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The plant and soil microbial communities are influenced by variability in

environmental conditions (e.g., nitrogen addition); however, it is unclear

how long-term nitrogen addition and litter manipulation affect soil microbial

communities in a semiarid sandy grassland. Therefore, we simulated the impact

of N addition and litter manipulation (litter removal, litter doubling) on plant

and soil microbial communities in Horqin grassland, northern China through an

experiment from 2014 to 2019. Our results revealed that in the case of non-

nitrogen (N0), litter manipulation significantly reduced vegetation coverage (V)

(p < 0.05); soil bacterial communities have higher alpha diversity than that of the

fungi, and the beta diversity of soil fungi was higher than that of the bacteria;

soil microbial alpha diversity was significantly decreased by nitrogen addition

(N10) (p < 0.05); N addition and litter manipulation had significantly interactive

influences on soil microbial beta diversity, and litter manipulation (C0 and C2)

had significantly decreased soil microbial beta diversity (p < 0.05) in the case of

nitrogen addition (N10) (p < 0.05). Moreover, bacteria were mostly dominated

by the universal phyla Proteobacteria, Actinobacteria, and Acidobacteria, and

fungi were only dominated by Ascomycota. Furthermore, the correlation analysis,

redundancy analysis (RDA), and variation partitioning analysis indicated that the

soil fungi community was more apt to be influenced by plant community diversity.

Our results provide evidence that plant and soil microbial community respond

differently to the treatments of the 6-year N addition and litter manipulation in a

semiarid sandy land.
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1. Introduction

Plant and soil microorganisms play important roles in regulating food and timber
production, soil carbon (C) sequestration, and nutrient cycling in terrestrial ecosystems
(Cui et al., 2020; Delgado-Baquerizo et al., 2020). The plant and soil microbial community
is highly vulnerable to environmental changes in the context of global changes, such
as increased atmospheric N deposition and land desertification (Liu et al., 2011, 2020;
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Zuo et al., 2012; Guo et al., 2019). Horqin sandy land is a typical
semiarid sandy land in northern China, with relatively high dry N
deposition (Lue and Tian, 2007). Due to the effect of strong wind in
the process of land desertification, the spatial distribution pattern
of litter on the ground surface takes place secondary distribution.
Research showed that increased atmospheric N deposition and
uneven litter distribution are likely to solely or interactively affect
various biotic factors [e.g., plant aboveground biomass (AB), plant
productivity, plant functional group composition, soil respiration
(Zhao X. et al., 2020), microbial respiration] and abiotic factors
(e.g., soil temperature, soil moisture, soil microbial biomass C,
and soil microbial biomass N) (Shen et al., 2016; Liu et al., 2017;
Gao et al., 2018; Gamadaerji et al., 2020; Zhao X. et al., 2020).
Estimating the ecological consequences of N deposition and uneven
litter distribution, as well as determining the influence on plant
and soil microbial community in a semiarid sandy land are thus
urgently needed.

N deposition has been an important component in the global
N cycle, and anthropogenic N emission was increased since the
industrial revolution (Galloway et al., 2008; Liu et al., 2011).
China has become the third largest N deposition area since the
late 1980s or early 1990s (Goulding et al., 1998). At the same
time, N is the major limiting factor for plant growth in most
terrestrial ecosystems (Gamadaerji et al., 2020), and a large number
of studies have shown that increased atmospheric N deposition can
increase plant community productivity, relieve nutrient limitation
of microorganisms, promote activity of microorganisms, influence
the bacterial and fungal community compositions, and accelerate
the decomposition of litter, but significantly decrease plant species
diversity in a community (Clark and Tilman, 2008; Isbell et al.,
2013; Yue et al., 2016; Wang et al., 2017; Wang J. Q. et al., 2021).
Some studies indicated that N deposition led to a change in plant
functional group composition in a semiarid grassland (Gamadaerji
et al., 2020).

Litter is one of the important carbon pools in the terrestrial
ecosystem, and its decomposition process, as an important nutrient
release pathway, connects the aboveground and underground
carbon cycle process (Sayer et al., 2011). Global changes (e.g., N
deposition), human activities, and changes in land use patterns are
significantly affecting terrestrial ecosystem net primary production
(NPP) and altering aboveground litter input to soil (LeBauer
and Treseder, 2008; Fang et al., 2018). Previous studies showed
that the litter quantity and decomposition rate would directly
affect the process of nutrient absorption and utilization by plants
and soil microorganisms, and further regulated the structure and
function of an ecosystem (Wardle et al., 2004; Zhang et al.,
2018). Focusing on sandy ecosystems, studies have shown that
litter crusts can promote nutrient cycling in sandy ecosystems
by mediating the restoration of bacterial taxa, rather than fungi,
to enhance soil nutrient availability (Liu X. et al., 2021; Liu Y.
et al., 2021). So the responses of soil microbial community to litter
alteration in different terrestrial ecosystems has not yet reached
a universal conclusion. One study indicated that N deposition
affected litter decomposition by affecting soil N availability, litter
yield and quality, soil biological factors, and factors in relation to
litter decomposition (Yang et al., 2017). It’s well known that N
addition promotes plant growth and increases litter production. It
is noteworthy that when litter and N addition work collectively,

how will it affect the plant and soil microbial community in the
semiarid sandy land ecosystem?

Previous studies have shown that increased litter input and
N addition significantly increased the community productivity
in a semiarid grassland (Gamadaerji et al., 2020), litter addition
suppressed the AB responses to N addition under ambient
precipitation conditions by affecting soil moisture (Shen et al.,
2016), and increased N deposition slightly weakened the inhibition
of litter removal on soil respiration (Zhao X. et al., 2020). The
biomass of perennial bunch grass (PB) and perennial rhizome
grasses (PR) increased significantly with the increment of litter
and nitrogen in a semiarid grassland after 6 year observation
(Gamadaerji et al., 2020). Study on nitrogen and litter addition
showed that litter addition increased AB and belowground net
primary productivity (BNPP) in Inner Mongolia grassland after
a two-year observation (Shen et al., 2016). In summary, when
studying the impact of N addition and litter manipulation on plant
and soil microbial communities, most researchers have focused
on a single factor [e.g., N addition (Hou et al., 2021)] and have
analyzed only one community [e.g., either bacteria or fungi, (van
Diepen et al., 2017; Liu et al., 2020)]. But it is unknown how
plant and microbial communities respond to N addition and
litter manipulation in consecutive years. Thus, in this study, we
examined the impact of N addition and litter manipulation (litter
removal, litter doubling) on plant and soil microbial communities
in a semiarid sandy land in northern China from 2014 to 2019.
We hypothesized that (1) N addition can significantly affect plant
and soil microorganisms, while litter treatment has interaction
with N addition on the plant and soil microbial communities. (2)
Fungal communities were more susceptible to N addition and litter
treatment than that of bacteria in this semiarid sandy land over
these 6 years. (3) The effect of plant community on soil fungal and
bacterial community under N addition and litter manipulation was
significantly different.

In this work, on the one hand, we can fill in the knowledge gap
of the impact of long-term nitrogen addition and litter treatment
on soil microbial communities in semi-arid sandy land. And on the
other hand, we can improve our understanding of how sandy land
ecosystems in semi-arid areas respond to environmental changes. It
will provide reference for the follow-up research on the soil-plant-
microbe interaction mechanism in semi-arid areas under long-term
nitrogen deposition and aboveground litter change treatments.

2. Materials and methods

2.1. Study area

The study was conducted at a semiarid sandy land near
Inner Mongolia Naiman Agroecosystem National Observation and
Research Station (42◦55′N, 120◦41′E), in the southwestern part of
the Horqin sandy land. The mean annual temperature is between
6.4 and 6.9◦C. The mean annual precipitation is between 343
and 451 mm, with > 75% falling in the growing season (May to
September). The mean annual wind speed is from 3.5 to 4.5 ms−1,
the windy days are between 20 and 60 days, and sandstorms often
occur in spring (about 10–15 days). It is mostly northwest wind in
winter and spring and southwest in summer. The local geomorphic
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types are dominated by slowly-fluctuating sandy lands, with fixed
dunes, semi-mobile dunes, mobile dunes, and inter-dune lowlands
(Zhao et al., 2008). Affected by climate change and human activities,
the region has experienced a different degree of desertification (Zuo
et al., 2012; Zhao et al., 2014). The zonal soils are sandy chestnut
soils with loose structures and vulnerable to wind erosion (Li Y. L.
et al., 2016; Zuo et al., 2018). The soil is poor and mostly aeolian
soil, and in the 0–30 cm soil layer, the soil nitrogen content was
0.057∼0.199 g.kg−1, the soil bulk density was 1.29∼1.59 g.cm−3

(Mao et al., 2012). In the 0–10 cm soil layer, the soil bulk density
was about 1.41 g.cm−3, total nitrogen was about 0.57 g.kg−1,
total carbon was about 4.16 g.kg−1 (Lv et al., 2021), and organic
carbon was about 1.72 g.kg−1 (Chen et al., 2016). The dominant
plant species are Cleistogenes squarrosa (Trin.) Keng, Chenopodium
acuminatum Willd, Pennisetum centrasiaticum Tzvel, and Setaria
viridis (L.) Beauv.

2.2. Experiment design

The field experiment of N addition and litter manipulation
was established in 2014. The experiment was conducted in a
randomized block design of six replicate blocks. In each block,
we created six 10 m × 10 m plots and the plots were all spaced
by 1 m apart to avoid cross effects between treatments. In this
study, we only selected the experimental plots treated with nitrogen
addition and litter manipulation for observation (Supplementary
Figure 1). For the purpose of this study the experimental platform
had set up 3 L manipulation levels [litter removal (C0), control
(C1) and litter doubled (C2)] and 2 N addition levels [non-nitrogen
addition (N0) and nitrogen addition (N10)], and composed of
6 treatments: N0C0, N0C1, N0C2, N10C0, N10C1, N10C2. So
every treatment has six replicates. According to a typical practice
of N treatment in many scientific simulation experiments of
N deposition (Hasselquist et al., 2012; Gao et al., 2018), the
experiment of N addition had been conducted at the beginning of
May each year in the form of urea [CO(NH2)2] and the amount
of N addition was 10 g N m−2 year−1. The urea was dissolved in
10 L purified water and sprayed evenly to each nitrogen addition
(N10) plot, with a backpack sprayer. An equal amount of water was
applied to the non-nitrogen addition (N0) areas. The experiment of
litter manipulation was implemented at the end of November each
year including N0 and N10. C0 has removed all litter materials on
the soil surface, C1 was in a natural condition and remained intact.
C2 has evenly added the litter collected in C0 to the corresponding
plot of the same size. The main species of litter collected are
Artemisia scoparia Waldst. et Kit., P. centrasiaticum Tzvel., S. viridis
(L) Beauv., and C. squarrosa (Trin.) Keng.

2.3. Soil sampling

By the end of the plant growth season in September 2019,
we collected 5 subsamples of soil at a depth of 10 cm using a
soil corer with a diameter of 2.5 cm in each plot. The 5 samples
were thoroughly mixed into a composite sample in the field, and
then sieved with a 2 mm mesh to remove any roots or stones.
The soil was stored at −80◦C for analyzing the bacterial and
fungal communities.

2.4. Measurement of plant community

At each block, 1 m × 1 m plots were established for vegetation
surveys, and we surveyed plant species richness (S) and vegetation
coverage (V) in September 2019. Four general diversity indexes
are selected for calculation and analysis of plant diversity: Species
richness (S, Equation 1), Shannon–Wiener’s diversity index (H,
Equation 2), Pielou’s evenness index (E, Equation 3), and Simpson’s
dominance index (λ, Equation 4) to evaluate plant community
characteristics (Zhan et al., 2019). The calculation equations are:

S = plant species in the sample plot (1)

Shannon−Wiener′s diversity index (H) : = −6PilnPi (2)

Pielou′s evenness index(E) = H/lnS (3)

Simpson′s dominance index(λ) = 1−
s∑

i=1

P2
i (4)

where, Pi is the ratio of the number of individuals of the i-th species
in the 1 m × 1 m plots to the total number of all species in the
sample plot (Zhan et al., 2019; Zhou et al., 2021).

2.5. Measurement of soil microbial
community

Total genomic DNA was extracted from 0.4 g of well-mixed
soil using the Power Soil DNA Isolation Kit (MoBio Laboratories,
Carlsbad, USA) in accordance with the manufacturer’s
specifications. Total genomic DNA was subjected to high-
throughput sequencing using an IlluminaMiSeq platformat the
Novogene Cooperation (Beijing, China). A detailed procedure can
be found in the Supplementary information (Supplementary
measurement of soil microbial community).

2.6. Statistical analysis

Statistical analyses were performed using SPSS22.0 (USA).
We used multi-factor variance analysis to test the significance of
the impact of N addition and litter manipulation on plant and
soil microbial communities. Then, the effect of different litter
manipulation levels on all response variables was tested using one-
way ANOVA, and the effect of N addition levels on all response
variables was tested by independent sample t-tests. Significant
differences were assessed at p < 0.05. We performed non-
metric multidimensional scaling (NMDS) analysis of soil microbial
communities through the vegan package in R (version 3.6.2) using
Bray–Curtis. Furthermore, we performed analysis of similarities
(ANOSIM) to test whether the responses of microbial community
profiles were significant through the vegan package in R (version
3.6.2). The correlation analysis of plant community diversity with
soil microbial alpha diversity and community composition was
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conducted by OriginPro2021 (USA). The redundancy analysis
(RDA) was performed using the “vegan” package in R (version
3.6.2), and p-values of the influence of each plant factor on
soil microbial species distribution were calculated by the Envifit
function. Variation partitioning analysis (VPA) was performed to
determine the relative contributions of vegetation coverage, species
richness, and plant diversity indexes (H, E and λ) to shaping the
soil fungal and bacterial community composition.

3. Results

3.1. Responses of plant community
diversity to N addition and litter
manipulation

N addition and litter manipulation had no significantly
interactive influences on plant community diversity indexes at the
end of 6-year (Supplementary Figure 2). Compared with non-
nitrogen (N0), the nitrogen addition (N10), respectively, increased
vegetation coverage (V), Pielou’s evenness (E) and Simpson’s
dominance (λ) index by 7.16, 16.84, and 5.36% (Supplementary
Figures 2A, C, E), and decreased species richness (S) and Shannon–
Wiener’s diversity (H) by 15.06 and 2.46% (Supplementary
Figures 2B, D). Compared with litter control (C1), litter removal
(C0) greatly reduced vegetation coverage (V) and species richness
(S) but increased Pielou’s evenness (E) index (Supplementary
Figures 2A–C). Furthermore, in the case of non-nitrogen (N0),
litter manipulation significantly reduced vegetation coverage (V)
(Supplementary Figure 2A, p < 0.05).

3.2. Responses of soil microbial alpha
and beta diversity to N addition and litter
manipulation

Microbial alpha diversity was used to describe the composition
of microbial community for a single habitat or treatment, and
beta diversity was used to describe the assembly of microbial
communities among different habitats or treatments. In our study,
the alpha diversity of fungi was lower than that of bacteria. N
addition and litter manipulation had no significantly interactive
influences on soil fungal and bacterial alpha diversity at the end of
6-year (Figure 1 and Supplementary Figure 3). Nitrogen addition
(N10) significantly reduced fungal alpha diversity (Figure 1 and
Supplementary Figure 3, p < 0.05). Similarly, nitrogen addition
(N10) significantly decreased bacterial Simpson, chao1, and
Coverage estimators based on abundance (ACE) index (Figure 1
and Supplementary Figure 3, p < 0.05). Furthermore, in the
case of nitrogen addition (N10), Shannon index was increased by
litter doubling (C2), but decreased by litter removal (C0) in fungi
(Figure 1A, p < 0.05).

The beta diversity of soil fungi was higher than that of bacteria.
In fungi, beta diversity was significantly reduced by nitrogen
addition (N10) (Figure 2, p < 0.05). In contrary, nitrogen addition
(N10) significantly increased soil bacteria beta diversity (Figure 2,
p< 0.05). The beta diversity of fungi and bacteria were significantly

decreased by litter manipulation (C0 and C2) (Figure 2, p < 0.05).
N addition and litter manipulation had significantly interactive
influences on soil fungal and bacterial beta diversity at the end of
6-year (Figure 2, p < 0.05). In the case of non-nitrogen addition
(N0), the beta diversity of fungi was significantly decreased by litter
doubling (C2) (Figure 2, p < 0.05). Furthermore, in the case of
nitrogen addition (N10), the beta diversity of fungi and bacteria
were significantly decreased by litter manipulation (C0 and C2)
(Figure 2, p < 0.05). To further explore the differences in beta
diversity, NMDS analysis was carried out. In fungi and bacteria,
the Bray–Curtis dissimilarity from the nitrogen addition (N10) and
non-nitrogen (N0) treatments was separated along the X- or Y-axis
(Figure 3, stress = 0.173, stress = 0.109). Furthermore, the ANOSIM
highlighted that the soil fungal and bacterial communities with the
nitrogen addition (N10) were substantially different from those of
non-nitrogen (N0) treatments (p < 0.05). The clear differences in
soil fungal and bacterial communities under N addition and litter
manipulation during 2014–2019 were shown in Supplementary
Table 1.

3.3. Responses of soil microbial
community composition to N addition
and litter manipulation

The Venn diagrams represent the numbers of specific bacterial
and fungal species (represented by OTUs) associated with different
treatments (Figure 4). A total of 3,139 soil fungal operational
taxonomic unit (OTU) species and 6,217 bacteria were detected
in our study. In the case of non-nitrogen addition (N0), a greater
number of treatment-specific fungal species were detected in
each treatment than bacterial species (Figure 4). In fungi, the
core common species dominated the study area and represented
69.25∼85.30%. In addition, compared with non-nitrogen (N0),
nitrogen addition (N10) reduced the OTU species from 1,505.67
to 1,300.67 (Figure 4 fungi). In comparison, the core common
bacterial species accounted for 86.97∼92.34%, whereas there was
little difference between nitrogen addition (N10) and non-nitrogen
(N0) (Figure 4 bacteria).

N addition and litter manipulation had an influence on
the relative abundance of many common taxa (top 10%) at
the phylum level in soil fungi and bacteria (Supplementary
Table 2). Soil fungal communities changed lesser along with
different treatments than bacteria. Specifically, the Ascomycota
(49.20∼65.63%) was relatively dominant in fungi (Figure 5 fungi),
then the Basidiomycota was 2.50∼7.61% and Mortierellomycota
was 3.29∼7.96%. In comparison, the bacterial community
was getting more diverse among different treatments. The
Proteobacteria (26.08∼34.03%), Actinobacteria (27.73∼33.58%),
Acidobacteria (10.24∼18.09%), and Firmicutes (3.46∼7.83%) were
the most abundant bacterial phyla (Figure 5 bacteria). Meanwhile,
the result of the independent sample t-test for N addition treatment
showed that nitrogen addition (N10) treatment significantly
increased the relative abundance of Ascomycota, but decreased
the relative abundance of Chytridiomycota (p < 0.05) in fungi
(p < 0.05) (Supplementary Figures 4A, B, p < 0.05). Similarly,
nitrogen addition (N10) treatment significantly increased the
relative abundance of Proteobacteria, Firmicutes, Bacteroidetes,
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FIGURE 1

The 6-year of soil fungal and bacterial Shannon diversity index and chao1 richness in N addition and litter manipulation treatments during
2014–2019. Significance levels were presented to show the effect of N addition (N) and altered litter input (C) treatments and their interaction
(N × C) on these parameters (nsp > 0.1; #p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001). The uppercase letters indicate the significant difference
between two nitrogen treatments (p < 0.05), different lowercase letters indicate significant difference among three altered litter input treatments in
the case of same nitrogen (p < 0.05). (A–D) Represents the α diversity indices of soil fungi and bacteria (Shannon index and Chao1 index),
respectively.

and Thaumarchaeota (Supplementary Figures 4C, D, p < 0.05),
but decreased the relative abundance of Acidobacteria (p< 0.05) in
bacteria (Supplementary Figure 5, p < 0.05).

3.4. Relationship between the soil
microbial community and plant
community diversity under N addition
and litter manipulation

The correlation analysis result revealed that Shannon, chao1
and ACE indexes of fungi were positively correlated with species
richness (S) (Supplementary Figure 6, p < = 0.05). Similarly,
Simpson index of bacteria was positively correlated with species
richness (S) (Supplementary Figure 6, p < = 0.05). Furthermore,
the Pielou’s evenness (E) decreased significantly with an increasing
relative abundance of Mucoromycota in fungi (Supplementary
Figure 6 fungi, p < 0.05). Whereas vegetation coverage (V)
increased significantly with the increasing relative abundance of
Gemmatimonadetes in soil bacteria (Supplementary Figure 6
bacteria, p < 0.05).

The effect of N addition and litter manipulation on soil
microbial community was analyzed using RDA (Figure 6). The
cumulative percentage variance of the first and second axes
was 24.95 and 22.85% for fungi, and 27.31 and 20.45% for
bacteria, respectively, indicating that the soil microbial species
distribution was significantly affected by the plant community
diversity (Figure 6). And the Envifit function results indicated that
species richness (S) and vegetation coverage (V) were the most
important influential factors to the changes in soil microbial species
distribution (p < 0.01). Furthermore, Shannon–Wiener’s diversity
(H) and Simpson’s dominance (λ) had significant effect on soil
fungal species distribution (p< 0.01), and Pielou’s evenness (E) had
a significant effect on soil bacterial species distribution (p < 0.05).

A variation partitioning analysis further demonstrated that
the soil bacterial and fungal communities were highly explained
by vegetation coverage, species richness, and diversity indexes
(Figure 7). For fungi, a total of 22.69% of the community variation
could be explained by plant variables, and the species richness
explained 17.74% of the variation. For bacteria, a total of 12.02% of
the community variation could be explained by plant variables, and
plant diversity indexes explained 5.98% of the variation (Figure 7).

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1013570
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1013570 March 23, 2023 Time: 11:56 # 6

Zhan et al. 10.3389/fmicb.2023.1013570

FIGURE 2

The 6-year of soil fungal and bacterial beta diversity in N addition and litter manipulation treatments during 2014–2019. Significance levels were
presented to show the effect of N addition (N) and altered litter input (C) treatments and their interaction (N × C) on these parameters (nsp > 0.1;
#p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001). The uppercase letters indicate the significant difference between two nitrogen treatments (p < 0.05),
different lowercase letters indicate significant difference among three altered litter input treatments in the case of same nitrogen (p < 0.05).

FIGURE 3

Non-metric multidimensional scaling (NMDS) analysis of soil fungal and bacterial beta diversity in N addition and litter manipulation treatments
during 2014–2019. R and p-values under the non-nitrogen (N0) and nitrogen addition (N10) treatments comes from the ANOSIM analysis.

4. Discussion

4.1. Effects of N addition and litter
manipulation on plant community
diversity

In our study, nitrogen addition (N10) had no significant
influences on vegetation coverage (V) and plant community
diversity, and there are small effects. The reason, on the one
hand, N is a key limiting factor in the growth of plants in arid
and semiarid regions, and the required nitrogen for plant growth
mainly comes from the soil or plant’s nitrogen fixation (Yang et al.,
2017). Nitrogen addition will ease the limiting factor, increase
the absorption of CO2 in the atmosphere by plants, significantly

improve photosynthesis efficiency (Gao Y. et al., 2013), and is
conducive to plant growth. So vegetation coverage (V), Pielou’s
evenness (E) index, and Simpson’s dominance (λ) were increased
in the semiarid sandy land. On the other hand, the addition of
nitrogen greatly intensifies interspecific competition in the plant
community, tall plants produce photoinhibition to short plants (Li
C. B. et al., 2016), at the same time, the increase of plant vegetation
coverage (V) under nitrogen addition weakens the surface solar
radiation (Kan et al., 2015; Zhao X. X. et al., 2020), which is not
conducive to the growth of bottom plants. So nitrogen addition
(N10) reduced species richness (S) and Shannon–Wiener’s diversity
(H). The plant community did not show significant difference at
the end of the 6-year N addition in the semiarid sandy land. The
discrepancies could due to that plant diversity responses may also
vary depending on the N deposition levels (Lu et al., 2011), different
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FIGURE 4

Venn diagram of the soil fungal (left) and bacterial (right) OTU in N addition and litter manipulation treatments during 2014–2019. The numbers
within circles represent the specific OTU in that treatment, the core number represents the common OTU present in all treatment.

FIGURE 5

Soil microbial community proportion at phylum level in N addition and litter manipulation treatments during 2014–2019 (mean).

plants with divergent N utilization (Gherardi et al., 2013) and
experimental duration (De Schrijver et al., 2011).

Our study presented that litter removal (C0) greatly reduced
vegetation coverage (V) and species richness (S). In contrast,
litter doubling (C2) slightly increased vegetation coverage (V)
and species richness (S) in nitrogen addition (N10), and slightly
reduced vegetation coverage (V) and species richness (S) in non-
nitrogen (N0). The results addressed part of our first hypothesis:
litter manipulation had no significant influence on the plant
community. The explanation for the observed differences might
be that: First, litter removal (C0) inhibited seed activity of some
species or prolonged seed dormancy by increasing soil temperature
and reducing soil moisture, thereby significantly inhibiting seed
germination (Cuena-Lombrana et al., 2016). Second, litter removal
(C0) increased near-surface photosynthetically active radiation,
accelerated water loss, reduced photosynthetic rate, and indirectly
increased seedling mortality (Bajwa et al., 2017; Zhang, 2019).

So litter removal (C0) greatly reduced vegetation coverage (V)
and species richness (S). Third, nitrogen addition alleviated the
N limitation of plant growth in this area, and litter doubling
(C2) slowed evaporation of soil surface moister, promoted the
growth of annual species in semiarid areas, and hence increased
vegetation coverage (V) and species richness (S). However, in the
non- nitrogen addition, the smaller seeds of one or two annual
plants stayed in the litter layer (Wang et al., 2013), leading to delay
or failure of germination and reducing vegetation coverage (V) and
species richness (S).

4.2. Effects of N addition and litter
manipulation on soil microbial diversity

Bacteria has higher alpha diversity than fungi in many
ecosystems (Anderson et al., 2017; Chen et al., 2020). Our study
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FIGURE 6

Redundancy analysis (RDA) of plant community diversity and soil microbial species distribution in community under N addition and litter
manipulation. Significance levels of each plant community factor were calculated by Envifit function (nsp > 0.1; #p < 0.1; *p < 0.05; **p < 0.01;
***p < 0.001).

FIGURE 7

Variation partitioning analysis (VPA) of the fungal and bacterial community explained by vegetation coverage, species richness and plant’s diversity
indexes (H, E, and λ) and their interactions. The value of black circle is the common explanation of the factors at both ends.

confirmed this statement in the semiarid sandy land, and fungal
alpha and beta diversity were significantly decreased by nitrogen
addition (p < 0.05). In fact, fungi typically has lower nutrient
requirements than bacteria (Zhou et al., 2017). By contrast, bacteria
grow faster and prefer substrates of low C: N ratios. Plants provide
soil microbes with C in exchange for other soil nutrients, such
as N (Vasar et al., 2017). N availability is increased due to N
deposition in soil, plants release lesser amounts of C to soil
microbes (Johnson and Thornley, 1987), lesser C could be allocated
to belowground parts, resulting in a decrease in the soil C storage
in a long term. Consequently, with the addition of nitrogen, when
the soil C/N ratio was low, the effect on fungi is greater than
bacteria. Our study showed that soil bacterial and fungal alpha and
beta diversity index changed to different degrees under nitrogen

addition. A explanation for the discrepancies may be the fact
that bacteria and fungi are the two major microbial taxa in soils,
and they respond differently concerning their morphological traits,
utilization strategies, and sensitivities to the environment (Chen
et al., 2020).

Litter accumulation can promote the formation of soil organic
carbon and affect the community of soil microorganisms (Wang
L. Y. et al., 2021). In our study, litter manipulation (C) had
no significant influence on soil microbial alpha diversity. This is
inconsistent with some studies showing that after the removal or
addition of litter in soil, the alpha diversity indexes of soil microbial
community have changed significantly (Wang L. Y. et al., 2021).
One study indicated that the input of plant litter did not affect
the soil organic carbon content (SOC) content in the observation
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of two temperate forests, even after 11 years of treatment (Holub
et al., 2005). And one study indicated that the underground root
system may provide a more stable carbon source for the soil than
the above-ground litter (Sokol et al., 2019). Therefore, we should
consider the influence of underground litter and/or the coupled
impacts with the above ground litters on soil microbial community
in the later study.

4.3. Effects of N addition and litter
manipulation on soil microbial
community composition

The microbial OTU taxonomic composition excavates the
specific difference along with environmental change. As our Venn
diagrams indicated that the core common species accounted for
86.97∼92.34% of the total OTU species in soil bacteria, which
were less specific and more adaptable along with environmental
change than the fungal species that the core common species
represented 69.25∼85.30% of the total soil fungi. In addition,
Ascomycota’s proportion was greater than 48% in fungal at the
phylum level. Proteobacteria, Actinobacteria, and Acidobacteria
were relatively dominant in bacteria. These results confirmed that
most soil bacterial taxa occupied a wide range, On the other hand,
most soil fungal taxa occupied a narrower range. Therefore, soil
bacteria adapted to the environment by changing the proportions
of their taxa, while fungi changed their rare taxa in response to
environmental change. This was consistent with the results that
soil bacterial and fungal communities adapted to the natural aridity
gradient in desert grassland ecosystems (Wang S. K. et al., 2021).

Furthermore, nitrogen addition (N10) significantly increased
the relative abundance of Ascomycota, Proteobacteria, Firmicutes,
Bacteroidetes, and Thaumarchaeota (p < 0.05), but significantly
decreased the relative abundance of Acidobacteria (p< 0.05). There
are several possible explanations for this result. On the one hand,
nutrient enrichment may alter the interactions among microbial
species, shifting from symbiosis to competition with increased
nutrient supply (Hoek et al., 2016), leading to changes in soil
microbial community composition. On the other hand, as the
fact that, microbial taxa can have niche preferences, even within
the same phylum (Faust and Raes, 2012). For example, our study
showed that in semi-arid sandy land, continuous 6 years nitrogen
addition was beneficial to Copiotrophic taxa, Proteobacteria’s
reproduction, but was not apt to oligotrophic taxa Acidobacteria’s
survival.

4.4. Relationship of plant community
diversity with soil microbial community
under N addition and litter manipulation

Plant species are the main driving factor for
microenvironmental change, affecting soil nutrient availability
(Schiedung et al., 2017) and ultimately the microbial community
(Zuo et al., 2016; Wang et al., 2018). We found that only the species
richness (S) was significantly positively associated with some alpha
diversity indices of soil microorganisms, and RDA showed that
the soil microbial species distribution was significantly affected by

the plant community diversity. A variation partitioning analysis
further demonstrated that plant variables explained the change in
soil fungal and bacterial community by 22.69 and 12.02%. These
results indicated that plant community diversity influenced soil
fungi more than bacteria. One explanation for this association
is that shared environmental factors contribute to relationships
between soil microorganisms and plant community composition
(Prober et al., 2015). First, plants provide microhabitats as well as
organic substrates for soil microorganisms, and such changes in
plant community composition lead to changes in both habitats and
carbon resources for soil microhabitats (Ramirez et al., 2012), and
translating into changes in soil microbial communities. Second,
changes in the soil microbial community can affect the plant
community. For instance, plant-soil feedback is associated with the
processes of soil organic matter decomposition and mineralization,
or pathogenic and beneficial interactions (De Deyn and Van der
Putten, 2005; Brigham et al., 2022). Third, fungi are often more
directly dependent on plant products and mycorrhizal fungi are
more dependent on direct symbiotic relationships with plants
(Gao C. et al., 2013; Prober et al., 2015). As in this study, soil fungi
Shannon, chao1 and ACE indices were significantly positively
correlated with species richness (S).

Our results showed that N addition and litter manipulation had
no significantly interactive influences on plant and soil microbial
community except that soil microbial beta diversity. There are
several possible explanations for this result. On the one hand,
N addition was dependent on the water condition (Zong et al.,
2019). The interannual variability of precipitation in the semi-
arid area fluctuates greatly, which will affect the nitrogen use
efficiency. On the other hand, as a nutrient provider, litter needs
to accumulate in a certain time scale during its decomposition
process and its nutrient utilization. Thence to further explore the
interaction between N addition and litter manipulation, we need
more long-term data accumulation or consideration of factors
such as moisture, precipitation, and time in the data analysis
process. In this work, we focused on sandy ecosystems in semi-
arid regions and filled in the gaps in knowledge about the
effects of nitrogen deposition and aboveground litter treatment
on soil microbial communities on long-term scales. However,
soil microbial communities are mainly regulated by multiple
environmental factors, such as climate, topography, soil properties,
and vegetation type (Bodelier, 2011; Yang et al., 2018). Nitrogen
addition causes soil acidification, if at the end of nitrogen addition,
accompanied by a large amount of natural precipitation, the
semiarid sandy soil has poor water and fertilizer retention capacity
and is prone to leaching, which will affect the utilization of
nitrogen by plants and shallow soil microorganisms. So to more
rigorously distinguish the effects of abiotic environments on plant
communities and soil microbial communities, and the relationship
between plant communities and soil microorganisms, it is necessary
to conduct experiments that simultaneously manipulate plant
communities, soil microorganisms, and related abiotic factors.

5. Conclusion

This study demonstrated that continued N addition and
litter manipulation for 6 years had no significant interactive
influences on plant and soil microbial community except for soil
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microbial beta diversity in a semiarid sandy land. Whereas soil
microbial alpha and beta diversities were significantly decreased
by nitrogen addition (p < 0.05) except for bacterial beta diversity.
Furthermore, soil bacterial and fungal communities responded
differently, bacterial communities showing higher alpha diversity
than fungi, and the beta diversity of soil fungi higher than bacteria.
In particular, soil bacteria were dominated by the universal phyla,
while fungi were dominated only by the phylum Ascomycota.
Results from our study also indicated that most soil bacteria
(of the same taxa) occupied a wide range and adapted to the
environment by changing the proportions of their taxa, while
fungi changed their rare taxa in response to environmental
change. Finally, the soil microbial species distribution was
significantly affected by the plant community diversity. A variation
partitioning analysis further demonstrated that plant variables
explained the changes in soil fungal and bacterial communities by
22.69 and 12.02%.
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