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Pectobacterium atrosepticum (P. atrosepticum: Pba) which causes potato soft 

rot and blackleg is a notorious plant pathogen worldwide. Discovery of new 

types of antimicrobial chemicals that target specifically to virulence factors such 

as bacterial motility and extracellular enzymes is required for protecting crops 

from pathogenic infection. A transcriptomic analysis of Pba upon hopeaphenol 

treatment revealed that bacterial motility-related gene expression, including 

a master regulator flhDC genes, was significantly influenced by hopeaphenol. 

We further generated a double knock-out mutant of flhDC genes by CRISPR/

Cas9 system and confirmed phenotypic changes in bacterial motility, 

transcription of extracellular enzymes, and disease development consistent 

with the result of wild-type treated with hopeaphenol. The hopeaphenol-

treated Pba strains, wild-type, double mutant, and complemented strain 

were unable to secrete the enzymes in vitro, while ΔflhDC double mutant 

strain reduced the secretion. Thus, our study supports that FlhDC is essential 

for the virulence of Pba, and proposes that hopeaphenol modulates FlhDC-

dependent virulence pathways, suggesting a potential of hopeaphenol as an 

anti-virulence agent to manage potato soft rot and blackleg diseases.
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Introduction

Pectobacterium atrosepticum belongs to Enterobacteriaceae family and causes soft rot 
and blackleg development on potato plants in the field (Bain et  al., 1990). Soft rot 
Pectobacteriaceae including Pectobacterium spp. and Dickeya spp. was ranked in the top 10 
plant pathogenic bacteria in 2010, as the world has been suffering from potato soft rot and 
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blackleg, leading to major economic losses due to reduced yield 
and quality (Mansfield et al., 2012; Kumvinit and Akarapisan, 
2019). For successive cultivation of potatoes, seed potatoes are 
prepared clonally, and the seeds are tightly controlled to prevent 
bacterial infection (Dupuis et  al., 2021). Pba colonizes plant 
vessels without visible symptoms followed by, upon successful 
infection, emerging maceration of infected plant tissues with 
diverse lytic extracellular enzymes and spreading to the whole 
potato tuber. Macerated tissue turns to black color frequently with 
an odd smell in the presence of air (Czajkowski et  al., 2011). 
Control strategies against Pba-induced disease have been studied 
intensively, but until now, efficient commercial control agents for 
soft rot and blackleg diseases are very limited (Wolf et al., 2021). 
The traditional method which only focuses on seed certification 
is widely adopted in agriculture, and physical and chemical 
treatments such as hot water, hot dry air, steam, UV, or antibiotics 
are deployed to seed potatoes to reduce Pectobacterium population 
in latently infected potatoes (Charkowski, 2015). However, these 
control methods to eradicate such pathogens have a limit due to 
the infection emerging post-harvest (Pérombelon, 1992; 
Czajkowski et  al., 2011). The application of biocontrol agents 
emerges as an alternative and complementary to the traditional 
method. Crépin et  al. (2012) reported that soil bacterium 
Rhodococcus erythropolis (R. erythropolis) degrades the quorum 
sensing molecule of Pba disrupting bacterial communication and 
consequently reducing blackleg disease with no alteration of 
growth and transcriptional changes in avirulent Pba strain, while 
R. erythropolis affects QS-controlled virulence phenotypes in the 
virulent Pba strain. This indicates that R. erythropolis is a 
promising biological control agent that dampens the activity of 
quorum sensing molecules of Pba (Kwasiborski et al., 2015).

The production of extracellular enzymes including pectate 
lyase (Pel), polygalacturonase (Peh), protease (Prt) and cellulase 
(Cel) is major virulence determinant of necrotrophic pathogen 
Pba (Smadja et al., 2004). These enzymes degrade components of 
the plant cell wall, resulting in the maceration of plant tissue 
which is a representative soft-rot disease symptom. The quorum 
sensing (QS) system controls the production of extracellular 
enzymes along with an assortment of transcriptional and post-
transcriptional regulators (Chatterjee et  al., 2009). In 
P. carotovorum, a master regulator (FlhDC) is required for normal 
exoenzyme production (Bowden et al., 2013). The FlhDC complex 
facilitates extracellular enzymes production by relieving the 
repressor HexA during exoenzyme biosynthesis (Cui et al., 2008). 
FlhDC regulates the transcription level of class II flagellar regulon 
genes (i.e., encoding for hook and basal body of flagellum) 
positively as well. The class II regulon genes such as fliA 
subsequently activates the transcription of the class III regulon for 
flagella filament formation, chemotaxis machinery, and motor 
protein complex (Bowden et al., 2013).

Bacterial motility by flagella facilitates bacterial movement to 
favorable environments or escape from detrimental conditions for 
successful competition with other organisms (Hossain et  al., 
2005). Flagella-driven motility also mainly contributes to 

pathogenic infection and disease development (Jahn et al., 2008). 
The non-motile mutants of P. carotovorum subsp. carotovorum 
(Pcc) compromised soft rot disease in Chinese cabbage (Hossain 
et al., 2005). Mop (motility and pathogenicity) proteins of Pba are 
presumably involved in flagella production and export of flagellar 
proteins. Pba mop mutant which is a non-motile strain was 
demonstrated to be reduced in both virulence activity without 
bacterial growth defect and exoenzyme production (Mulholland 
et al., 1993).

The identification of natural compounds to control plant 
bacterial diseases is fundamental for crop protection due to their 
diverse structures and pharmacophores inspiring the design of 
new drugs (Sekurova et al., 2019; Raymaekers et al., 2020). Natural 
QS inhibitors, piericidin A and glucopiericidin A isolated from 
Streptomyces xanthocidicus inhibit the transcription of QS 
controlled virulence genes and reduce Erwinia soft rot disease in 
potato plants (Kang et al., 2016). The active compound piericidin 
A was firstly isolated as an insecticidal agent acting as a NADH–
ubiquinone oxidoreductase inhibitor for disrupting mitochondrial 
respiratory chain (Tamura et al., 1963; Liu et al., 2012). Since then, 
various biological activities in view of insecticidal, antimicrobial, 
anti-tumor activities, cytotoxicity, and type III secretion system 
(T3SS) inhibition have been studied intensively (Tamura et al., 
1963; Morgan et al., 2017; Li et al., 2021; Azad et al., 2022).

Hopeaphenol displayed anti-virulence activity against hemi-
biotrophic bacterial pathogen Pseudomonas syringae pv. tomato 
DC3000 (Pst DC3000) by inhibiting T3SS and bacterial motility 
(Kang et al., 2020, 2022). In this study, we further examined anti-
virulence activity of hopeaphenol on the necrotrophic bacterial 
pathogen Pba. We analyzed whole transcriptome to identify how 
Pba responds to hopeaphenol in the transcription level. We further 
investigated the role of a master regulator FlhDC responsible for 
the bacterial pathogen motility and extracellular enzyme 
production regarding the virulence activity of Pba by employing 
CRISPR-Cas9-mediated mutant strain generation. Overall, our 
study is the first to report hopeaphenol as a biological control 
agent for the necrotrophic bacterial pathogen Pba by modulating 
bacterial motility, secretion and transcription of extracellular 
enzymes leading to disease resistance in the host plant.

Materials and methods

Bacterial RNA extraction and 
transcriptomic analysis

Pba was overnight cultured in Luria-Bertani (LB) medium, 
resuspended in Pel minimal medium (0.1% yeast extract, 0.1% 
(NH4)2SO4, 1 mM of MgSO4, 0.5% glycerol and 0.5% 
polygalacturonic acid in 50 mM of phosphate buffer, pH 7.0) with 
100 μM of hopeaphenol or 0.2% acetone as a mock control to an 
optical density (OD) at 600 nm of 0.8, and incubated for 18 h at 
18°C at 180 rpm. The NucleoSpin® RNA kit (Macherey-Nagel) 
was used to extract total RNA from the cell culture. RNA 
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concentration and integrity were determined by using an Agilent 
Technologies 2,100 Bioanalyzer. Qualified samples based on the 
RNA integrity number (higher than 9.0) were further proceeded 
to construct sequencing libraries by a TruSeq Total RNA (NEB 
Microbe) kit. Paired-end sequencing of the constructed cDNA 
libraries was performed under the Illumina Hiseq X Ten platform 
by Macrogen, Inc. (Seoul, Korea). About 20 million raw 
sequencing reads were generated, and FastQC v.0.11.71 was 
applied to remove the adapter, poor-quality and short reads (< 
10 bp). The preprocessed reads were aligned to the reference 
genome of Pba SCRI10432 by Bowtie2 (Langmead and Salzberg, 
2012), followed by sorting and indexing by Samtools (Li et al., 
2009). HTSeq was used to count the number of reads mapped to 
each transcript (Anders et  al., 2015). The read counts were 
normalized and differentially expressed genes (DEGs) were 
identified by using DESeq2 (Love et al., 2014). Genes with a log2 
fold change greater than 1 and a false discovery rate (FDR) 
determined by Benjamini–Hochberg (BH) correction for multiple 
hypothesis testing of less than 0.05 were considered as DEGs. 
Functional enrichment was performed by the hypergeometric test 
from the eggNOG 4.5 orthology database (Huerta-Cepas et al., 
2016). Pathway enrichment was analyzed by Pathview Web (Luo 
et al., 2017). All RNA-seq data were submitted to NCBI and NCBI 
assigned accession number is GSE196675.

Bacterial mutant strain

CRISPR-Cas9-based genome editing was used to construct 
ΔflhDC strain as described in the previous study (Wang et al., 
2020). Briefly, 20 bp of spacer oligonucleotides in flhDC gene of 
Pba SCRI1043 were designed using sgRNAcas9 software 
(Supplementary Table S1; Xie et  al., 2014). Phosphorylated 
oligonucleotides were inserted into pSGAb-km by the Golden 
Gate assembly, which generated pSGAb-km-flhDC. pCasAb-apr 
was transferred into wild-type Pba SCRI1043 electrocompetent 
cell. After selection with suitable antibiotics on LB medium, cell 
harboring pCasAb-apr was transformed with 200 ng of pSGAb-
km-flhDC and 100 μM of 80 nt ssDNA donor DNA for flhDC gene 
using electroporation (Supplementary Table S1). The successfully 
transformed cell was confirmed by colony PCR with flhDC primer 
(Supplementary Table S1) and was cured on LB medium 
containing 5% sucrose via sacB-counter selection to obtain 
ΔflhDC strain. To construct complemented strain, flhDC genes 
were inserted into pBBR1MCS2 containing constitutive promoter 
(Addgene, #85168) and the plasmid was transformed into ΔflhDC 
mutant to generate ΔflhDC(pflhDC) strain.

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc

2 https://www.ncbi.nlm.nih.gov/

genome/1088?genome_assembly_id=300523

Bacterial growth

Wild type, ΔflhDC mutant, and complemented strain were 
grown in LB medium at 28°C for 16 h in shaking incubator at 
200 rpm. Overnight cultured cells were adjusted to OD at 600 nm 
of 0.1. 200 μL of cell suspension was supplemented with 100 μM 
of hopeaphenol and dispended into 96-well plate followed by 
incubation at 28°C with 200 rpm for 16 h. The optical density was 
measured every 2 h by exponential phase and every 4 h after 
exponential phase. All procedures were followed by the methods 
described in Kang et al. (2020). The experiment was conducted 
three times with three technical replicates.

Chemical compound

Hopeaphenol was isolated from a root extract of grapevine as 
described in Kang et al. (2020). Briefly, the roots were extracted 
with methanol, followed by Diaion HP-20 column 
chromatography with a methanol/water gradient (0–100%). By 
using high-performance liquid chromatography, the fraction 
obtained from the column chromatography was eluted with a 
linear gradient solvent system (10–80% aqueous methanol for 
30 min followed by isocratic elution with 80% aqueous methanol 
for 10 min). The elution corresponding to hopeaphenol was 
collected for the following experiments.

Bacterial motility assay

Bacterial motility assay was conducted as in the previous 
study (Chatterjee et al., 2009). Pba strains cultured in LB broth 
overnight were diluted to a final OD of 2.0 at 600 nm. 2 μL of 
diluted bacterial suspension was loaded onto motility medium (5 g 
of NaCl, 10 g of tryptone, and 3 g of agar per L). Hopeaphenol was 
supplemented at the final concentration of 100 μM into the 
medium. Bacterial migration was observed at 28°C for 48 h, and 
the net distance that bacteria moved was recorded with 
three replicates.

Extracellular enzyme assay

Pel and Peh assays were performed according to the previously 
published procedure with some modification (Cui et al., 2008). 
Briefly, Pba strains were cultured in a minimal medium (2 g of 
KH2PO4, 7 g of K2HPO4, 0.1 g of MgSO4·7H2O, 1 g of (NH4)2SO4 
and 5 g of sucrose per L) supplemented with 100 μM of 
hopeaphenol at 28°C for 24 h. 15 μL of bacterial culture 
supernatants was loaded onto Pel (1% polygalacturonic acid, 1% 
yeast extract, 0.38 μM of CaCl2, 100 mM of Tris–HCl, 0.8% agarose 
and 0.2% sodium azide, pH 8.5) and Peh (1% polygalaturonic acid, 
1% yeast extract, 2.2 mM of EDTA, 110 mM sodium acetate, 0.8% 
agarose and 0.2% sodium azide, pH 5.5) medium and incubated 
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at 28°C for 36 h. The Pel and Peh assay plates were developed with 
4 N of HCl. Enzymatic activities of Pel and Peh were determined 
by a diameter measurement. The experiment was conducted three 
times with three technical replicates.

Quantitative reverse transcriptional PCR

RNA extraction and cDNA synthesis were followed as 
described by Kang et al. (2016) with minor modification. Bacterial 
cells from overnight incubation in LB medium were resuspended 
in Pel minimal medium to OD600 of 0.8. Pba strains were incubated 
at 18°C for 18 h supplemented with 100 μM of hopeaphenol or 
0.2% acetone as control. Bacterial total RNA was extracted, and 
cDNA was synthesized from 500 ng of total RNA. The same 
quantity of cDNA from each treatment was used as a template for 
qRT-PCR with primers listed in Supplementary Table S1. PCR 
amplification was conducted using Bio-rad CFX-96 as described 
in the manufacturer’s protocol. gyrA of Pba was used for internal 
control. The normalized gene expression was calculated as the 
ratio = 2ΔCt(target gene)/2ΔCt(internal control gene). The experiment was 
performed three times with three replicates independently.

Pathology assay

Potato tubers (Solanum tuberosum L.) were used to examine the 
effect of hopeaphenol and the mutation of flhDC genes on disease 
development by Pba strains used in this study. Potatoes were surface 
sterilized with 1% of sodium hypochlorite solution for 1 min and 
rinsed with 70% of ethanol once followed by washing with sterile 
water. After air-drying in the clean bench, yellow tip was inserted in 
the potato tubers with 20 mm depth. Bacterial cells from each Pba 
strains grown overnight were diluted with sterile water to optical 
density of 1.0 at 600 nm. Bacterial inoculum (10 μL) was applied to 
the wound site sealed with Vaseline. For the treatment of 
hopeaphenol, bacterial suspension supplemented with 100 μM of 
hopeaphenol was inoculated into the wound site. The potato tubers 
were incubated at 28°C for 3 days under high-humid condition. 
Disease progress and symptom development such as soft rot and 
blackleg were observed every day. After 3 days post-inoculation, 
macerated tissue around the wound sites was scraped off, weighed 
and diluted in sterile water. The bacterial population in the tissue was 
evaluated on LB agar plate at 28°C for 24 h. The bacterial population 
was determined by counting colonies on the plate.

Results

Hopeaphenol modulates transcriptional 
dynamics in Pba SCRI1043

To investigate the genome-wide gene expression profile of Pba 
SCRI 1043 upon hopeaphenol treatment, transcriptome analysis 

was conducted by using RNA-seq. Ten million reads were 
generated from all samples and the range of mapping rate to the 
reference genome was 96–99%. Compared to the non-treated 
control group, a total of 689 genes (15% of whole genes encoded 
in Pba SCRI 1043) were found to be differentially expressed in the 
hopeaphenol-treated condition (Supplementary Table S2). 
Particularly, 336 and 353 genes were up- and down-regulated in 
the presence of hopeaphenol, respectively (Figures  1A,B; 
Supplementary Table S2).

We then performed a functional enrichment analysis with 
the differentially expressed genes (DEGs). The G category 
(carbohydrate transport and metabolism) demonstrated the 
majority of the upregulated DEGs. Among the downregulated 
DEGs, N (cell motility), T (signal transduction mechanisms), 
and U (intracellular trafficking, secretion, and vesicular 
transport) categories were affected by hopeaphenol mainly 
(Supplementary Table S3). All DEGs were further clustered 
into several groups by the pathway enrichment assigned with 
value of p below 0.05. Most up-regulated DEGs by hopeaphenol 
in Pba SCRI1043 were related to 13 metabolic pathways 
including degradation of fatty acid, geraniol, amino acids, 
benzoate, and caprolactam, and metabolism of starch, sucrose, 
β-alanine, butanoate, pyruvate, pentose, and glucoronate 
(Supplementary Table S4). Among the 353 down-regulated 
DEGs were grouped into 6 categories including flagellar 
assembly, chemotaxis, secretion system, two-component 
system, citrate cycle (TCA cycle), and thiamine metabolism 
(Supplementary Table S5). Thus, we noted that the pathway 
involved in bacterial motility such as flagellar assembly and 
chemotaxis was the top candidate category influenced by 
hopeaphenol-treatment and 18 genes involved in flagellar 
machinery apparatus including basal body, hook and filament 
were regulated by the treatment of hopeaphenol (Figure 1C 
and Supplementary Table S5). Interestingly, hopeaphenol 
affected the expression of master regulator genes, flhC and 
flhD, of which the product regulates the expression of flagellar 
genes in Pba (Bowden et al., 2013). We also confirmed the 
expression of flhC and flhD in Pba by qRT-PCR analysis with 
hopeaphenol-treatment (Supplementary Figure S1). Together, 
RNA-seq results represented not only the comprehensive 
transcriptional changes in Pba SCRI1043 but reduced 
expression of cell motility-related genes, maybe inhibiting the 
flagella synthesis in the presence of hopeaphenol 
(Supplementary Data sheet 2).

The growth of Pba is independent of the 
master regulator genes

In Pectobacterium, flagellum motility and production of 
exoenzyme are important virulence factors, and their 
transcription is regulated by FlhDC complex (Cui et al., 2008; 
Mole et al., 2010). Considering the transcriptome analysis and 
qRT-PCR results mentioned above, we  hypothesized that 
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FIGURE 1

Hopeaphenol induces transcriptional changes in Pba. (A) Volcano plot to demonstrate differentially expressed genes in Pba by hopeaphenol-
treatment. A total of 689 genes that are differentially expressed (log2 fold change >1 and padj <0.05, designated as DEGs) by hopeaphenol in Pba 
SCRI1043 are indicated in color. Red dots, genes upregulated by the comparison of conditions (hopeaphenol-treated/non-treated); blue, genes 
downregulated; grey, genes that expressed not significantly. (B) Clusters of orthologous groups (COGs) enrichment analysis with DEGs that up or 
downregulated. The statistically significant categories (p < 0.05) were shaded by the number of DEGs. COG category: C, energy production and 
conversion; E, amino acid transport and metabolism; G, carbohydrate transport and metabolism; J, translation, ribosomal structure and 
biogenesis; K, transcription; N, cell motility; P, inorganic ion transport and metabolism; T, signal transduction mechanisms; U, intracellular 
trafficking, secretion, and vesicular transport. (C) Schematic architecture of flagella and secretion systems with the gene expression of the 
corresponding components. The color key (from −10 to 10 scale) indicates the log2 gene expression ratio in hopeaphenol: non-treated and genes 
that are not DEGs colored in white.
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hopeaphenol could influence the expression of the master 
regulator gene (flhDC), leading to the change in virulence 
function. Thus, we  generated a clean double knock-out 
mutant Pba (ΔflhDC) by employing CRISPR/Cas9 system 
(Figure  2A). As flhC and flhD work as an operon, double 
knock-out strain of flhDC was obtained by using one 
20 bp-spacer introduced sgRNA and Cas9. The coding regions 
of flhD194-351 and flhC1-58 were successfully deleted ((ΔflhDC), 
Figure 2A). With the newly generated mutant strain, we also 
produced a plasmid-based complemented strain 
(ΔflhDC(pflhDC)). Transcript of flhDC was not detected in 
ΔflhDC which was recovered in complemented strain 
(ΔflhDC(pflhDC)) (Supplementary Figure S2). First, 
we  monitored bacterial growth of Pba wild-type, mutant 
strain (ΔflhDC), and complemented strain of flhDC 
(ΔflhDC(pflhDC)) with or without 100 μM of hopeaphenol to 
address whether hopeaphenol possesses anti-bacterial 
activity. As in Figure 2B, all tested strains with or without 
hopeaphenol-treatment grew similarly. Therefore, our results 
indicate that hopeaphenol does not possess direct 
antibacterial activity to Pba and the master regulator genes 
may be dispensable for bacterial growth due to no change in 
growth in the presence/absence of hopeaphenol, leading us to 
investigate the role of hopeaphenol further in the virulence 
function of Pba.

Hopeaphenol affects the bacterial 
motility of Pba in vitro

To further verify the role of hopeaphenol regarding Pba 
virulence activity via master regulator complex function, 
swimming motility phenotype was tested with Pba wild-type, 
double mutant strain (ΔflhDC), and complemented strain 
(ΔflhDC(pflhDC)) in vitro. Deletion of flhC and flhD in Pba 
compromised swimming ability as similarly in hopeaphenol-
treated wild-type strain, proposing that hopeaphenol could 
suppress the motility of Pba by inhibiting the function of 
master regulator FlhDC (Figure 3). Complementation of the 
mutant strain with flhDC (ΔflhDC(pflhDC)) restored the 
motility as wild-type, and hopeaphenol-treatment retained the 
ability to inhibit bacterial motility in complemented strain 
(Figure 3). Thus, we concluded that hopeaphenol can modulate 
bacterial motility by the inhibition of master regulator 
FlhDC function.

Hopeaphenol abrogates transcription 
and secretion of Pba exoenzymes

We then focused on another key virulence determinant in 
Pba, extracellular enzyme production including pectate lyase (Pel) 
and polygalacturonase (Peh) responsible for cell wall degradation 
and soft rot disease developments. The enzyme secretion of Pba 

strains in response to hopeaphenol was assessed in semi-
quantitative assay for Pel and Peh activities. Deletion of flhDC 
genes reduced the activities of Pel and Peh by 26 and 49%, 
respectively (Table 1). Complemented strain (ΔflhDC(pflhDC)) 
restored the extracellular enzyme secretion to the level of wild-
type (Table  1). However, hopeaphenol-treatment dramatically 
inhibited Pel and Peh secretion with no activity in all tested strains 
(Table 1).

The expression of Pba genes responsible for extracellular 
enzyme production, pelC (encoding pectate lyase), pehA 
(encoding polygalacturonase) and the master regulator genes 
(flhC and flhD), was analyzed by qRT-PCR. Wild-type strain 
expressed less flhC, flhD, pelC and pehA genes in the presence 
of hopeaphenol (Figure 4). This observation was consistent 
with an inhibitory effect of hopeaphenol on extracellular 
enzyme secretion of wild-type strain that hopeaphenol 
suppressed secretion of Pel and Peh as shown in Table 1. In 
ΔflhDC strain, the expression of pelC and pehA decreased 
compared to wild-type strain, but inhibitory effect of 
hopeaphenol on their expression in ΔflhDC strain was not 
observed due to very low expression (Figure  4). The 
complemented strain demonstrated much higher 
transcriptional levels of flhC, flhD, pelC and pehA than the 
gene expression level in wild-type strain (Figure 4). Together, 
these results revealed that hopeaphenol has an inhibitory 
effect on the secretion of exoenzymes in Pba and FlhDC 
involved in the exoenzyme secretion for the virulence activity 
with the inhibitory effect on the expression of flhC, flhD, pelC 
and pehA.

Hopeaphenol suppresses Pba-triggered 
potato blackleg disease

Based on the earlier results that hopeaphenol dampened 
Pba motility and extracellular enzyme secretion (Figure 3 and 
Table  1), we  expected that hopeaphenol could affect Pba-
triggering potato blackleg disease symptoms by modulating 
the role of master regulator function and suppressing Pba 
virulence functions such as cell motility and extracellular 
enzyme activity. To confirm this hypothesis, we examined the 
effect of hopeaphenol on potato blackleg disease induced by 
Pba. Bacterial strains used in the previous experiments 
including wild-type, double mutant, and complemented strain 
were inoculated into potato tubers with or without 
hopeaphenol (Figure  5). Blackleg symptom was clearly 
reduced in mutant Pba strain (ΔflhDC), whereas the 
complemented stain (ΔflhDC(pflhDC) caused similar disease 
symptom as in wild-type strain. As expected, the disease 
symptom was decreased in potato tubers inoculated by all Pba 
strains upon hopeaphenol-treatment (Figure 5A, bottom). In 
Figure  5B, the macerated tissue in potato tuber inoculated 
with ΔflhDC or hopeaphenol-treated wild-type strain was 
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suppressed dramatically, as similarly observed in the visual 
symptoms represented in Figure  5A. Lastly, we  directly 
quantify the bacterial population infected by each Pba strains 
(Figure 5C). The bacterial population 3 days post inoculation 
with wild-type and complemented strain was greater than 
ΔflhDC mutant. With hopeaphenol-treatment, the bacterial 

population of wild-type and complementation strain in potato 
tubers reduced significantly. Hence, these results strongly 
suggest that hopeaphenol can suppress disease development 
in Pba-inoculated potato tubers by interrupting the function 
of the master regulator FlhDC required for the development 
of potato blackleg disease.

A

B

FIGURE 2

Pba-growth is independent of the master regulator flhDC genes. (A) A schematic illustration of CRISPR/Cas9-mediated editing of flhDC genes. 
179 nt deletion within flhDC operon generated a clean double knockout mutant strain of Pba (ΔflhDC). (B) Bacterial growth in vitro. The growth of 
each strain (wild-type, ΔflhDC, ΔflhDC(pflhDC)) supplemented with 100 μM of hopeaphenol was measured by detecting optical density at 600 nm. 
The wild-type Pba strain without hopeaphenol was used to demonstrate the normal growth control. Each time point represents the average value 
of OD600 nm of triplicate with error bars representing the standard error.
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Discussion

Plant-derived stilbene compounds possess diverse 
biological activities beneficial for human health and plant 
protection from environmental stress. Stilbene compounds 
target bacterial virulence as putative replacement or 
supplement for the use of conventional antibiotics that often 
induce pathogen resistance (Silva et al., 2016). The stilbenes 
also target quorum sensing, biofilm formation, motility and 
secretion systems in bacteria (Silva et al., 2016). Previous work 
reported that some of the resveratrol derivatives including 
resveratrol, piceatannol, rhaponticin, pallidol, alopecurone, 
ampelopsin A, kobophenol A, hopeaphenol, and 
isohopeaphenol inhibit promoter activity of hrp pilus gene in 
Pst DC3000 that implies potential T3SS inhibitory activity of 

stilbene compounds (Kang et al., 2020). By employing one of 
stilbene compounds, hopeaphenol, we  further investigated 
anti-virulence activity against Pba SCRI1043 observing that 
hopeaphenol repressed bacterial motility and secretion of 
extracellular enzymes without growth retardation. Similarly to 
our results, the activity of stilbenes on bacterial motility was 
demonstrated in human bacterial pathogens (Wang et  al., 
2006; Sheng et al., 2015; Bostanghadiri et al., 2017). Resveratrol 
suppresses several motility and flagellar genes such as flhD, 
fimA, fimH and motB of E. coli O157:H7 (EHEC) and 
swarming motility of P. aeruginosa PAO1 (Sheng et al., 2015; 
Bostanghadiri et  al., 2017). In Proteus mirabilis infecting 
urinary tract, resveratrol acts on a two-component system 
possibly involved in bacterial quorum-sensing mediating 
swarming and expression of virulence factors (Wang et al., 
2006). However, application of stilbene compounds as anti-
virulence agents to manage plant diseases has not been 
intensively studied yet. Thus, our study proposes a potential 
application of stilbene compounds for crop management and 
plant health as an alternative of antibiotics.

Hopeaphenol was previously isolated from Vitis vinifera to 
have an inhibitory effect on T3SS of a hemi-biotrophic 
pathogen, Pst DC3000 and disease development in tomato 
plants (Kang et  al., 2020). Expression of three T3SS-related 
genes including hrpA (encoding hrp pilus), hrpL (encoding 
alternative sigma factor) and hopP1 (encoding lytic 
transglycosylase) in Pst DC3000 were down-regulated by 
hopeaphenol, protecting tomato plants from Pst DC3000 (Kang 
et al., 2020). Based on this, it is highly possible that hopeaphenol 
can inhibit T3SS of Pectobacterium that possesses 
T3SS. However, the transcriptomic analysis uncovered that 
hopeaphenol triggered transcriptional repression of key 
virulence genes involved in flagellar motility and bacterial type 
II (T2SS) and type VI secretion systems (T6SS) 
(Supplementary Data sheet 2). The T6SS has been studied in 
some plant and animal pathogens for its role in bacteria 
competitions (Poole et  al., 2011; Russell et  al., 2014). 
P. atrosepticum activates the T6SS in presence of potato tuber 
extract (Mattinen et  al., 2007). Type VI effectors of 
P. carotovorum subsp. brasiliense inhibit growth of some bacteria 
including D. chrysanthemi, D. dadantii, and P. carotovorum 
subsp. carotovorum (Shyntum et al., 2019). However, it is still 

A

B

FIGURE 3

Bacterial motility of Pba is compromised in the wild-type strain 
with exogenous application of hopeaphenol and loss-of-
function mutant of master regulator genes. (A) The motility 
phenotype of Pba strains with or without hopeaphenol. The 
bacterial motility was determined after 48 h of incubation by 
measuring the total moving distance (n = 3). The moving distance 
was measured with the diameter of the bacterial colony. The 
box-splitting horizontal line represents the mean, and the upper 
and the lower line display the highest and the lowest value. 
Asterisks demonstrate statistically significant differences based 
on the least significant difference (LSD) test at p < 0.05. (B) The 
image of bacterial motility. The representative pictures from three 
independent experiments were presented matched to the graph 
in (A).

TABLE 1 The activity of extracellular enzymes of Pba strains with hopeaphenol.

Wild-type Wild-type:
hopeaphenol

ΔflhDC ΔflhDC:
hopeaphenol

ΔflhDC(pflhDC) ΔflhDC(pflhDC):
hopeaphenol

Pela  1.94 ± 0.14c a NDd 1.43 ± 0.07 b ND 2.09 ± 0.02 a ND

Pehb 1.73 ± 0.12 a ND 0.88 ± 0.02 b ND 1.85 ± 0.03 a ND

aPel, pectate lyase.
bPeh, polygalacturonase.
a,bEnzyme activity was expressed by a diameter of clear zones (cm) on pel and peh agarose plate.
cMeans ± standard deviation of three replicates followed by different letters indicating significantly different based on the least significant difference test at p < 0.05.
dND, not detected.
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elusive how bacterial T6SS and effectors can modulate the 
virulence of plant bacterial pathogens in the host plants. Our 
transcriptomic results can provide a potential research interest 
to further investigate the relation between T6SS and pathogen 
virulence activity and the role of hopeaphenol in T6SS.

The master regulator operon flhDC is required for 
biogenesis of cell surface flagella for bacterial motility and the 
production of plant cell wall-degrading enzymes (PCWDEs) 
secreted mainly by type I and T2SS (Reverchon et al., 2016). 
FlhDC activates the expression of the genes for motility such 
as fliA and rsmB RNA controlling PCWDEs production, and 
key regulatory (gacA) and sigma factor genes (hrpL) associated 
with virulence of P. carotovorum (Cui et al., 2008). Consistent 
with this, mutant in flhDC genes of Pba SCRI1043 constructed 
by CRISPR-Cas9 technique newly employed in this study 
demonstrated impaired motility and reduced extracellular 
enzyme production as a phenocopy of hopeaphenol-treated 
wild-type strain. However, transcription and secretion of 
extracellular enzymes such as pectate lyase, PelC and 
polygalacturonase, PehA were much more affected by 
hopeaphenol than deletion of flhDC genes. Thus, we infer that 
the regulation of PCWDEs in Pba SCRI1043 can be controlled 
by either flhDC-dependent and -independent pathway, and the 
effect of hopeaphenol on the production of PCWDEs can 
affect both pathways. In addition, our transcriptomic analysis 
represented that hopeaphenol modulated the transcription of 
several genes for T2SS through which PCWDEs can export 

from bacterial cell to host plants (Islam et  al., 2019). This 
suggests that hopeaphenol might regulate the transcription 
and secretion of extracellular enzymes. In the complemented 
Pba strain, we  noted that the highly overexpressed flhDC 
cannot fully suppressed by hopeaphenol as observed in wild-
type strain. However, hopeaphenol retained the ability to 
suppress extracellular enzyme-dependent virulence activity, 
leading us to speculate that hopeaphenol may affect enzymatic 
secretion and activity. However, further study will be necessary 
to prove this. Disease severity of blackleg decreased in potato 
tuber infected by Pba strains with hopeaphenol, proposing 
that the reduction in the enzyme production by treatment of 
hopeaphenol or deletion of flhDC genes resulted in attenuation 
of blackleg disease in potato tuber. Therefore, we infer that 
hopeaphenol can modulate production of extracellular 
enzymes and the master regulator directly or indirectly, 
leading to attenuation of disease symptoms in potato tubers.

In sum, FlhDC is necessary for the movement of Pba and 
sufficient for extracellular enzyme production. Hopeaphenol 
regulates both bacterial movement and extracellular enzyme 
production/secretion, attenuating disease symptoms and 
development in potato tubers. Our findings delineate the role of 
FlhDC in Pba and the potential of natural stilbene as a source for 
bacterial disease management, bypassing the use of antibiotics. 
We also prospect further studies to understand the fine-tuned 
mechanism of FlhDC in Pba and the role of hopeaphenol on 
bacterial secretion system in terms of pathogen virulence.

FIGURE 4

Transcriptional change of key virulence genes for a master regulator and extracellular enzymes in hopeaphenol-treated wild-type and flhDC 
mutant strain. Transcript levels of flhDC, pehA and pelC of Pba strains (wild-type, ΔflhDC, ΔflhDC(pflhDC)) with or without hopeaphenol were 
analyzed by qRT-PCR. The expression of each gene was normalized to the internal control gene, gyrA. The data represented three independent 
experiments with the mean of relative expression. Error bars demonstrated the standard deviation of three replicates. Different letters on the graph 
indicate statistical difference analyzed by one-way ANOVA with LSD test (p < 0.05).
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FIGURE 5

Pba-inducing disease symptoms are suppressed by 
hopeaphenol-treatment and in ΔflhDC strain. (A) Blackleg 
symptoms in potato tubers infected by Pba strains (wild-type, 
ΔflhDC, ΔflhDC(pflhDC)) with or without hopeaphenol. The 
symptom was observed 3 days post-infection. Similar results 
were obtained in three independent experiments with five 
replicates. (B) Maceration levels of potato tubers challenged 
with Pba strains. Fresh weight (g) of the macerated region in 
potato tuber was measured 3 days post infiltration with 10 mM 
of MgCl2 (mock) or bacterial suspension with or without 
100 μM of hopeaphenol. Box plots present three independent 
experiments (n = 10) with statistical significances analyzed by 
One-way ANOVA with LSD test (p  < 0.05). (C) Quantification 
of Pba growth in the macerated potato tuber. The bacterial 
population in potato tuber inoculated with each Pba strain 
was determined 0 and 3 days after infiltration. Error bars 
indicate the standard deviation (SD) of three replicates. 
Statistical analysis was performed by One-way ANOVA 
(p  < 0.05).
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