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Aerobic vaginitis (AV) is a complex vaginal dysbiosis that is thought to be

caused by the micro-ecological change of the vaginal microbiota. While

most studies have focused on how changes in the abundance of individual

microbes are associated with the emergence of AV, we still do not have

a complete mechanistic atlas of the microbe-AV link. Network modeling

is central to understanding the structure and function of any microbial

community assembly. By encapsulating the abundance of microbes as nodes

and ecological interactions among microbes as edges, microbial networks

can reveal how each microbe functions and how one microbe cooperate

or compete with other microbes to mediate the dynamics of microbial

communities. However, existing approaches can only estimate either the

strength of microbe-microbe link or the direction of this link, failing to capture

full topological characteristics of a network, especially from high-dimensional

microbial data. We combine allometry scaling law and evolutionary game

theory to derive a functional graph theory that can characterize bidirectional,

signed, and weighted interaction networks from any data domain. We apply

our theory to characterize the causal interdependence between microbial

interactions and AV. From functional networks arising from different functional

modules, we find that, as the only favorable genus from Firmicutes among all

identified genera, the role of Lactobacillus in maintaining vaginal microbial

symbiosis is enabled by upregulation from other microbes, rather than

through any intrinsic capacity. Among Lactobacillus species, the proportion of

L. crispatus to L. iners is positively associated with more healthy acid vaginal

ecosystems. In a less healthy alkaline ecosystem, L. crispatus establishes

a contradictory relationship with other microbes, leading to population

decrease relative to L. iners. We identify topological changes of vaginal

microbiota networks when the menstrual cycle of women changes from the
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follicular to luteal phases. Our network tool provides a mechanistic approach

to disentangle the internal workings of the microbiota assembly and predict

its causal relationships with human diseases including AV.

KEYWORDS

microbial interaction network, evolutionary game theory, aerobic vaginitis,
quasidynamic ordinary differential equations, microbiota

Introduction

Aerobic vaginitis (AV) is an inflammatory vaginal dysbiosis
that affects many aspects of health and reproduction for both
pregnant and non-pregnant women worldwide (Marconi et al.,
2013; Han et al., 2019; Wang et al., 2020). It is known
that the occurrence of this disease is accompanied by the
relative change of microbial population sizes among operational
taxonomic units (OTUs). For example, the transition of
Firmicutes (mainly Lactobacillus crispatus and L. iners)-
dominated microflora to Actinobacteria and Bacteroidetes-
boosting microflora leads to vaginal dysbiosis and inflammation
symptoms (Donders et al., 2002; Wang et al., 2020). However,
results from cultivation studies show that the most common
AV-related bacteria may also be represented by other types
of microbes, such as Streptococcus agalactiae, Staphylococcus
aureus, Enterococcus faecalis, coagulase-negative staphylococci
(e.g., S. epidermidis), and Escherichia coli (Donders et al.,
2002, 2017; Fan et al., 2013; Tang et al., 2020). In clinics,
some patients met the diagnostic criteria of AV, but no
underlying pathogens were identified by cultivation (Donders
et al., 2002), making therapeutic intervention less effective
(Donders et al., 2017). This suggest that AV is not merely
related to a few aerobic microbes, but rather involves multiple
bacteria that interact with each other to form intricate but
well-orchestrated networks.

There is a wealth of literature on the methodological
development of microbial interaction networks (Proulx et al.,
2005; Faust and Raes, 2012; Vidanaarachchi et al., 2020;
Matchado et al., 2021). Correlation-based networks can
characterize the strength of interactions, but fail to identify
the causality of interactions (Steuer et al., 2002). Bayesian
networks are directed graph models, with the power to
detect the causality of interactions but cannot determine
the sign of the causality (Friedman et al., 2000). Most of
these approaches can only reconstruct an overall network
from a large number of samples, failing to characterize
sample-sample heterogeneities (Kuijjer et al., 2019). Dynamic
networks can capture the full information of network structure
and function (Gardner et al., 2003; Sontag et al., 2004;
Bansal et al., 2006; Srividhya et al., 2007; Wu et al., 2014;
Chen et al., 2017), but their use in practice is impaired

by the unavailability of temporal or perturbed data. Wu
and team have developed a series of statistical models
for inferring informative, dynamic, omnidirectional, and
personalized networks (idopNetworks) from static abundance
data (Chen et al., 2019, 2022; Griffin et al., 2020; Wu and
Jiang, 2021). Chen et al. (2019) examined the statistical
behavior of idopNetworks and their application condition.
More recently, idopNetworks have been applied to predict
neuroblastoma risk from a complete set of genes (Sun et al.,
2020) and characterize cell crosstalk across fetal germs and
their microenvironment (Wang et al., 2022), overcoming the
limitation of individual genes as predictors. These networks
can chart how genes are co-expressed differentially across
tissues to affect human health (Wu and Jiang, 2021). Taken
together, idopNetworks have emerged as a generic tool to
characterize detailed topological changes in networks that
describe complex systems.

In this article, we modified and implemented our network
tool to reconstruct microbial interaction networks for the
vaginal microbiota and reveal how microbial interactions are
causally related to AV. We analyze a data set collected from
a well-designed AV case-control study (Wang et al., 2020).
The study monitored microbial abundance profiles from the
vaginal microbiota of AV patients and healthy individuals
by 16S rRNA gene sequencing. We characterized topological
factors that distinguish AV-related microbial networks from
healthy networks and analyzed networks changes across
pH gradients. Beyond the phenomenological investigation
of microbe-AV relationships based on individual microbes,
our networks provide a systematic, mechanistic dissection of
these relationships.

Materials and methods

A case-control study of vaginal
microbiota

A study was initiated to assess the vaginal microbial
profiles of AV patients compared with healthy individuals
(Wang et al., 2020). The study includes a total of 240
participants, i.e., 80 gynecological (AV) outpatients (as the cases)
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at Tianjin Medical University General Hospital, China, and
160 healthy women (as the controls) who received routine
examinations at the same hospital during the same period.
There were strict scientific and ethical criteria for selecting
these participants, as detailed in Wang et al. (2020), where
the participants’ sociodemographic factors and multifaceted life
behaviors were also obtained. The majority of the participants
had information about the phase of their menstrual cycle;
the phase-identified participants from each category (cases
and controls) were classified into two groups, one in the
proliferative phase (45 cases and 82 controls) and the second
in the secretory phase (34 cases and 72 controls). The pH
level of the vagina is associated with its healthy state; a
normal vaginal pH value is between 3.8 and 4.4, whereas a
pH value beyond 4.4 is abnormal for the vagina. We classify
all participants including the cases and controls into three
groups, one with pH = 3.8 (133 subjects), the second with
pH = 4.0–4.4 (41 subjects), and the third with pH 4.6–5.4 (66
subjects). The second group is intermediate between normality
and abnormality.

Wang et al. (2020) described a detailed procedure for
assessing vaginal microbial profiles at operational taxonomic
units (OTUs) for the participants by 16S rRNA gene sequencing.
By a series of bioinformatics and statistical analysis, the
microbiota in the vagina were identified at different taxonomical
levels from phyla to classes to orders to families to genera to
species. At each level of taxa, there exist some missing microbes
whose abundance was zero. We exclude these microbes from
network modeling.

Allometric scaling quasi-dynamic
ordinary differential equations

Chen et al. (2019) proposed a computational model for
recovering idopNetworks from gene expression data. We
modify this model to learn microbial interaction networks from
static abundance data of vaginal microbes. Suppose there are m
microbes that are measured in the vagina of each participant,
regardless of its category from the cases or controls. We assume
that these microbes constitute a dynamic system in which
microbe-microbe interactions change from one participant to
the next. Let gji denote the abundance level of microbe j in

participant i and define Ei =
m∑

j=1
gji as the habitat index (HI)

of this participant. It can be seen that gji and Ei establish an
allometric part-whole relationship, which can be quantified by
a power equation, expressed as

gij = αjE
βj
i (1)

where αj and βj are the proportionality coefficient and allometric
exponent of the power equation for microbe j existing in
participant i. Since gji is expressed as a function of Ei, we

use gj(Ei) in place of gji. Parameters αj and βj determine how
microbe j changes its abundance level across participants.

We argue that the pattern of microbial interactions in
a system can be interpreted through lens of evolutionary
game theory. In the interactive system, a microbe attempts
to maximize its abundance and fitness based on its intrinsic
capacity and the strategy of other microbes that interact
with it (Wu and Jiang, 2021). This attempt continues until
a Nash equilibrium is reached. Allometry scaling theory in
equation (Marconi et al., 2013) formulates a basis of expanding
evolutionary game theory into its quasi-dynamic representation
by which the pattern of how different microbes interact
with each other across participants can be characterized. This
representation can be expressed as a system of quasi-dynamic
ordinary differential equations (qdODEs), i.e.,

g′j (Ei) = Qj
(
gj (Ei) ;φj

)
+

m∑
j′=1,j′ 6=j

Qj←j′
(
gj′ (Ei) ;φj←j′

)
(2)

with the time derivative replaced by the HI derivative,
where Qj

(
gj (Ei) ;φj

)
describes the (independent) abundance

level of microbe j when it is assumed to be in isolation
and Qj←j′

(
gj′ (Ei) ;φj←j′

)
describes the (dependent)

expression level of microbe j regulated by microbe j′. The
HI-varying independent abundance level can be fitted by
power equation (Marconi et al., 2013) with parameters
φj, whereas the dependent abundance level is fitted by a
non-parametric approach with parameters φj←j′ . We code
independent components of each microbe as nodes and
dependent components of each pair of microbes as edges in a
(mathematical) graph (network) so that a causal network can be
reconstructed. Since dependent components can be positive or
negative, the networks reconstructed from equation (Han et al.,
2019) can reveal the causality of microbial interactions.

Sparsity of microbial networks through
variable selection and clustering

Given that living systems are usually not fully
interconnected in order to buffer against environmental
stochasticity (May, 1973; Gravel et al., 2016), the microbial
networks to be reconstructed should be sparse (Goyal et al.,
2022; Yonatan et al., 2022). There are two strategies that can
be used to ensure network sparsity. The first is to implement
variable selection into a regression model built on the basis
of equation (Han et al., 2019), by which a small set of the
most significant microbes that link with a given microbe are
chosen. Through this variable selection, m summations of
dependent components for microbe j, as shown in equation
(Han et al., 2019), are reduced to dj summations, because the
microbe j is found to link with only dj (dj < < m) other
microbes. We then solve this reduced system of qdODEs.
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The second strategy is to cluster all microbes into distinct
modules each with a smaller number of microbes that
are more strongly linked with each other than with those
from different modules. Such network decomposition is
consistent with developmental modularity theory, widely
recognized to explain a living system’s stability and robustness
in response to environmental change. We implement the
procedure of the first strategy to reconstruct sparse networks
for each module. Meanwhile, by taking and using the mean
abundance level of all microbes within each module, we
can identify the networks among modules. By linking a
module-module network and its descent microbe-microbe
networks, we can reconstruct multilayer and multiplex
microbial idopNetworks.

Reconstructing stable microbial
interaction networks

We formulate a likelihood of microbial abundance data to
solve qdODEs for network reconstruction (Wu and Jiang, 2021).
Let yj =

(
yj (E1) , . . . , yj (En)

)
denote a vector of abundance

data for vaginal microbe j (j = 1, . . ., m) measured for n different
samples (participants). We assume that m microbes interact
with each other across samples in a way described by qdODE-
based evolutionary game theory. The likelihood of the microbial
data measured from n samples is written as

L
(
y
)
=

n∏
i=1

fi(y1; . . . ; ym : µ1; . . . ;µm, 6) (3)

where fi(·) is an m-variate longitudinal normal probability
function with mean vector µ = (µ1, . . . ,µm) and covariance
matrix 6. Explicitly, we write the mean vector as

µ = (µ1, . . . ,µm)

= (µ1 (E1) , . . . , µ1 (En) ; . . . ;µm (E1) , . . . , µm (En)) (4)

where µj (Ei) is fitted by a system of qdODEs in equation (Han
et al., 2019). These equations represent a fully interconnected
network model, stating that each microbe is linked with all
other m – 1 microbe. However, as mentioned above, such a
full network is thought to be vulnerable, whereas a sparsely
interconnected network can better buffer against stochastic
perturbations (May, 1973; Gravel et al., 2016; Goyal et al., 2022;
Yonatan et al., 2022). Through variable selection, we choose
a small set of the dj most significant microbes that are linked
with a given microbe j as a node in the network. Thus, the full
model of equation (Han et al., 2019) reduced to a reduced model
in which a microbe j is only linked with a small number of
microbes. We implement a non-parametric approach to model
the independent and dependent components, specified by ODE

parameters φj and φj←j′ (j = 1, . . ., m; j′ = 1, . . .., j – 1, j + 1,
. . ., m) for the reduced qdODEs. The covariance matrix has a
symmetrical structure as follows:

6 =


61 · · · 61m
...

. . .
...

6m1 · · · 6m

 (5)

where the covariance matrices for microbe j and between
microbes j and j′ across samples are expressed as

6j =


σ2

j (E1) · · · σj (E1, En)

...
. . .

...

σj (En, E1) · · · σ2
j (En)

 (5A)

6jj′ =


σjj′ (E1) · · · σjj′ (E1, En)

...
. . .

...

σjj′ (En, E1) · · · σjj′ (En)

 (5B)

Since each sample represents an independent subject, it
is reasonable to assume that measurement errors of the same
microbes or different microbes are independent among different
samples. Under this assumption, matrices in Equations 5A, 5B
can be simplified as diagonal matrices in which the elements
off the main diagonal are all zero. Meanwhile, we assume
that residual variances for microbe j and residual covariances
between microbe j and j′ are constant across samples. Thus, the
covariance matrix of equation (Fan et al., 2013) only contains
two types of parameters σ2

j (j = 1, . . ., m) and σjj′ (j′ =
1, . . . ., j − 1, j + 1, . . . , m).

By maximizing the likelihood, we implement the fourth-
order Kutta-Runge algorithm in the estimation of all qdODEs
that explain microbe-dependent independent and dependent
abundance components and microbe-dependent residual
variances and covariances. Such networks inferred from
maximum likelihood estimation are stable in network topology.
The maximum likelihood estimates (MLEs) of dependent
abundance levels of one microbe regulated by another microbe
are encapsulated in the idopNetwork, filled with bidirectional,
signed, and weighted interactions and characteristic of
each participant.

Testing and comparing
context-specific networks

The above procedure was used to reconstruct microbial
idopNetworks in different contexts, e.g., healthy group vs. AV
group, proliferative group vs. secretory group, and groups
across pH gradient, etc., and allow context-known networks
to be tested and compared. Consider C contexts of interest
for network comparison. Let ycj =

(
ycj (Ec1) , . . . , ycj

(
Ecnc

))
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denote a vector of the abundances of vaginal microbe j (j = 1,
. . ., m) measured for cn different samples from context c (c = 1,
. . ., C). Under the assumption of independence in measurement
error among different contexts, we formulate a joint likelihood
of the microbial data measured in all C contexts as

L
(
y
)
=

C∏
c=1

nc∏
i=1

fci(yc1; . . . ; ycm : µc1; . . . ;µcm, 6c) (6)

where fci(·) is an m-variate longitudinal normal probability
function with mean vector µc = (µc1, . . . ,µcm) and covariance
matrix 6c from context c. It is straightforward to solve
the likelihood (Wang et al., 2020) by implementing the
algorithmic procedure described in the previous section,
including estimating the MLEs of qdODE parameters φcj and
φcj←j′ (j = 1, . . ., m; j′ = 1, . . .., j – 1, j + 1, . . ., m; c = 1, . . ., C)
that model independent and dependent abundance components
in context c, respectively.

Consider two different contexts, c1 and c2 (c1 6= c2 =

1, . . . , C), under which microbial networks are reconstructed.
To test whether the overall link structure of these microbial
networks is context-dependent, we formulate the following
hypotheses:

H0 : Qc1j←j′
(
gc1j′ (Ei) ;φc1j←j′

)
≡

Qc2j←j′
(
gc2j′ (Ei) ;φc2j←j′

)
H1 : at least one equality in the H0 does not hold (7)

simultaneously for all j = 1, . . ., m; j′ = 1, . . .., j – 1, j + 1,
. . ., m. Under the null hypothesis, the strength and direction of
links between the same pair of microbes j and j′ are identical
between contexts c1 and c2. We calculate the log-likelihood
ratio as the test statistic using likelihood values under the null
and alternative hypotheses and compare it against the critical
threshold determined from permutation tests. Likewise, we can
test whether a specific link between microbes j and j′ is context-
dependent by formulating a similar hypothesis procedure.

We compare and test the differences in microbial network
structure between the healthy and AV groups, between
proliferative and secretory phases, and between different pH
value levels. From these tests, we find key interaction links that
determine context-dependent differences. These links can serve
as a mechanistic predictor of AV risk.

Results

Habitat index as a predictor

The vaginal tract is viewed as an ecological habitat that
is colonized by the microbiota. The sum of abundance of all
microbes in a vagina, define as the habitat index (HI), may reflect

the ecological carrying capacity of the vagina. We calculate
the HI of each sampled vagina using Wang et al.’s (Wang
et al., 2020) case-control microbial data involving AV patients
(n = 80) and matched healthy subjects (H) (n = 160). We
find that the HI value is slightly smaller in the AV group
than in the H group (Figure 1A). Large pH values in vagina
are thought to be associated with the degree of AV (Amabebe
and Anumba, 2018; Lin et al., 2021). The HI decreases fairly
remarkably from pH = 3.8 (healthy state) to pH = 4.6–5.4
(diseased state) (Figure 1B). At a middle range of pH (4.0–
4.4) where both H and AV groups carry, the HI does not
much differ between the two groups, but the AV group is
considerably more variable than the H group. The HI at the
proliferative phase is larger for the healthy group than AV
group, but the HI of two groups tends to be convergent at
the secretory phase (Figure 1C). In summary, total vagina
microbes change from a healthy state to an AV state, but this
change depends on the physiological states of vaginas. A more
mechanistic understanding of this context-dependent change
is sorely needed.

Individual microbes as a predictor

Taxonomic microbes: The abundance level of individual
microbes establishes a part-whole relationship with HI across
samples. This relationship obeys a physical principle that
can be fitted by the allometric scaling power equation. As
such, we can express the abundance values of individual
microbes collected in discrete samples as a quasi-dynamic
function of HI (Griffin et al., 2020). We choose the richest
17 identified phyla and a mix of unidentified phyla (denoted
as others) for data modeling and analysis. Among all the
phyla studied, only Firmicutes is more abundant and also
increases its abundance with HI at a greater slope in the
healthy group than in the AV group (Figure 2A). The
abundance of Actinobacteria, Bacteroidetes, Fusobacteria, and
Tenericutes is much richer in the AV than healthy group; the
abundance of the first three phyla increases with HI in the AV
group but decreases with HI in the healthy group, whereas
the abundance of Tenericutes decreases its abundance with
HI in both groups.

We further plot the abundance of individual genera against
HI, which is also found to obey the power equation (Figure 2B).
Genus Lactobacillus from Firmicutes has greater abundance
and also increases its abundance with HI in the healthy group
than in the AV group. All other genera are either much more
abundant over a full range of HI in the AV and healthy
group, such as Streptococcus and Aerococcus from Firmicutes
and Gardnerella, Atopobium, and Prevottella from the other
phyla, or are consistent between the two groups. Overall, only
Lactobacillus is a favorable genus, contributing to maintaining a
healthy vaginal ecosystem.
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FIGURE 1

Habitat index as a predictor of AV risk. (A) Difference between the healthy (H) and AV groups. (B) Change as a function of pH values in two
groups. (C) Difference due to the cyclic change from follicular to luteal phases for each group. Standard errors in each case are shown. Green
and red lines represent H and AV groups, respectively.

FIGURE 2

Scatterplots of abundance of individual microbes against habitat index. The change of bacterial abundance is expressed at the phylum level (A)
and the genus level (B). Dots represent a phylum or genus, whose HI-varying abundance change is fitted by the power equation. Red color for
The AV group is represented in red while the healthy group is in green.

Functional microbes: We classify 104 identified genera
and a mix of other unidentified genera into 12 modules
M1–M12, each composed of functionally similar genera

(Figure 3A and Supplementary Table 1). We find that M8 only
contains Lactobacillus, confirming that this genus functions
differently from other genera. In general, only three modules
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FIGURE 3

Functional clustering of genera into distinct modules. (A) BIC analysis identifies 12 functional modules, M1-M12, from 105 genera based on a
bivariate functional clustering model incorporating the HI-varying pattern of microbial abundance in healthy (green) and AV groups (red).
Shown in the paratheses are numbers of genera contained in a module. (B) Plots of abundance of the five most abundant Lactobacillus species
against habitat index. Green and red lines represent the mean curves of HI-varying abundance changes for healthy and AV groups, respectively.
(C) BIC analysis identifies 13 functional modules, M1-M13, from 105 genera based on a trivariate functional clustering model incorporating the
HI-varying pattern of microbial abundance in the healthy category (pH = 3.8, green), the sub-healthy category (pH = 4.0–4.4, blue), and the AV
category (pH = 4.6–5.4, red). Shown in the paratheses are numbers of genera contained in a module. Blue, green, and red lines represent the
mean curves of HI-varying abundance changes for the three categories, respectively.

(25%), i.e., M2, M5, and M6, cannot be used to distinguish
healthy and AV groups, whereas as many as 75% of modules
can serve as predictors of AV risk, the majority of which are

more abundant in the AV group than in the healthy group.
From the plots of the abundance of the five richest species from
Lactobacillus over HI, we find that only L. crispatus is favorable
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for a healthy vaginal ecosystem over a full range of HI, whereas
L. iners, L. jensenii and L. johnsonii are favorable only at a high
level of HI (Figure 3B).

An imbalance in vaginal microbial ecosystems can cause
the alternation of pH values, thus, varying pH values may
be associated with AV (Lin et al., 2021). We classify the
pH-AV association into three categories, pH = 3.8 (healthy,
n = 133), 4.0–4.4 (sub-healthy, n = 44), and 4.6–5.4 (AV
risk, n = 66). We implement three-variate functional clustering
(Wang et al., 2012) to classify 105 genera into distinct functional
modules based on the similarity of how genera change their
abundance with HI jointly under three categories of pH levels.
We identify 13 modules, each containing a different number of
genera and with a different HI-varying pattern (Figure 3C and
Supplementary Table 2). All modules, except for M9, regardless
of their number of genera, are more abundant in the AV
category than in healthy and sub-healthy categories. Module M9
is only composed of one genus Lactobacillus, further confirming
that Lactobacillus plays an important role in improving vaginal
microbial ecosystems.

Inferring context-specific
idopNetworks

Individual microbes can serve as a predictor of AV risk
at different levels of taxa and in terms of their functional
discrepancies. The mechanistic role of individual microbes
as a predictor can be better understood through microbial
interaction networks. We reconstruct idopNetworks at the
taxonomical (phylum) and functional levels.

Taxonomic networks: Figure 4 illustrates 18-node bacterial
idopNetworks among phyla for healthy and AV groups. We find
that the taxonomic networks display remarkable discrepancies
in topological architecture between the two groups (Figure 4A).
The healthy network appears to be denser than the AV
network due to a higher number of relatively weak links,
suggesting that a healthy vagina can maintain a better balance
between system function and stability. The number of outgoing
links exerted by each phylum and the number of incoming
links received by each phylum differ dramatically between
the two networks (Figure 4A). These differences are also
expressed in the relative number of positive and negative
outgoing regulation and the relative number of positive and
negative incoming regulation interactions for each phylum. For
example, although existing as a predominant phylum in both
networks, Firmicutes more actively regulates other phyla, with
the number of outgoing links being up to one time larger
in the healthy group than in the AV group. In particular,
Firmicutes inhibits Bacteroidetes in the healthy vagina but
promotes Bacteroidetes in the AV vagina. Actinobacteria is
inhibited by only one phylum in the AV group but by many
phyla in the healthy group.

Comparative analysis based on power fitting of Figure 2
shows that the transition of healthy to AV states is associated
with increasing quantities of phyla, such as Actinobacteria,
Bacteroidetes, Fusobacteria, and Tenericutes. It is interesting
to note that these phyla each have a much higher level of
independent abundance in the AV than in the healthy group
(Figure 4B). Cyanobacteria and Acidobacteria are expressed, to
a similar extent, in the healthy and AV groups, suggesting that
they are neutral to health state. Yet, the independent abundance
level of these two phyla reduces considerably from healthy to
AV states. The level of independent abundance of a microbe is
directly related to its intrinsic capacity, determining its fitness in
a condition where it cannot derive any resources from its peers.

Phyla Actinobacteria, Bacteroidetes, Fusobacteria, and
Tenericutes are inhibited by far fewer phyla in the AV group
than in the healthy group (Figure 4B), which increases the
likelihood that these microbes cause AV risk. On the other
hand, phyla Cyanobacteria and Acidobacteria are promoted
by many more phyla in the healthy group than in the AV
group, increasing their capacity to maintain favorable ecological
homeostasis in a healthy vagina. Taken together, idopNetworks
provide a mechanistic interpretation of how different microbes
at the phylum level interact with each other to bring about
changes in the vaginal ecosystem from an eubiosis state to
dysbiosis and vice versa.

Functional networks: Figure 5 shows 12-node
idopNetworks with functional modules for the healthy
and AV groups. Considerable differences are found in network
topology between two groups (Figure 5A). Module M8,
composed of only genus Lactobacillus [predominant lactic
acid bacteria (Gustafsson et al., 2011; Valenti et al., 2018)],
has a considerably higher intrinsic capacity (described by
independent abundance) than all other modules in the
H network, but its intrinsic capacity reduces dramatically
in the AV network. Unlike module M8, the intrinsic
capacity of many other modules, especially M4, M6,
M7, and M11, displays a pronounced increase from a
healthy state to an AV state. The H network has two
leaders, M1 and M11, which exert many outgoing links
to other modules, but such leaders do not exist in the AV
network (Figure 5A).

Figure 5B shows the decomposition of the net HI-varying
change curve into its independent and dependent component
curves for each module. M2, M5, and M6 have similar observed
microbial abundance between different health states, but their
underlying ecological mechanisms are different. M2 is promoted
by M1 in the healthy group, but in the AV network although
the former is still promoted, even to a larger extent, by the
latter, the large independent component of M2 is counteracted
by strikingly strong inhibition from M5. Similar interpretations
can be made for M5 and M6.

The decomposition curves of Figure 5B can also
mechanistically explain the reason why eight modules each
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FIGURE 4

Taxonomic idopNetworks at the phylum level. (A) Network architecture showing the difference between healthy (H) and AV groups. Red and
blue lines denote promotion and inhibition, respectively, with line thickness proportional to the strength of interactions. In the middle are the
distributions of the number of outgoing links (red bars for up-regulation and blue for down-regulation) and incoming links (red bars for
up-regulation and blue for down-regulation) across different phyla. (B) Decomposition of the net abundance trajectory (blue line) of each
phylum, denoted as P1–P18, into its independent abundance trajectory (red line) and dependent abundance trajectory (green line) in the H
group (left panel) and AV group (right panel). The names of phyla that regulate a given phylum are shown in the plot (positive regulators above
the zero line and negative regulators above the zero line).

have increased abundance in the AV group when compared to
the healthy group. For example, M1 is activated by AV disease,
displaying a large independent component, thus although it

is inhibited by M5 and L. crispatus, its net abundance is still
quite remarkable in the AV group. The independent component
of M4 is strikingly larger in the AV group than in the healthy
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FIGURE 5

Functional idopNetworks among modules. (A) Network architecture showing the difference between healthy (H) and AV groups. Genus
Lactobacillus is the only module contained in module M8, whose five most abundant species are added into the network. Red and blue lines
denote promotion and inhibition, respectively, with line thickness proportional to the strength of interactions. (B) Decomposition of the net
abundance trajectory (blue line) of each module into its independent abundance trajectory (red line) and dependent abundance trajectory
(green line) in the H group (left panel) and AV group (right panel). The names of modules that regulate a given module are shown in the plot
(positive regulators above the zero line and negative regulators above the zero line).

group, but although promoted by M11 in the AV group and
inhibited by L. crispatus in the AV group, the net abundance of
M4 is still much larger in the latter than in the former. Although
M12’s independent component is virtually very large in the
healthy group, its net abundance is reduced because it is strongly
inhibited by other modules. Yet, despite its smaller independent
component in the AV group, M12 is promoted by M1 and
inhibited by M5, ultimately making M12’s net abundance level
larger in the AV group than in the healthy group.

As an important module, M8, i.e., Lactobacillus, we identify
its five most abundant species to characterize the detailed role
of each species in mediating network change from a healthy
state to an AV state. As seen from the power fitting (Figure 3B),
L. crispatus is consistently much richer in the healthy group

than in the AV group. The independent abundance level of
all species, especially L. crispatus and L. iners, reduces from
a healthy state to an AV state, showing that these species
participate in shifting vaginal ecosystems from symbiosis
to dysbiosis (France et al., 2016). In the H network, all five
species are promoted or inhibited by other modules, and none
of them exerts outgoing links, neither to each other nor to
any other microbes from other modules (Figure 5A). Just
as Lactobacillus is one of the most important genera (Wang
et al., 2012; Valenti et al., 2018), L. crispatus is one of the most
important species in this genus, which is favorable to maintain a
heathy vaginal state (France et al., 2016). It is interesting to note
that L. crispatus is only one abundant species that establishes a
mutualistic cycle with module M11. Although M11, containing
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nine infrequent genera, Enterococcus, Gemella, Mageeibacillus,
Megasphaera, Mycoplasma, Peptoniphilus, Phyllobacterium,
Staphylococcus, and Veillonella, are unfavorable to vaginal
health, it simultaneously serves as an inhibitor of other
unfavorable microbes (such as M3, M6, M10, etc.) and as
a promotor of the favorable L. crispatus in the H network
(Figure 5B). In the AV network, none of Lactobacillus’ five
species receives any incoming link from other modules,
suggesting that their growth is purely dependent on their own
capacity. L. crispatus is a primary leader, exerting numerous
outgoing links, not only in the subnetwork composed of its
species counterparts, but also in the entire functional network
(Figure 5A). Because of these multifaceted roles in the AV
network, L. crispatus’ capacity to exploit and digest resources
for symbiotic maintenance is largely weakened. This may be
one important cause or consequence of AV.

In addition, L. crispatus, as a favorable species, unexpectedly
promotes some unfavorable modules, such as M6 and M9
(Figure 5B) and also promotes its peers L. iners and L. gasseri.
As seen from the power fitting (Figure 3B), these peers are
not always favorable for healthy vagina ecosystems; in some
cases, they are positively associated with AV. The independent
abundance of L. iners is reduced in the AV group, but
its observed abundance is augmented from promotion from
L. crispatus (Figure 5B). L. jensenii, L. gasseri, and L. johnsonii
each are promoted by M1, but inhibited to a larger extent by
M11, in the H network, whereas each of these three species is
only promoted by L. crispatus in the AV network (Figure 5B).

Tracing topological changes of
idopNetworks across pH gradients

We reconstruct 13-node functional idopNetwork for
different pH categories (Figure 6). Each module displays
pH-dependent differences in HI-varying abundance curves
(Figure 3C), and these differences can be mechanistically
explained by the networks (Figure 6A). For example, M11-M13
are observed to be much more abundant in the AV category than
in healthy and sub-healthy categories. From the decomposition
curves of Figure 6C, we can see that some of these differences
(such as M7, M10, M12 and M13) are due to increasing
independent abundance when the vaginal environment becomes
alkaline, whereas some, such as M2, M3, M5, M6, M8, and
M11) result strong inhibition from other modules in healthy and
sub-healthy vaginas.

It is interesting to see that as a whole, Lactobacillus has a
greater independent component in the AV category than in the
healthy category (Figure 6C). However, Lactobacillus is more
strongly promoted by M7 in the healthy vagina than M12 in
the diseased vagina, making its overall abundance level higher
in the former than in the latter. During the transition from
healthy to sub-healthy state, the intrinsic reproductive capacity

of Lactobacillus is strengthened, but because of new inhibition
from M12, its overall abundance is reduced.

Considering their unique role in transiting the vagina from
a healthy state to AV by maintaining its subacidity, we choose
the five most abundant species of Lactobacillus, including
L. crispatus, L. iners, L. gasseri, L. jenseni, and L. johnsonii, to
be added into pH-varying functional networks (Figure 6A).
We analyzed the proportions of these five species (Figure 6B).
L. crispatus and L. iners are two predominant species, together
occupying 90% of genus Lactobacillus in the healthy vagina, but
they are different in the isomers of lactic acid they produce as
end products of fermentation. L. crispatus can produce L- and
D-lactic acid, whereas L. iners can only produce L-lactic acid
(Amabebe and Anumba, 2018). We find that from categories 1
to 3, L. crispatus decreases its population proportion in order:
63.3%—37.4%—25.0%, whereas L. iners increases its population
proportion in order: 33.4%—55.4%—60.7%, suggesting that the
relative abundance of these two species is a predictor of AV
risk. An increasing proportion of L. crispatus to L. iners is
favorably associated with the healthy state. It is possible that
61% is a threshold for reciprocal transition between health
and AV; i.e., if L. crispatus reaches 61% or higher of the
microbiotic population, the vaginal microbiota maintains a
healthy environment, whereas if L. iners reaches 61% or higher,
the vaginal microbiota are dysbiotic.

Why does the relative proportion of L. crispatus vs. L. iners
decrease from the healthy to the AV state? This can be
explained from the structure of idopNetworks. L. crispatus
exhibits a larger independent component in a more acid
vagina than in a more alkaline vagina, whereas an inverse
pattern is found for L. iners (Figure 6C). Although L. crispatus
in both conditions is promoted by a module, M11 in the
acid condition and M12 in the alkaline condition, this
regulation is unidirectionally commensalistic in the former
but bidirectionally altruistic/predatory in the latter. Thus,
while M12 leads to the increasing abundance of L. crispatus,
this increase quickly inhibits the existence of M12, reducing
its capacity to promote L. crispatus. Although L. iners
receives promotion from a module in both conditions, it is
simultaneously inhibited by the other module in a healthy
vagina. For this reason, the increase of L. iners’ abundance is
limited when vaginal pH level is more acid.

Vagina idopNetwork correlates with
changes of menstrual cycles

A women’s menstrual cycle includes three cyclic stages,
the follicular phase, the luteal phase, and the menstrual phase
with different endometrial characteristics in each phase. The
follicular and luteal phases are facilitated by follicle-stimulating
hormone (FSH) and luteinizing hormone (LH), respectively.
In the follicular phase, estrogen-dominant hormone mediates
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FIGURE 6

PH-dependent functional idopNetworks among modules. (A) Network architecture showing differences among the healthy category (pH = 3.8),
the sub-healthy category (pH = 4.0–4.4), and the AV category (pH = 4.6–5.4). Genus Lactobacillus is the only module contained in module M9,
whose five most abundant species are added into the network. Red and blue lines denote promotion and inhibition, respectively, with line
thickness proportional to the strength of interactions. (B) The percentages of abundance of the five most abundance species of Lactobacillus in
this genus in three pH categories. (C) Decomposition of the net abundance trajectory (blue line) of each module into its independent
abundance trajectory (red line) and dependent abundance trajectory (green line) in the healthy category (left panel), the sub-healthy category
(middle panel), and the AV category (right panel). The names of modules that regulate a given module are shown in the plot (positive regulators
above the zero line and negative regulators above the zero line).

Frontiers in Microbiology 12 frontiersin.org

https://doi.org/10.3389/fmicb.2022.998813
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-998813 October 15, 2022 Time: 14:41 # 13

Wang et al. 10.3389/fmicb.2022.998813

the regeneration of the functional layer of the endometrium,
whereas progesterone drives the endometrium to undergo
various changes in preparation for embryo implantation in the
luteal phase. These phase-dependent hormonal changes in the
endometrium are associated with alterations in the proportion
of different types of immune cells (Figure 7). We find that
microbiota flora in the vagina vary with the shift of physiological
states in the upper reproductive tract (Figure 7).

We reconstruct idopNetworks among the nine most
abundant species of Lactobacillus with all remaining microbes
treated as others in the vagina, separately for the follicular
and the luteal phases (Figure 7). In the healthy group,
the interconnection density of the network composed of
Lactobacillus species reduces dramatically from follicular to
luteal phases, whereas such a phase-dependent change does not
occur for the AV group. At the follicular phase, the intrinsic
capacity of L. crispatus to expand its abundance reduces from
the healthy to the unhealthy state, but this capacity stays stable
over health state in the luteal phase. L. iners reduces its intrinsic
capacity for reproduction from the healthy to unhealthy states
to a greater extent at the luteal than the follicular phases. For the
healthy group, L. crispatus reduces its intrinsic growth capacity,
accompanied by the increase of L. iners’ intrinsic capacity, from
follicular to luteal phases, whereas the intrinsic growth capacity
of both species does not markedly change between two phases.
Taken together, the Lactobacillus network is more adaptive in
its overall topological features, especially the relative intrinsic
growth capacity of two key species, L. crispatus and L. iners, as
a function of physiological change to the endometrium. Also,
while L. crispatus is a key determinant of AV risk at the follicular
phase, this determinant is replaced by L. iners at the luteal phase.

Discussion

Most studies linking microbiota with natural and health
processes focus on comparing the relative abundance of
individual microbes between different regimes. By comparing
the 10 major phyla identified in the vaginal ecosystem, Wang
et al. (2020) found that Firmicutes (mainly Lactobacillus)
predominates the vaginal microbiota in healthy women,
whereas Actinobacteria and Bacteroidetes became much more
abundant in women infected by AV. The role of Lactobacillus
is speculated to include a reduction in the microenvironmental
pH level, generating various bacteriostatic and bactericidal
compounds, and competitively excluding other bacterial species
(Wang et al., 2012; Valenti et al., 2018). However, without
a mechanistic picture of how individual microbes, such as
Firmicutes, Actinobacteria, and Bacteroidetes, mediate the
occurrence of AV, the precise treatment of this disease by
probiotic supplementary agents remains problematic. For
example, L. crispatus is a key species of Lactobacillus to
meliorate vaginal dysbiosis, but because it also plays a role

in inhibiting the other microbes that promote it, probiotics
containing this species requires a balance of multiple microbes
to maximize its efficacy.

In this article, we used a powerful network tool to
dissect how each microbe interacts with all other microbes
to determine AV, providing a unique way to predict AV risk
by understanding the mechanisms underlying microbiota-host
crosstalk. Our predictive model includes three hierarchical
stages, the calculation of HI, allometric scaling fitting of
individual microbe levels, and microbial interaction modeling
by qdODEs. As compared to the healthy group, the HI of
the AV group reduces only slightly (Figure 1), suggesting
that the reduction of the total amount of microbes does
not fully reflect AV risk. Yet, by plotting the abundance
level of individual microbes at a specific level of taxon, a
set of microbes that distinguish between healthy and AV
groups can be identified. For example, Firmicutes are more
abundant in healthy women than in non-healthy women,
whereas Actinobacteria, Bacteroidetes, and Fusobacteria display
an increasing abundance level in AV women (Figure 2A).
The association between microbial abundance and AV can be
more clearly dissected at the genus level; a striking decrease in
Lactobacillus and a striking increase in multiple aerobes, such as
genera Streptococcus, Aerococcus, etc., accompanies the onset of
AV (Figure 2B). Taken together, the slope of allometric scaling
curves for certain genera that change their abundance with HI
can be used as a powerful predictor of AV risk.

The network model provides a mechanistic understanding
of predictive models for AV risk. In a highly dense
bioenvironment, such as the vagina, the function of any
single microbe is regulated by other microbes (Ravel et al.,
2011; Chen et al., 2021). The transition of vaginal microflora
from a healthy (symbiotic) to abnormal (dysbiotic) state is not
only characterized by the change of abundance of individual
key microbes, but also through the interaction networks of
all microbes as a cohesive whole. We reconstruct taxonomic
microbial networks using natural taxa of microbes as network
nodes, and find that microbes are not fully interconnected
at the phylum level in symbiotic vaginal microflora, but
with a density being higher than that in dysbiotic vaginal
microflora (Figure 3). There has been a long debate on the
complexity-stability relationship in living systems (Valenti et al.,
2018). One view suggests that complex communities enhance
community stability (Gravel et al., 2016; Goyal et al., 2022;
Yonatan et al., 2022). However, this view is challenged by May
(1973) who used mathematical models to find the positive
association of community destabilization and complexity.
The two distinct views implies that community stability is
not related to community complexity in a linear way, rather
their relationship is non-linear. The non-linear hypothesis
well explains our discovery; i.e., microbial links in the vaginal
ecosystem are maintained at a threshold level, below or above
which vaginal microflora becomes abnormal.
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FIGURE 7

Vaginal microbial networks in response to physiological changes of the endometrium during menstruation cycle. The repetitive cycles of the
human endometrium among the follicle, ovulation, and luteal phases are accompanied by morphological changes and cyclical fluctuations of
sex hormones [including estrogen, progesterone, follicle hormone (FSH), and luteinizing hormone (LH)] as well as different types of immune
cells (Agostinis et al., 2019). At the top of the figure are the microbial networks composed of the nine most abundant Lactobacillus species
(denoted as 1–9) and the remaining microbes (other) for healthy (H) and AV groups. The nodes of the networks represent the independent
abundance components of individual microbes, with the size of circles proportional to the value of such components. The edges of the
networks are directional promotion (red) or inhibition (blue) between a pair of microbes.

More importantly, we find that the decrease of abundance
in Firmicutes is due to both intrinsic and extrinsic factors,
i.e., the reduction of its carrying capacity (described by the
independent component) and the negative regulation it receives

from Actinobateria (described by the dependent component)
(Figure 3B). In the healthy vagina, Firmicutes is simultaneously
upregulated and downregulated by multiple microbes and,
ultimately, receives slight overall positive regulation after
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regulation in different signs is canceled out. This result suggests
that, in order to improve the dysbiosis of vaginal microflora
through Firmicutes, using probiotics that only contain this
microbe is not sufficient, rather it should be mixed with
positive regulators.

Several phyla, such as Actinobacteria, Bacteroidetes,
Proteobacteria, etc., are activated, exhibiting a striking
increase in their independent abundance, in abnormal
vaginal microflora. As such, specific medications can be
designed to control these microbes so that the vaginal
microenvironment can be improved. This strategy may be
efficient for Actinobacteria because it is only downregulated
by Firmicutes. Yet, for the other phyla that are regulated by
many different regulators, special attention should be paid
to the development of medications that can balance the co-
occurrence of the regulatees and regulators. For example, to
control Proteobacteria, its positive regulators, Cyanobacteria
and Verrucomicrobia, should be controlled simultaneously
as a whole. Our idopNetworks chart a detailed roadmap of
how and how much each phylum regulates, or is regulated
by, every other phylum across subjects (Figure 3B), from
which an optimal strategy to control specific microbes can be
designed and delivered.

We have also reconstructed functional microbial networks
with functional units as network nodes. Although microbes
from different taxa are phylogenetically different, they may
perform a similar function. This allows us to classify
different microbes at different taxonomic levels into distinct
functional modules. This classification has two advantages.
First, functional networks based on these modules can better
explain the mechanistic relationships among microbes and
their impact on disease outcome. Second, it provides a
way to reconstruct networks from high-dimensional data.
Clinically more useful and informative microbial networks
should be reconstructed with a fine-grained unit, such as
genera, species, strains, or even genes. However, such networks
will have too many nodes to be coded into a graph because
of computational burden and instability. The classification
produces different modules, each with a smaller number of
entities that make it possible to reconstruct networks. We
classify 104 genera identified in healthy and AV-infected
women into multiple modules based on the similarity of HI-
varying abundance change over different health states and
vaginal pH gradients. Results from functional networks based
on modules well support those from taxonomic networks
at the phylum level, while providing an additional insight
into microbial interactions and their impact on AV risk.
In both functional clustering over health states (heathy vs.
AV) and pH levels (low, middle, high), genus Lactobacillus
is always attributed to a module that only is composed
of this genus itself. This result reflects the unique role
of Lactobacillus, one of the most often found inhabitants
in the vagina, in maintaining the vaginal ecosystem of

healthy women (Goyal et al., 2022). Analysis of functional
networks shows that Lactobacillus is positively regulated by
the other functional module containing many species in
healthy vaginal microbiota, but this positive regulation is
largely weakened when the vaginal ecosystem become dysbiotic
(Figure 6). This is accompanied by an increasingly alkaline
microenvironment.

By further dissecting the role of Lactobacillus at its species
level, this genus is predominated by two species, L. crispatus
and L. iners, with its next three most abundant species
together accounting for only 3–14% of the total population
(Figure 6B). Compared to L. iners, L. crispatus has a greater
capacity to produce lactic acids that break down carbohydrates
for energy when oxygen levels are low. In healthy vaginas,
L. crispatus is promoted by other microbes, but it turns
to serve as a regulator to regulate other microbes, even
including promoting unfavorable microbes, in less healthy
vaginas. These multiple tasks would, with no doubt, affect its
role in maintaining vaginal symbiosis. Also, when a vagina
becomes alkaline, L. crispatus receives positive regulation
from, but while exerting inhibition to, the same microbial
module. This aggressive/altruistic relationship forms a paradox
for L. crispatus’ role in maintaining vaginal symbiosis and
alleviating vaginal dysbiosis.

In the healthy vagina at a normal pH, L. crispatus and
L. iners account for about 63% and 33% of the total genus
mass, respectively. This relative proportion is in agreement
with the golden dissection hypothesis of animal conflict (Wang
et al., 2019; He et al., 2021; Wu et al., 2021), with which the
more abundant L. crispatus (>61%) tends to cooperate with
the less abundant L. iners (<38%). This relative proportion
changes when pH values increase. In the abnormal vagina
at a more alkaline pH, the proportions of L. crispatus and
L. iners become 25 and 60.7%, respectively. This proportion
suggests the surrender-resistance hypothesis of animal conflict
(Wu et al., 2021), by which the less abundant L. crispatus
would be sacrificed if it chooses to cooperate, but it may
benefit from its choice of conflict with the more abundant
L. iners. In either case, the two species tend to compete
against each other, leading the vaginal ecosystem to be dysbiotic
(Pacha-Herrera et al., 2022).

We report a detailed application of idopNetworks as
a mechanistic predictor of AV risk. It is not surprising
that this application produces interpretable results about the
interactive mechanisms underlying the microecological balance
of vaginal microflora, given that the development of this model
was derived from the integration of biologically meaningful
evolutionary game theory and prey-predator equation (Chen
et al., 2019, 2022; Griffin et al., 2020; Wu and Jiang, 2021).
The results from this application could be potentially more
useful for the design of effective medications to treat AV when
a more sample size is used and when more powerful statistical
solution for curve fitting and stochastic modeling is developed.

Frontiers in Microbiology 15 frontiersin.org

https://doi.org/10.3389/fmicb.2022.998813
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-998813 October 15, 2022 Time: 14:41 # 16

Wang et al. 10.3389/fmicb.2022.998813

At the same time, the modified model can be used to reveal other
microbial community assembly, such as the gut microbiota, and
their impacts on health and natural processes.
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