact of HS on cows is fairly difficult to

assess due to the complexity of the metabolism and physiology

of cows. However, the development of molecular techniques

like next-generation sequencing, mass spectrometry, and other

techniques allow us to look more deeply into these mechanisms

by obtaining information about the entire biology of the system.

Additionally, high-performance computers with new algorithms

allow for considering more complex statistical models that

allow for better insights into the complexity of organisms

(Park et al., 2021b). Many other studies that focused on

the integration analysis of host transcriptome and microbiota

already demonstrated the importance of the multiomics

approach to identify biomarkers underlying diseases and

complex traits (Wang et al., 2019). In livestock, only a few studies

have been focusing on the integration of host transcriptome and

microbiome interactions. One of the studies showed the impact

of the interaction of host transcriptome and microbiome on the

physiology of full-sibs broilers with divergent feed conversion

ratio (Shah et al., 2019). Ramayo-Caldas et al. (2021) investigated

the joint effects of host genomic variation and the gut

microbiome variation in the context of immune response in pigs.

Also, Carillier-Jacquin et al. (2022) considered the importance

of using both sources of information for the accuracy of

prediction of pig digestibility coefficients, concluding that the

incorporation of gut microbiome information is important for

prediction and even outperforms the importance of host genetic

variation. Another study in chickens showed the influence

of nutrition on the interaction between transcriptome and

microbiome which in turn influenced egg production in aged

laying hens (Liu et al., 2022). Although those studies have

revealed (and stressed) the importance of the incorporation

of microbiome information into the evaluation of phenotypes

that are important for livestock, the particular impact of the

interaction of host transcriptome and microbiome on HS is still

not well understood. Moreover, previous studies (Freitas et al.,

2022) indicated a complex genetic architecture underlying the

HS response, so it is expected that using all available sources of

omic information is crucial for the modeling of this phenotype.

Therefore, it is worth mentioning that almost all HS studies

used the case-control experimental design. In this study, we used

a continuous variable to measure the HS response, to reflect the

production environment which allowed us to study potential

changes in gene expression level, microbiome abundance,

and their interactions under standard conditions. This study

aimed to identify genes differentially expressed between cows

characterized by different additive genetic effects of HS response

measured by the three HS indicators: rectal temperature,

drooling score, and respiratory score, and to perform an

integration of multiomics data of host gene expression levels in

relation to its microbiome composition.

2. Materials and methods

2.1. Material

Fecal and blood samples from 71 Chinese Holstein cows

were collected in 2017, 2018, and 2019. Cows were sampled once

over the course of 3 years. In this study, no artificial heat stress

challenge was imposed since the major goal was to assess the

impact of heat stress that occurs during standard production

conditions and is due to a combination of several climatic and

production factors. Heat stress phenotypes used in this study

were represented by the additive genetic effect of each cow,

corrected for environmental factors such as lactation stage, age

at calving, parity, and temperature-humidity index, that were

expressed as deregressed estimated breeding value (DRP) for

rectal temperature, respiratory score, and drooling score. We

used a mixed linear model for the DRP estimation:

yijklqno = µ+ fymi+pj+ sk+ml+ tq+ thi+an+pen+ǫijklqno,

(1)

where yijklqno refers to phenotype (RS, DS or RT), µ is the

population mean, fymi is the fixed herd-year effect, pj is the

fixed effect of parity, sk is the fixed effect of lactation stage, ml
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is the fixed effect of the indication whether the measurement

was taken before or after milking, tq is the fixed effect of

testing time (morning or afternoon), thi is the fixed effect of the

temperature-humidity index, an is the animal additive genetic

effect, pen is the permanent environmental effect, and ǫijklqno is

the random residual. The covariance matrix of random effects

has the following structure:

var(







a

pe

ǫ






) =







A
⊗

σ 2
a 0 0

0 I
⊗

σ 2
pe 0

0 0 I
⊗

σ 2
ǫ






. (2)

More information about the sampling procedure, the housing

of animals, phenotypes, THI, and the statistical model used to

estimate DRP and a description of the dataset were included in a

previous study (Czech et al., 2022).

2.1.1. Ethics approval and consent to
participate

The data collection process was carried out in strict

accordance with the protocol approved by the Animal

Welfare Committee of the China Agricultural University. All

experimental protocols were approved by the Animal Welfare

Committee of the China Agricultural University. All methods

are reported in accordance with ARRIVE guidelines (https://

arriveguidelines.org) for the reporting of animal experiments.

2.2. Methods

2.2.1. Microbiome

Deoxyribonucleic acid was isolated from fecal samples,

which represent the microbiome composition of the colon, and

was used for sequencing of V3 and V4 regions of the 16S

rRNA gene using the Illumina MiSeq and HiSeq platforms.

Sequenced reads were cleaned and processed using QIIME2

software (Bolyen et al., 2019) with the SILVA database (Quast

et al., 2012) to cluster and classify them to taxonomical levels.

The final output is represented by the amplicon sequence

variants table with information about the frequency of a given

taxon in a given fecal sample. The procedure is explained in

detail by Czech et al. (2022).

2.2.2. mRNA-seq

Total RNA was isolated from leukocytes according to the

instructions of the TRIzol Reagent method (Rio et al., 2010).

The cDNA library was prepared using mRNA molecules and

sequenced using the NovaSeq 6000 System Illumina platform.

Ribonucleic acid concentration and quality were determined

using Equalbit RNA BR Assay Kit (Invitrogen, California,

USA) and the Nanodrop 2000 (Thermo, Massachusetts, USA).

Ribonucleic acid integrity was assessed using 1% agarose gel

electrophoresis and then used for library construction with

28S/18S >1. For the RNA-Seq library, 2 µg total RNA was

firstly used for purification and fragmentation with NEBNext

Poly(A) mRNA Magnetic Isolation Module (Cat No. E7490S,

New England Biolabs (UK) Ltd., Hitchin, Herts, UK) and

then followed by cDNA library with NEBNext Ultra RNA

Library Prep Kit for Illumina (Cat No. E7530S, New England

Biolabs (UK) Ltd., Hitchin, Herts, UK). All libraries were

quantitated by the Equalbit DNA BR Assay Kit (Invitrogen,

California, USA) and pooled to generate equimolarly, and

finally submitted for sequencing by the NovaSeq 6000 System

(Illumina, Inc., San Diego, California, USA) which generated

150 base paired-end reads.

Sequenced reads were evaluated in the context of their

quality and cleaned using Fastp software (Chen et al., 2018).

Filtered reads were mapped to the bovine genome (ARS-

UCD1.2) using STAR software (Dobin et al., 2012) and Picard

(Broad Institute, 2022) was applied to mark duplicates. Finally,

RNA-SeQC (DeLuca et al., 2012) software was used to quantify

the expression. Gene expression was analyzed using the DESeq2

R package (Love et al., 2014) to perform differential gene

expression analysis fitting the negative binomial regression

model adjusted for the sequencing year. The effect of HS was

expressed as the average fold change per DRP increased by

one unit. The Wald test was used to assess the significance of

slope estimates. P-values obtained separately for each gene were

corrected for multiple testing using the Benjamini-Hochberg

method (Benjamini and Hochberg, 1995) for controlling the

False Discovery Rate (FDR). Genes with the FDR < 0.05 were

considered to be associated with HS. Next, we performed Gene-

Set Enrichment Analysis (GSEA) based on Gene Ontology (GO)

(Ashburner et al., 2000; Consortium, 2020) implemented in the

goseq R package (Young et al., 2010) and metabolic pathways

were defined by Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa, 2000) implemented in the clusterProfiler R

package (Yu et al., 2012).

2.2.3. Omics integration

The final step of the analysis was the integration of

microbiota abundance identified in the 16S rRNA data with

the gene expression identified in the RNA-seq data. To

study the transcriptome-microbiome interaction we applied

the weighted co-expression network analysis implemented in

the WGCNA R package (Langfelder and Horvath, 2008). The

analysis was split into steps comprising: i. creating a correlation

matrix using Pearson’s correlation coefficient between all

pairs of genes-genera; ii. creating adjacency matrix (matrix-

based representation of a graph) using the formula: amn =

|cmn|
β , where amn is an adjacency between gene/genus m

and gene/genus n, cmn is a Pearson’s correlation coefficient,

and β is a soft-power threshold determined based on the

standard scale-free topology network (Chen and Shi, 2004);
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iii. transformation of the adjacency matrix into the topological

overlap matrix (TOM) which is the matrix of the similarity in

terms of the commonality of the connected nodes (Yip and

Horvath, 2007); iv. the dynamic tree cutting algorithm was used

for the hierarchical clustering of TOM into modules, as clusters

of highly interconnected genes and genera; in order to obtain

co-expressed modules, the parameters of the algorithm were set

to minModuleSize = 20 for the gene/genus dendrogram and

minimum height = 0.25 to cut the tree, in order to merge similar

modules; v. identification of eigengenes for each module that

is expressed by the first principal component of the expression

matrix, vi. Pearson’s correlation analysis of eigengenes with

phenotypes (with t-test for testing the significance of the

correlation coefficient), and finally, vii. identification of hub

genes/genera – genes/genera that have the highest correlations

with other genes/genera contained within each module. Genes

contained within significantly associated modules were then

subjected to GSEA.

3. Results

3.1. Microbiome

The analysis of the 16S rRNA gene allowed us to identify

232 unique genera. The genera, with abundance exceeding 10%

in all the samples, were Clostridium, 57N15, and Treponema.

A detailed analysis of microbiota was described by Czech et al.

(2022).

3.2. mRNA-seq

The analysis of the RNA-seq data identified 2,035

differentially expressed genes for rectal temperature, 1,886

for drooling score, and 1,958 for respiratory score. The

expressions of the majority of those genes were down-regulated

with increasing HS response, i.e., the higher value of phenotypes,

the lower expression. This comprised 85% of down-regulated

genes for rectal temperature, 78% for drooling score, and

80% for respiratory score. The most highly up-regulated

genes were ENSBTAG00000048590 (for rectal temperature),

ENSBTAG00000054209 (for respiratory score), and SLC22A1

(for drooling score), while genes with the highest down-

regulated expression were ENSBTAG00000024272 (for rectal

temperature), ENSBTAG00000050067 (for respiratory score),

and ENSBTAG00000051290 (for drooling score). The 1,851

genes significantly associated with HS were common for all

three phenotypes (Figure 1).

Next, we performed GSEA in which we identified seven

KEGG pathways enriched among significantly differentially

expressed genes that were shared between all three phenotypes:

herpes simplex virus 1 infection (bta05168), viral protein

FIGURE 1

Genes significantly di�erentially expressed with increasing heat

stress for each phenotype. RT denotes rectal temperature, RS

respiratory score, and DS drooling score.

interaction with cytokine and cytokine receptor (bta04061),

chemokine signaling pathway (bta04062), cytokine-cytokine

receptor interaction (bta04060), PI3K-Akt signaling pathway

(bta04151), antifolate resistance (bta01523), and EGFR tyrosine

kinase inhibitor resistance (bta01521). Results of GSEA for

KEGGs were visualized in Figure 2. On the plot, we can see

that Herpes simplex virus 1 infection is characterized with the

lowest P-value of 2.73 · 10−12 and also demonstrated the highest

gene ratio of significantly associated genes that composed this

pathway. Significantly enriched GO terms related to biological

processes were identified only for respiratory score and were

related to cell surface receptor signaling pathway (GO:0007166),

cellular response to endogenous stimulus (GO:0071495), G

protein-coupled receptor signaling pathway (GO:0007186), and

metal ion transport (GO:0030001) (Figure 3).

3.3. Omics integration

By applying steps described in the method section, the

weighted co-expression network was generated. The adjacency

matrix was created by raising the correlation matrix to the

power of 4 (β parameter, Figure 4). In the next step, the TOM

dissimilarity matrix was computed and used for the hierarchical

clustering. Genes and bacteria were clustered into 20 modules,

which ranged in size from 36 to 3015 genes/bacterial genera per

module (Figure 5).

The effect of each gene/bacterial genera was expressed by

the eigengene value, and the correlation of each eigengene with

each HS phenotype was calculated (Figure 6). Three modules

demonstrated significant correlations with rectal temperature

(positive correlation for MEtan, and negative correlations for

MElightycan, and MEroyalblue). Module MEtan consists of 129

genes but no bacterial genera, MElightycan of 26 genes and 26

bacterial genera, and module MEroyalblue of 2 genes and 34

bacterial genera.
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FIGURE 2

Pathway analysis. Dot plot of the statistically significant KEGG pathways shared between all the phenotypes. Gene ratio represents genes related

to KEGG pathway/total number of significantly di�erentially expressed genes and count is the number of genes that belong to a given pathway.

FIGURE 3

Pathway analysis. Dot plot of the statistically significant GO pathways related to biological processes for respiratory score phenotype. Gene ratio

represents genes related to GO terms / total number of significantly di�erentially expressed genes and count is the number of genes that belong

to a given pathway.

Further, we identified hub genes/bacterial genera

representative for each of the three modules: CSF3R

gene in MEtan, Lactococcus bacteria in MElightcyan, and

Rhizobium bacteria in MEroyalblue. There was no overlap

between genes contained within the significant modules

and in the differential gene expression analysis. All genes

from significant modules were annotated to GO terms and

KEGG pathways. MEtan module was enriched in a pathway

related to Pertussis and Salmonella infection (bta05133 and

bta05132, respectively) and in GO terms related to the

cellular response to organic substance (GO:0071310), response

to oxygen-containing compound (GO:1901700), cellular

response to lipid (GO:0071396), and cellular response to

lipopolysaccharide (GO:0071222). The other two modules
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FIGURE 4

Network topology analysis for soft-thresholding powers in WGCNA-scale-free fit index for di�erent powers (A) and mean connectivity analysis

for di�erent soft-thresholding powers (B).

FIGURE 5

Hierarchical cluster tree of co-expressed genes and bacteria.

demonstrated no significant enrichment of KEGG and

GO terms.

3.4. Discussion

This experiment is one of the first investigations in which

the combined data of host transcriptome and microbiota were

used together to study heat stress in cattle. The changes in

cows’ response to HS were identified on the level of gene

expression alteration as well as on the level of the interaction

with microbiota. Heat stress is undoubtedly a complex process

that scientists today must face in order to protect animals.

However, due to its physiological complexity, we are not able to

assess in detail the changes in molecular mechanisms underlying

HS response in livestock. The progressive development of

molecular biology and bioinformatics allows for a broader look

into changes in organisms, allowing simultaneous insight into

the cell at virtually every stage of its life cycle. The RNA-seq

technology has become a very powerful method for identifying

candidate genes associated with complex traits. Already in

Garner et al. (2020) identified BDKRB1 and SNORA19 as

potential candidate genes related to HS. Sigdel et al. (2019)

reported HSF1, MAPK8IP1, and CDKN1B as genes responsible
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FIGURE 6

Module-trait associations. Each row corresponds to a module

eigengene, column to a trait-rectal temperature (RT), respiratory

score (RS), and drooling score (DS). Each cell contains the

corresponding Pearson’s correlation and P-value.

for thermotolerance in dairy cattle. Moreover, Diaz et al. (2021)

identified five genes: E2F8, GATAD2B, BHLHE41, FBXO44,

and RAB39B which were significantly associated with HS.

In this study, it was found that the gene RAB39B was

significantly associated with three phenotypes which included

rectal temperature, drooling, and respiratory scores.

For the microbiome, Sales et al. (2021) identified four

bacterial genera related to HS—Flavonifractor, Treponema,

Ruminococcus, and Carnobacterium. In this study, it was

identified that HS inhibits gene expression of several genes

that might be related to the reduction of energy during

overheating. Because HS appears to be a physiologically complex

phenomenon, the multiomics approach that accounts not only

for alteration in gene expression and changes in the microbiome

composition but also for the interaction between them is

an important approach. Recently also Martínez-Álvaro et al.

(2022) demonstrated that in cattle the host genome affects

not only the composition of the rumen microbiome but also

the level of expression of microbial genes related to methane

emissions. In this study, which is a follow-up analysis, genes

and pathways were identified that are significantly associated

withHS phenotypes. Additionally, interactions involvingmRNA

levels and microbiota in cattle were analyzed. Although the

overlap between these findings and the microbiome and genes

related to HS reported in the literature is constrained to only

RAB39B, therefore it is hypothesized that this approach which

is focused on the interaction between microbiome and host

genetics was able to identify new components of the HS response

that have been missed in the single omics analyzes. A loss of

interaction under increasedHSwas observed. In two out of three

significant modules, bacteria played a key role in the regulation

of gene expression and controlled the abundance of other

bacteria, while CSF3R gene was identified as the only hub gene

in all significantly associated coexpression modules. Currently,

the importance of this gene in the context of HS in cattle has

not been reported yet. However, in human genetics, this gene is

associated with congenital neutropenia (Triot et al., 2014). Park

et al. (2021a) already reported that HS may affect neutrophil

phagocytosis. Therefore, these results may indicate that gene

CSF3R might be strictly associated with both neutrophils and

HS response in cattle. Other significant hubs were represented

by bacteria. Lactococcus bacteria that was identified as the hub

of MElightcyan module was already indicated in the literature

as a genus associated with bovine mastitis (Rodrigues et al.,

2016). This observation stressed the important role of the gut

microbiome in the regulation of gene expression. Our analysis

indicates that for such physiologically complex phenomena

like HS not only the effect of particular omics-based sources

of information is important, but also the consideration of

interactions between them.
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