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Torquetenovirus (TTV) is a negative sense, single-stranded DNA virus present in

many body fluids of apparently healthy individuals. At present, it is considered

a non-pathogenic endogenous virus. TTV can be detected in the vagina of

pregnant women, its abundance being modulated with the extent of immune

system activation. Until now, there is only scarce information regarding the

association between TTV and the composition of the vaginal environment.

Therefore, this study aimed to assess the presence of TTV in the vaginal

ecosystem of a cohort of white women with a normal pregnancy (n = 60) at

di�erent gestational stages (first, second and third trimester) and in 9 subjects

su�ering a first trimester miscarriage. For each woman, we determined (i) the

presence and titer of TTV, (ii) the vaginal bacterial composition by means

of Nugent score and 16S rRNA gene sequencing, (iii) the vaginal metabolic

profiles through 1H-NMR spectroscopy, and (iv) the vaginal concentration

of two pro-inflammatory cytokines (IL-6 and IL-8). More than one third of

women were found negative for TTV at all gestational stages. Although not

statistically significant, the positivity for TTV dropped from 53.3% in the first to

36.6% in the third trimester. TTV loads varied greatly among vaginal samples,

ranging between 2 × 101 and 2 × 105 copies/reaction. No di�erence in TTV

prevalence and loads was observed between women with normal pregnancies

and miscarriages. The presence of TTV was more common in women with

a higher vaginal leucocyte count (p = 0.02). The levels of IL-6 (p = 0.02),

IL-8 (p = 0.03), propionate (p = 0.001) and cadaverine (p = 0.006) were

significantly higher in TTV-positive samples. TTV titer was positively correlated

with the concentrations of 4-hydroxyphenyllactate (p < 0.0001), isoleucine (p

= 0.01) and phenylalanine (p= 0.04). TTV-positive samples were characterized

by a higher relative abundance of Sneathia (p = 0.04) and Shuttleworthia
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(p = 0.0009). In addition, a trend toward a decrease of Lactobacillus crispatus

and Lactobacillus jensenii, and an increase of Lactobacillus inerswas observed

for TTV-positive samples. In conclusion, we found that TTV is quite common

in womenwith normal pregnancy outcomes, representing a possible predictor

of local immune status.

KEYWORDS

torquetenovirus, TTV, vaginalmicrobiome, pregnancy, vaginalmetabolome, women’s

health

Introduction

Throughout a woman’s lifespan, the vaginal microbiome

undergoes major changes in response to various factors,

such as hormonal levels, sexual habits, hygiene, pregnancy,

pharmaceutical treatments, and urogenital infections (Kroon

et al., 2018; Parolin et al., 2018; Ceccarani et al., 2019; Severgnini

et al., 2022).

During healthy pregnancies, the vaginal microbiome is

usually characterized by a significant decrease in overall

bacterial diversity, an increased stability, and an enrichment

of Lactobacillus spp. (Dall’Asta et al., 2021; Marangoni et al.,

2021). A lactobacilli-dominated vaginal microbiota is associated

with low inflammation and low immune system activation,

thus contributing to the maintenance of maternal-fetal health

(Witkin et al., 2019).

In the case of bacterial vaginosis (BV), a condition of

vaginal dysbiosis characterized by a depletion of lactobacilli

and an overgrowth of several anaerobes (e.g., Gardnerella

vaginalis, Fannyhessea vaginae, Prevotella spp., Megasphaera

spp.), an increased local inflammation is present, with the risk

of pregnancy-related complications and preterm birth (Prince

et al., 2014; Anahtar et al., 2015; Di Simone et al., 2020).

The changes in the vaginal bacterial communities are

accompanied by profound alterations in the composition of

vaginal metabolites. High concentrations of biogenic amines

(e.g., putrescine, cadaverine, and trimethylamine) and short-

chain fatty acids (SCFAs) are the most common fingerprints of

BV (Srinivasan et al., 2015; Parolin et al., 2018).

Recently, it has been shown that Torquetenovirus (TTV),

a non-pathogenic endogenous virus, can be detected in the

vagina of pregnant women, its abundance being modulated

with the extent of immune system activation (Maggi and

Bendinelli, 2010; Tozetto-Mendoza et al., 2020, 2022). TTV has

a worldwide distribution, and it can be transmitted by multiple

routes, including bloodborne, oro-fecal, respiratory, and sexual

transmission (Maggi and Bendinelli, 2010; Haloschan et al.,

2014). This virus appears to replicate mainly in T lymphocytes,

but the exact cellular receptors for TTV are still unknown.

Anyway, even though TTV can be considered an orphan virus,

TTV viremia may potentially be a simple and sensitive measure

of immune system function of the host (Shibayama et al., 2001;

Maggi et al., 2010).

Until now, there is only scarce information on the

association between TTV titer and the microbial/metabolic

composition of the vaginal environment (Tozetto-Mendoza

et al., 2020, 2022). Moreover, the mechanisms associated with

variations in vaginal TTV titer, as well as the relevance of

monitoring TTV loads in pregnancy remain open questions.

Therefore, in this study we assessed the presence of TTV

in the vaginal ecosystem of a cohort of white women with a

normal pregnancy (n = 60) at different gestational stages (i.e.,

first, second and third trimester) and in 9 subjects suffering a

first trimester miscarriage. For each woman, we determined (i)

the presence and titer of TTV in the vaginal ecosystem by means

of a real-time PCR assay, (ii) the vaginal bacterial composition

by means of a microscopic scoring system (Nugent score) and

by sequencing of the V3–V4 hypervariable regions of the 16S

rRNA gene, (iii) the vaginal metabolic profiles through 1H-

NMR spectroscopy, and (iv) the vaginal concentration of two

pro-inflammatory cytokines (IL-6 and IL-8).

Materials and methods

Study group and sample collection

From April 2019 all the white pregnant women attending

the Family Advisory Health Centers of Ravenna (Italy) were

considered eligible for the study. Exclusion criteria included

the following: (i) age<18 years; (ii) being positive for HIV

infection; (iii) obesity (body mass index >33); (iv) medically

assisted procreation; (v) use of antimicrobials in the month

prior the enrollment; (vi) use of vaginal topical agents in

the 2 weeks before the enrollment; (vii) presence of chronic

diseases (e.g., diabetes, autoimmune disorders, malignancies);

(viii) drug addiction or heavy smokers (>15 cigarettes/day).

Furthermore, women were excluded if a diagnosis of sexually

transmitted infections (STIs) (i.e., Chlamydia trachomatis,

Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma

genitalium) or aerobic vaginitis was made. For each woman a

clinical visit was performed at gestational stages 9–13 weeks

(first trimester), 20–24 weeks (second trimester), and 32–34
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weeks (third trimester). At each time point, two vaginal swabs

were collected: the first one (E-swab, Copan, Brescia, Italy) was

used for microbiological tests, while the second was collected

with a sterile cotton bud, re-suspended in 1ml of sterile saline,

and stored at−80◦C until use. Frozen vaginal swabs were

thawed, vortexed for 1min and removed from the liquid. After

centrifugation (10,000 × g for 15min) cell-free supernatants

were used for metabolomic analysis and cytokine detection,

whereas cell-pellets were employed both for TTV detection and

vaginal microbiome profiling (see specific paragraphs).

Ethics statement

The study protocol was approved by the Ethics Committee

of Romagna (CEROM) (no 2032 of 21st February 2018) and it

was carried out in accordance with the Declaration of Helsinki.

Each woman gave written informed consent to participate in

the study.

Microbiological investigations

A commercial nucleic acid amplification technique (NAAT)

was used to exclude the presence of STIs (Seeplex STI Master

Panel 1, Seegene, Seoul, South Korea), whereas candidiasis

and aerobic vaginitis diagnosis was performed by microscopic

examination and microbial cultures, as described elsewhere

(Donders et al., 2011; Yano et al., 2019).

Based on Nugent score, a Gram stain scoring system

evaluating for the presence of different bacterial morphotypes

(Nugent et al., 1991), women were categorized into 3 groups: ‘H’

(healthy; score 0–3; normal lactobacilli-dominated microbiota),

‘I’ (score 4–6; intermediate microbiota), ‘BV’ (score 7–10;

bacterial vaginosis) (Zozaya-Hinchliffe et al., 2010).

The presence of vaginal leukocytes (white blood cells:

WBCs) was evaluated after visualization of a minimum of five

fields under light microscopy at 400×. Samples were categorized

as ‘minimal or no inflammation’ in case of<5 WBCs in all

visualized fields or as ‘significant inflammation’ in presence of

≥5 WBCs in at least one field visualized (Geisler et al., 2004).

Vaginal microbiome profiling

Nucleic acids were extracted from vaginal swabs by means of

the Versant molecular system (Siemens Healthcare Diagnostics,

Tarrytown, NY, USA) (Marangoni et al., 2015). Afterwards, the

V3–V4 hypervariable regions of the bacterial 16S rRNA gene

were amplified according to the 16S metagenomic sequencing

library preparation protocol (Illumina, San Diego, CA, USA), as

previously described (Severgnini et al., 2021). Raw reads were

analyzed according to the procedure reported by (Severgnini

et al., 2021).

Zero-radius Operational Taxonomic Units (zOTUs)

creation, taxonomy assignments, and diversity analyses were

performed using the QIIME suite (release 1.9.0) (Caporaso

et al., 2010), unoise3 algorithm (Edgar, 2016), RDP classifier

(Wang et al., 2007), and SILVA 16S rRNA database (release

132, https://www.arb/silva.de/fileadmin/silva_databases/qiime/

Silva_132_release.zip).

As already reported, characterization of Lactobacillus spp.

was performed by BLAST-aligning all reads belonging to that

genus to a custom reference database (Ceccarani et al., 2019).

Alpha-diversity was evaluated according to several microbial

diversity metrics (i.e., chao1, Shannon index, observed species,

Good’s coverage, and Faith’s phylogenetic distance), whereas

beta-diversity analysis was performed using both weighted

and unweighted Unifrac metrics (Lozupone et al., 2011), and

through the Principal Coordinates Analysis (PCoA).

Detection of TTV in the vaginal
ecosystem

Starting from the remaining DNA eluate, all the vaginal

swabs were tested for the presence of TTV as previously reported

(Maggi et al., 2001; Tozetto-Mendoza et al., 2022).

The PCR reaction mixtures (final volume: 25 µL) included

12.5 µL of Platinum Quantitative PCR Supermix-UDG with

ROX (Invitrogen, Waltham, MA, USA), 250 nM of primers,

62 nM of the probe, and 2.5 µL of template. All PCR reactions

were performed with the following cycling conditions using

a QuantStudio Real-Time PCR system (Applied Biosystems,

Waltham, MA, USA): 2min at 50◦C, 15 s at 95◦C, and 40 cycles

of 15 s at 95◦C and 60 s at 60◦C.

A standard curve with known amounts of a synthetic

oligonucleotide was used for TTV quantification (Tozetto-

Mendoza et al., 2022). Results were expressed as log10

DNA copies/reaction.

Cytokine detection

The concentration of IL-6 (pg/ml) and IL-8 (pg/ml) was

determined on the cell-free supernatants of the vaginal swabs

by means of commercial ELISA assays (Simple Plex Human IL-

6 and IL-8 Cartridges, R&D Systems, Minneapolis, MN, USA),

following manufacturer’s instructions (Brys et al., 2020).

Metabolomic analysis

Metabolomic analysis was performed by means of a 1H-

NMR spectroscopy starting from 700 µl of the cell-free
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supernatants of the vaginal swabs, using an AVANCE III

spectrometer (Bruker, Milan, Italy), as previously reported

(Foschi et al., 2018; Zhu et al., 2019). The signals were

assigned by comparing their multiplicity and chemical shift

with Chenomx software data bank (ver 8.3, Chenomx Inc.,

Edmonton, Alberta, Canada).

Data analysis and statistics

Statistical analyses were conducted by using GraphPad

Prism software (version 5.02; GraphPad Software, San Diego,

CA, USA) and Matlab (Software version 7.7.0, Natick, MA,

USA). Fisher’s exact test was used to compare categorical data

(i.e., presence of TTV stratified by the vaginal status), whereas

ANOVA test, followed by Tukey’s multiple comparisons test, was

employed to compare TTV loads among the different categories.

TTV loads were correlated to metabolite concentrations by

calculating the Spearman correlation coefficient.

Statistical evaluation of the alpha-diversity indices was

performed by non-parametric Monte Carlo-based tests, whereas

beta-diversity differences were assessed by a permutation test

with pseudo F-ratios (“adonis” function fromR package “vegan”,

version 2.0-10 Oksanen et al., 2013). Pairwise relative abundance

analysis was performed using a non-parametric Mann–Whitney

U test.

Statistical significance (p-value <0.05) was assessed after

adjustment for multiple comparisons (i.e., Benjamini-Hochberg

correction, with a FDR of 0.25).

Correlation between microbial composition at the genus

level and presence/absence of TTV was calculated using the

point biserial correlation (Gupta, 1960), whereas the correlation

between microbial profiles and TTV loads (log-transformed

TTV copy number) was performed using Spearman’s rank-

based correlation coefficient. Only coefficients showing a p-value

of the linear model<0.05 were considered.

Data availability

Raw sequencing data of 16S rRNA gene are available at

NCBI Short-reads Archive (SRA) with BioProject accession

number PRJNA766806 (https://www.ncbi.nlm.nih.gov/sra/

PRJNA766806).

Results

Study population

A total of 60 pregnant women with a median age of 31 years

(min–max: 21–44) completed the study. In addition, 9 women

(median age: 35 years; min–max: 23–41) who had a spontaneous

first trimester miscarriage (gestational age: 11–13 weeks) were

also included.

Overall, excluding specimens from women with

miscarriages, 118 vaginal samples (65.6%) were characterized by

a lactobacilli-dominated flora (Nugent score 0–3), 43 (23.9%)

by an intermediate microbiota (Nugent score: 4–6), and the

remaining 19 (10.5%) harbored a BV-associated bacterial

composition (Nugent score: 7–10).

It is noteworthy that a significant reduction of dysbiotic

cases was noticed (p = 0.002) when moving from the first to

the third trimester of pregnancy. Finally, women who suffered a

first trimester miscarriage (n = 9) were mainly characterized by

a condition of dysbiosis (i.e., 6 with an intermediate microbiota

and 2 with a BV condition).

Detection of TTV

Overall, considering all the specimens belonging to the 60

women who completed the study, 42.7% (77/180) of the tested

vaginal swabs were positive for TTV.

Stratifying the samples by the gestational age (n = 60

per time point), there was a non-significant decrease in TTV

positivity between samples obtained in the first, second and

third trimester. In fact, 32 (53.3%) were TTV-positive in the first

trimester, 23 (38.3%) in the second, and 22 (36.6%) in the third.

No difference in TTV prevalence was found when comparing

normal pregnancies withmiscarriages: in fact, TTVwas detected

in about half (5/9; 55.5%) of the women who suffered a first

trimester miscarriage.

Considering each subject throughout the pregnancy, more

than one third of women were found negative for TTV at all

three trimesters of pregnancy (25/60; 41.6%). Conversely, 26.6%

of women (16/60) were positive for TTV at each trimester.

Thirteen of the remaining cases were characterized by a TTV

positivity in the first and/or second trimester, with a negativity

at the end of pregnancy.

TTV loads (expressed as log10 DNA copies/reaction) varied

greatly among vaginal samples, ranging between 1.4 (about 26

copies/reaction) and 5.3 (about 209,000 copies), with a mean (±

standard deviation, SD) of 3.06± 0.96. No significant difference

in TTV titer was found between women with a miscarriage and

women with a normal pregnancy at the first trimester (2.8± 0.8

vs. 2.1± 0.5; p= 0.06).

Correlations between TTV and available
variables

Considering only the first trimester of pregnancy, no

difference in the median age among TTV-positive (30 years) and

TTV-negative (32 years) women was found (p= 0.36).
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Neither the presence of TTV (p = 0.65) nor TTV loads

were associated with a condition of BV (BV: 2.7 ± 0.7; I: 2.8 ±

0.9; H: 3.2 ± 0.9; p = 0.10). Conversely, the presence of TTV

was significantly more common in women with a higher vaginal

WBC count (37.7 vs. 57.7%; p= 0.02). In line with these findings,

the levels of IL-6 (median, range: 0.81, 0.01–57.8 vs. 0.41, 0.0–

31.2 pg/mL; p = 0.02), as well as IL-8 (1,901, 34–35,783 vs.

652, 11.3–43,248; p = 0.03) were significantly higher in TTV-

positive vaginal samples. Moreover, we observed a trend in the

correlation between TTV loads and IL-8 levels (R = 0.19; p =

0.09). The detection of vaginalCandida spp. was not significantly

associated with the vaginal presence of the virus nor with higher

TTV loads (p > 0.5).

On the contrary, several correlations were observed between

TTV presence/loads and the levels of particular vaginal

metabolites. In relation to this, it is worth mentioning

that a total of 63 metabolites were detected in the vaginal

cell-free supernatants, mainly belonging to the groups of

SCFAs, organic acids, amino acids, and biogenic amines

(Supplementary Table S1).

In particular, TTV-positive samples were characterized by

higher levels of propionate (median, range: 0.01, 0.001–0.36

vs. 0.007, 0.001–0.23mM; p = 0.001) and cadaverine (0.008,

0.002–0.05 vs. 0.006, 0.001–0.06mM; p = 0.006), compared to

TTV-negative ones.

Moreover, TTV titer was positively correlated with the levels

of 4-hydroxyphenyllactate (p < 0.0001), isoleucine (p = 0.01)

and phenylalanine (p = 0.04). Vaginal molecules showing a

negative correlation with TTV loads included benzoate (p =

0.008), inosine (p = 0.002), and creatine (p = 0.004) (the full

list is displayed in Table 1).

Correlation between TTV and vaginal
microbiome profiling

For microbiota analysis, only samples with a number of

reads >5,000 (n = 175) were considered, in order to have a

reliable picture of the microbial composition. TTV-positive and

negative samples showed no statistical difference (p > 0.05)

on both biodiversity (alpha-diversity) or microbial composition

(beta-diversity) for all the metrics considered (Figure 1).

Moreover, the analysis of the bacterial relative abundances

did not reveal any major changes in the bacterial groups

between TTV+ and TTV- samples. Nevertheless, we noticed

significant differences in two low-abundant taxa (average

relative abundance <1%), such as a higher abundance of

Sneathia (0.92 vs. 0.29%; p = 0.04) and Shuttleworthia (0.89 vs.

<0.01%; p= 0.0009) in TTV-positive samples.

The point-biserial correlation confirmed the significant

positive correlations between TTV presence and the abundance

of Sneathia (R = 0.123) and Shuttleworthia (R = 0.125).

Spearman analysis showed a significant correlation between

TABLE 1 List of the vaginal molecules, whose concentration was

found related to TTV loads.

Spearman r p -value

Xanthine −0.276 0.01

Benzoate −0.298 0.008

Phenylalanine 0.231 0.04

Tyramine −0.259 0.02

4-Hydroxyphenyllactate 0.508 <0.0001

Inosine −0.336 0.002

Uridine −0.2285 0.04

Uracil −0.265 0.02

Methanol −0.256 0.02

Ethanolamine −0.261 0.02

Creatinine −0.2780 0.01

Creatine −0.320 0.004

Asparagine −0.288 0.01

TMA −0.301 0.007

2,3-Butanediol −0.285 0.01

Propionate −0.366 0.001

Isoleucine 0.265 0.02

Statistical significance was searched by Spearman correlation coefficient.

TTV loads and the abundance of Sneathia (R = 0.166) and

Shuttleworthia (R= 0.313).

Although not statistically significant, TTV-positive samples

were characterized by a decrease of L. crispatus (32 vs. 41%) and

L. jensenii (7 vs. 10%), as well as by an increase of L. iners (25 vs.

15%), compared to TTV-negative ones.

In this context, it is worth mentioning that we found a

negative correlation between the levels of pro-inflammatory

cytokines and both L. crispatus (R = −0.354 and R = −0.277

for IL-6 and IL-8, respectively) and L. jensenii (R = −0.309 and

R=−0.171 for IL-6 and IL-8, respectively).

Discussion

The presence and role of TTV in pregnant women is still

only scarcely available, so this study aimed to provide new

insights into the dynamics of TTV in the vaginal ecosystem

during pregnancy. We explored TTV presence and loads in

a cohort of white pregnant women at different gestational

stages and we assessed its correlation with the vaginal bacterial

composition, with the vaginal metabolic profiles and with the

vaginal concentration of two pro-inflammatory cytokines.

In line with previous findings (Tozetto-Mendoza et al.,

2022), we observed that TTV is quite common in women with

normal pregnancy outcomes, with a prevalence ranging from

53% at the first trimester to 36% at the third. This is not

surprising if we consider that TTV has been identified both
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FIGURE 1

(A) Boxplot of the alpha-diversity according to Faith’s phylogenetic diversity metric, grouped by TTV presence or absence. Each point represents

a sample; median of the distributions are in black, whereas means are in white; (B) Principal Coordinate Analysis (PCoA) of the beta-diversity

values according to unweighted Unifrac distances. Each point represents a sample; data points are colored according to the presence or

absence of TTV; ellipses represent the 95% SEM-based confidence intervals; the first and the second coordinates are represented.

in peripheral blood and in cervical/vaginal fluids (Maggi and

Bendinelli, 2010; Chen et al., 2011; Tozetto-Mendoza et al.,

2020).

No difference in TTV prevalence and loads was observed

between women with normal pregnancies and miscarriages.

Even though further studies including a larger cohort of women

are needed for a better comprehension of TTV role during

pregnancy, these results seem to indicate that TTV does not have

clinical outcome consequences.

Interestingly, TTV presence was positively related to the

number of vaginal WBC, as well as to higher concentrations

of vaginal proinflammatory cytokines (i.e., IL-6 and IL-8). This

result is not surprising if we consider that TTV has been

recognized as a predictor of local immune status (Focosi et al.,

2016). It has been speculated that, in the vaginal ecosystem,

TTV loads are related to the presence of activated lymphoid

cells, being the vaginal TTV an additional indicator of the local

“immune” status in pregnant women (Brundin et al., 2020;

Tozetto-Mendoza et al., 2022).

Other interesting data emerged when TTV presence

and loads were related to the vaginal bacterial composition.

The most significant results included (i) the association

between TTV and higher levels of Sneathia and

Shuttleworthia, (ii) a trend toward a decrease of L.

crispatus and L. jensenii, as well as an increase of L. iners

in TTV-positive samples.

In this context, it is worth underlining that a significant

negative correlation between L. crispatus and L. jensenii and both

IL-6 and IL-8 was observed.

Since TTV replication preferentially occurs in activated

lymphoid cells (Brundin et al., 2020), and immune system

activation is at its lowest level in case of a L. crispatus-dominated

vaginal microbiome (Witkin and Linhares, 2017), we can

speculate that the absence/decrease of TTV is linked to

the reduction of lymphoid cells or their pro-inflammatory

molecules when L. crispatus is predominant. On the contrary,

the presence of L. iners is associated with a higher expression of

genes involved in leukocyte mediated immunity and activation

(Mohd Zaki et al., 2022), being potentially associated with higher

levels of TTV in the vaginal environment.

The association between TTV and higher levels of Sneathia

and Shuttleworthia probably goes in the same direction. In

fact, genital inflammation can be linked to specific BV-related

microorganisms, including Sneathia (Kaelin et al., 2022). As

reported by Lopez-Filloy et al., women with HPV infection

are characterized by a significant increase in anaerobes, such

as Sneathia and Shuttleworthia, their presence being in turn

associated to a higher level of cervico-vaginal inflammation and

a higher risk of BV recurrence (López-Filloy et al., 2022).

In this context, the association between TTV-positive

samples and higher concentrations of propionate and cadaverine

could reflect these findings. In fact, these two molecules

(belonging respectively to SCFAs and biogenic amines) are

common markers of vaginal dysbiosis, typically produced by

BV-related anaerobes, when a reduction of vaginal lactobacilli

is present (Laghi et al., 2021).

In addition, we observed a highly significant correlation

between TTV loads and the levels of 4-hydroxyphenyllactate.

This metabolite is produced by lactic acid bacteria and exerts

both antifungal properties and radical scavenging activities (Mu

et al., 2010; Suzuki et al., 2013).

Further studies are needed to understand the exact role

and origin of 4-hydroxyphenyllactate and if this molecule can

possess antiviral activities against TTV.
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We are fully aware of some limitations of this study: (i) for

TTV detection, we tested cell pellets after a low centrifugation

step instead of supernatants; thus, we mainly detected the

presence of the virus inside the host cells, (ii) the association

between TTV and specific microbes of the vaginal ecosystem

(i.e., Sneathia and Shuttleworthia) could be a coincidental

finding. Additional studies are needed to understand if there

is a real biological cooperation or if these microbes are

simple bystanders.

In conclusion, in agreement with previous reports (Focosi

et al., 2016; Tozetto-Mendoza et al., 2020), we found that

TTV is commonly found in the vaginal ecosystem of pregnant

women, representing a possible predictor of local immune

status. In fact, its detection and loads vary with local vaginal

conditions, being more common in presence of higher levels of

leukocytes, higher levels of BV-related microbes, and lack of L.

crispatus dominance.

Future perspectives include the assessment of the clinical

role/utility of the vaginal TTV titer in the evaluation of

the vaginal immune status, with the goal of opening new

diagnostic/prognostic approaches for maternal-fetal health.
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