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The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive 
responses to biotic stresses due to an increased demand for de novo synthesis of 
immunity-related proteins and signaling components. In nucleate cells, disturbance 
of r-ER integrity and functionality leads to the “unfolded protein response” (UPR), 
which is an important component of innate plant immune signalling. In contrast 
to an abundance of reports on r-ER responses to biotic challenges, sieve-element 
endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not 
been investigated. We  found that morphological SE-ER changes, associated with 
phytoplasma infection, are accompanied by differential expression of genes encoding 
proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also 
triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent 
differential expression of UPR-related genes. The modified expression patterns seem 
to reflect a trade-off between survival of host cells, needed for the phytoplasmic 
biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve 
element and companion cell may provide a corridor for transfer of phytoplasma 
effectors inducing UPR-related gene expression in companion cells.
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1. Introduction

Phytoplasmas are phytopathogenic mollicutes associated with numerous economically relevant 
plant diseases, worldwide (Namba, 2019). Biology of phytoplasmas and host responses to infection 
are still largely unknown due to the biotrophic lifestyle of these microorganisms which impedes in 
vitro studies (Jiang et al., 2019; Mapuranga et al., 2022). In plants, phytoplasmas reside exclusively 
in sieve elements (SEs; van Bel and Musetti, 2019; Lewis et al., 2022), highly specialized transport 
cells, that provide an exceptional physical and chemical environment, favored by phytoplasmas (van 
Bel et  al., 2022). The interaction between phytoplasmas and SE components has barely been 
investigated thus far (van Bel and Musetti, 2019). Phytoplasmas have a low-size genome, and their 
survival most likely relies on plant resources, given the absence of many key genes, essential for cell 
metabolism (Kube et al., 2012; Oshima et al., 2013).
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Mature SEs possess a plasma membrane enclosing a thin parietal 
cytoplasmic layer that is in open contact with the wide sieve-element 
lumen, as result of the absence of a tonoplast. The enucleate cytoplasmic 
layer contains a reduced set of organelles such as SE plastids, inactive 
mitochondria and conspicuous aggregates of smooth endoplasmic 
reticulum, named sieve-element endoplasmic reticulum (SE-ER; e.g. Ehlers 
et al., 2000; van Bel and Musetti, 2019). The latter exhibits ultrastructural 
modifications following phytoplasma infection (Buxa et al., 2015; Pagliari 
et  al., 2016). In addition, there are indications for the occurrence of 
junctions between phytoplasmas and SE-ER (Pagliari et al., 2016, 2017), as 
reported for other mollicutes, i.e., spiroplasmas (see van Bel and Musetti, 
2019). The SE-ER is part of the SE endomembrane system (Liu et al., 2022), 
with a unique morphology and function in SEs (Sjolund and Shih, 1983). 
It is linked by minute anchors, to mitochondria, SE plastids, and the plasma 
membrane (Ehlers et al., 2000), to prevent dragging by mass flow in the 
sieve tubes. These anchors might also serve to keep the SE organelles closely 
together, in order to facilitate exchange of compounds via the unstirred 
layer surrounding the diverse adjacent membranes.

The rough endoplasmic reticulum (r-ER) in generic, nucleate cells is 
composed of two morphologically distinct domains, i.e., sheets (cisternae) 
and tubules, which are connected by three-way junctions to create a loose 
polygonal structure (Kriechbaumer and Brandizzi, 2020). The SE-ER in 
mature SEs is mainly formed instead by stacks of membranes, appressed 
to the SE plasma membrane (Ehlers et al., 2000). The r-ER is responsible 
for synthesis, processing and sorting of proteins and harbors membrane-
bound receptors and hormonal transporters, associated with plant 
immune responses (Jing and Wang, 2020) and the ion channeling 
involved in the regulation of cytosolic Ca2+ levels (Almeida, 2021). By 
contrast, knowledge on SE-ER cisternae is scant. They are believed to act 
as intracellular Ca2+-sequestration compartments (Sjolund and Shih, 
1983; van Bel et  al., 2014 and literature within). Moreover, SE-ER 
displayed acid phosphatase activity suggesting a role in cytoplasmic 
autolysis during SE maturation (Oparka et  al., 1981). Despite the 
distinctions between SE-ER in SEs and r-ER in companion cells (CCs), 
r-ER-specific fluorochromes (Martens et al., 2006) and experiments with 
transformed plants carrying a His-Asp-Glu-Leu (HDEL) r-ER-retention 
signal (Liu et al., 2022), demonstrate physical, via unilaterally branched 
pore-plasmodesma units (PPUs), and functional SE-ER/r-ER connections, 
consistent with a role in protein and signal exchange between CC and SE.

The r-ER appears to act as a central regulator of immune responses in 
plants and animals. Disturbance of r-ER integrity and functionality 
following abiotic stress and pathogen attacks, leads to the so-called 
“unfolded protein response” (UPR), which is a crucial part of the r-ER-
mediated innate plant immune signalling (Park and Park, 2019; Howell, 
2021). The UPR is initiated by activation of r-ER membrane-associated 
molecular sensors, followed by migration of their active components to the 
nucleus, where they act as transcription factors (TFs) to trigger UPR gene 
expression (Supplementary Figure 1; Park and Park, 2019; Howell, 2021). 
Although UPR protein synthesis aims at restoring proteostasis within the 
secretory pathway, UPR signaling may cause cell death during prolonged 
severe stress conditions or insufficient adaptive responses (Park and Park, 
2019; Howell, 2021). In contrast to the abundance of reports on UPR, 
triggered in the r-ER by stress factors or pathogen attacks, in different plant 
species (Strasser, 2018; Verchot and Pajerowska-Mukhtar, 2021), nothing 
is known about a possible SE-ER -mediated response to pathogenic 
challenges. Recently, Kloth et al. (2021) reported that SLI1, an R-protein of 
Arabidopsis which confers a broad-spectrum resistance to phloem-feeding 
insects, co-localized with the SE-ER in the parietal layer of SEs, arousing 
interest in the possible role(s) of the SE-ER in plant immunity.

Aim of this study was to collect data on a few key aspects of the 
interaction between r-ER, SE-ER and phytoplasmas. We investigated 
ultrastructural alterations of SE-ER in SEs and r-ERs in CCs, phloem 
parenchyma cells and cortical parenchyma cells and putative junctions 
between phytoplasmas and SER (van Bel and Musetti, 2019) in the 
Arabidopsis thaliana / ‘Candidatus Phytoplasma asteris’ pathosystem 
(Pagliari et al., 2016, 2017). Furthermore, we examined phytoplasma 
effects on the expression of genes encoding proteins involved in SE-ER 
and r-ER re-organization, such as members of class XI myosin motor 
proteins, which control movement and remodelling of r-ER (Griffing 
et al., 2014). In addition, proteins involved in endoplasmic reticulum-
plasma membrane (ER-PM) anchoring and membrane lipid transfer (i.e., 
SYT1, VAP27-1, and NET3C, Wang et al., 2014; Siao et al., 2016) were 
investigated. Because processing of proteins is enhanced under stress 
conditions to an extent that exceeds the r-ER folding capacities (Bao et al., 
2019; Park and Park, 2019), expression levels of genes encoding proteins 
involved in the UPR pathway in generic nucleate cells (i. e., IRE1, bZIP60, 
bZIP17/28, S1P, S2P, BiPs, PDIs, CNXs, and CRTs; Adams et al., 2019; 
Howell, 2021) were evaluated in healthy and infected Arabidopsis midrib 
tissues. All genes under analysis here are summarized in Table 1.

The results indicate a high responsiveness of SE-ER and r-ER to 
phytoplasma infection, expressed by a rapid remodelling of SE-ER in the 
enucleate SEs, and by the activation of UPR most likely in the nucleate 
CCs. The SE-ER/r-ER -related host immune response is seemingly 
modulated in a finely balanced and selective way by the biotrophic 
phytoplasmas, allowing the survival and viability of the SE/CC 
complexes despite all pathogenic effects.

2. Materials and methods

2.1. Plant material

Arabidopsis thaliana ecotype Columbia (Col) plants were grown at 
22/20°C, under short-day conditions (9 h light/15 h dark period). As 
described by Pagliari et al. (2017), the fourth and fifth instars of the 
insect vector Euscelidius variegatus (Bosco et al., 1997) were infected 
with Chrysanthemum yellows (CY) phytoplasma (Lee et al., 2004), a 
strain related to ‘Candidatus Phytoplasma asteris’ (‘Ca. P. asteris’, 16SrI-B 
subgroup). Arabidopsis plants were exposed to three healthy (for use on 
control plants) or CY-infected insects for a 7d inoculation-feeding 
period, as reported previously (Pagliari et al., 2016). Symptoms related 
to CY-phytoplasma infection showed up 20 days after the end of the 
inoculation period (Pagliari et al., 2016). Only the symptomatic plants 
(treated with the CY-infectious insect vectors) tested positive for the 
phytoplasma presence by PCR, using the primer pair R16F2n/R16R2 
(Pagliari et al., 2017), whereas the asymptomatic, control plants tested 
negative (not shown).

For each analysis (ultrastructure observation, phytoplasma 
detection and gene expression analysis), at least five infected and five 
healthy control A. thaliana plants, unless specified otherwise, were used 
and considered as independent biological replicates (Pagliari et al., 2017).

2.2. Transmission electron microscopy

From the above-mentioned plants, a 6–7 mm long midrib portion 
was excised from three fully expanded rosette leaves. The midrib 
segments were prepared for conventional transmission electron 
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microscopy (TEM) analyses as in Buxa et al. (2015). Ultrathin sections 
(60–70 nm) were cut using an ultramicrotome (Reichert Leica Ultracut 
E ultramicrotome, Leica Microsystems, Wetzlar, Germany) and collected 
on 200 mesh uncoated copper grids. Sections were then stained with 
UAR-EMS (uranyl acetate replacement stain; Electron Microscopy 
Sciences, Fort Washington, PA, United States) and observed under a 
PHILIPS CM 10 TEM (FEI, Eindhoven, The Netherlands), operated at 
80 kV, and equipped with a Megaview G3 CCD camera (EMSIS GmbH, 
Münster, Germany).

2.3. Gene expression analysis

Transcriptional regulation of Arabidopisis genes contributing to 
SE-ER/r-ER dynamics and spatial configurations, was analyzed in 
midribs of healthy and phytoplasma-infected plants using a real-time 
RT-PCR approach. In particular we quantified the expression level of 
genes encoding the class XI myosin proteins, MXI-K, MXI-1, and 
MXI-2, and genes encoding proteins localized on the ER-PM contact 
sites in plants, i.e., synaptotagmin 1 (SYT1, Schapire et  al., 2008), 

vesicle-associated protein/synaptobrevin-associated protein 27–1 
(VAP27-1) and the actin-binding protein NETWORKED 3C (NET3C) 
(Ueda et al., 2010, 2015; Wang et al., 2014; Pérez-Sancho et al., 2015; Siao 
et al., 2016; Table 1). Furthermore, the expression levels of UPR-related 
Arabidopsis genes (Park and Park, 2019) were investigated, i.e., those 
involved in the two main UPR pathways in plant, activating (i) the 
inositol-requiring protein 1 (IRE1)-mediated splicing of bZIP60 mRNA 
(Ruberti et al., 2015) and (ii) in the proteolytic processing of bZIP17/28 
(Iwata and Koizumi, 2012) by the SITE 1 PROTEASE and SITE 2 
PROTEASE (S1P and S2P, Liu et al., 2007; Supplementary Figure 1; Park 
and Park, 2019). In case of stress, bZIP17, bZIP28, and bZIP60 
transcription factors induce the expression of several protein 
chaperones, reducing the number of misfolded proteins (Park and 
Park, 2019).

One of the major players in these processes is the luminal binding 
protein (BiP), an ER-resident member of the stress-related heat shock 
protein (HSP70) family, encoded by BiP1, BiP2 and BiP3 in 
Arabidopsis (Koizumi, 1996). Protein disulfide isomerase (PDI), 
encoded by 12 genes in Arabidopsis (Thomas and van Der Hoorn, 
2018), is also involved in UPR, facilitating the correct formation of 

TABLE 1 List of Arabidopsis genes examined by real-time RT-PCR in this study.

Gene Locus_tag NCBI description

UBC9 AT4G27960 Ubiquitin conjugating enzyme 9

TIP41 AT4G34270 TIP41-like family protein

SAND AT2G28390 SAND family protein

UBQ10 AT4G05320 Polyubiquitin 10

MXI-K AT5G20490 Myosin family protein with Dil (alias: XIK)

MXI-1 AT1G17580 Myosin 1 (alias: MYA1)

MXI-2 AT5G43900 Myosin 2 (alias: MYA2)

bZIP17 AT2G40950 Basic-leucine zipper (bZIP) transcription factor family protein

bZIP28 AT3G10800 Basic-leucine zipper (bZIP) transcription factor family protein

bZIP60u AT1G42990 Basic region/leucine zipper motif 60

bZIP60s

IRE1A AT2G17520 Endoribonuclease/protein kinase IRE1-like protein

IRE1B AT5G24360 Inositol requiring 1–1 (alias: IRE1-1)

S1P AT5G19660 SITE-1 protease

S2P AT4G20310 Peptidase M50 family protein

BIP1 AT5G28540 Heat shock protein 70 (Hsp 70) family protein

BIP2 AT5G42020 Heat shock protein 70 (Hsp 70) family protein

BIP3 AT1G09080 Heat shock protein 70 (Hsp 70) family protein

PDI1 AT3G54960 PDI-like 1–3 (alias PDIL1-3, PROTEIN DISULFIDE ISOMERASE 1)

PDI5 AT1G21750 PDI-like 1–1 (alias PDIL1-1, PROTEIN DISULFIDE ISOMERASE 5)

CNX1 AT5G61790 Calnexin 1

CNX2 AT2G31955 Cofactor of nitrate reductase and xanthine dehydrogenase 2

CRT1 AT1G56340 Calreticulin 1a (alias CRT1a)

CRT2 AT1G09210 Calreticulin 1b (alias CRT1b)

CRT3 AT1G08450 Calreticulin 3

SYT1 AT2G20990 Synaptotagmin 1 (alias SYTA)

VAP27-1 AT3G60600 Vesicle associated protein (alias: VAMP/SYNAPTOBREVIN-ASSOCIATED PROTEIN 27–1)

NET3C AT2G47920 Kinase interacting (KIP1-like) family protein
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disulfide bonds between cysteine residues in proteins (Zhang et al., 
2018). Also engaged in the UPR are calnexins (CNX) and calreticulins 
(CRT), encoded in Arabidopsis, respectively, by CNX1, CNX2, and 
CRT1, CRT2, CRT3 (Nelson et al., 1997). These are calcium-binding, 
lectin-like chaperones that recognize the terminal structure of 
N-linked glycans attached to proteins and retain unfolded proteins in 
the r-ER (Strasser, 2018).

Total RNA was extracted from about 1 g of leaf midribs using a 
Spectrum RNA Kit (Sigma Aldrich, St. Louis, MO, United  States) 
following the manufacturer’s instructions. RNAs were DNase-treated and 
reverse-transcribed into cDNA with a QuantiTectReverse Transcription 
Kit (Qiagen GmbH) following the manufacturer’s instructions. Gene 
expression was analyzed by real-time RT-PCR on a CFX96 instrument 
(Bio-Rad Laboratories, Hercules, CA, USA) using the SsoFast EvaGreen 
Supermix (Bio-Rad Laboratories Inc., Hercules, CA, United States) and 
the amount of cDNA obtained from 5 ng of RNA, in a total volume of 
10 μl. Primers used for real-time RT-PCR are listed in Table 2. Arabidopsis 
ubiquitin conjugating enzyme 9 (UBC9) was used as reference gene, being 
the most stably expressed among a set of four potential housekeeping 
genes (Tables 1, 2; Pagliari et  al., 2017). Primer pair efficiency was 
evaluated as described by Pfaffl (2001) on the standard curves of different 
dilutions of pooled cDNA. Mean normalized expression (MNE) for each 
gene of interest (Muller et al., 2002) was calculated by normalizing its 
expression to the level of the UBC9 gene. At least five individuals (plants) 
with three technical repeats each were used for MNE determination of 
each gene, in both control and infected plants. Statistical analyses of gene 
expression levels were performed with the Prism 7.02 software package 
(GraphPad Software) using an unpaired t-test.

3. Results

3.1. Phytoplasma infection induces 
conformational alterations of SE-ER, which 
may function as “docking berths” for 
phytoplasmas.

Despite their restriction to SEs, phytoplasma can exert pathological 
effects throughout the whole plant via the secretion of effector proteins. 
Therefore, our TEM investigations on the effects of phytoplasma 
infection on SE-ER/r-ER morphology included diverse midrib cell 
types such as SEs, CCs, phloem parenchyma cells, and cortical 
parenchyma cells. In healthy plants, r-ER in cortical parenchyma, 
phloem parenchyma cells and CCs displayed a regular morphology in 
each cell-type examined (Figures 1A–C). Cortical parenchyma cells 
(Figure  1A), phloem parenchyma cells (Figure  1B), and CCs 
(Figure 1C) contained regular double-membrane ER-stacks heavily 
dotted with ribosomes, embedded in the cytosolic environment. In SEs 
of healthy plants, SE-ER stacks consisted of membranous stacks that 
were predominantly orientated in parallel to the plasma membrane, to 
which they were firmly appressed (Figures 1D,I). Phytoplasma infection 
did not lead to any significant alteration of ER organization of cortical 
parenchyma, phloem parenchyma cells or CCs (Figures 1E–G), but led 
to structural changes of the SE-ER (Figures 1H–K). There, infection 
induced dramatic conformational alterations such as an increased 
number of SE-ER stacks and swelling of the cisternae (Figures 1J,K). 
Phytoplasmas adhered to the malformed SE-ER membranes (Figure 2); 
the junction sites, however, did not reveal a precise and defined 
structure (Figures 2A–D).

3.2. Phytoplasma infection is associated with 
modulation of genes involved in reticulum 
stress responses.

The impact of phytoplasma infection on SE-ER/r-ER performance, 
was quantified by the expression level of genes, associated with ER 
functioning (Table  1), through real-time RT-PCR. Gene expression 
analyses are presented in Figures 3, 4, where the mean expression level 
of each gene is plotted as the transcript abundance normalized to the 
level of the internal control UBC9 (set at 100), in both healthy (H) and 
infected (I) plants.

The involvement of genes encoding class XI myosins in SE-ER 
re-shaping, in response to phytoplasma infection, was assessed using the 
transcript levels of MXI-K, MXI-1 and MXI-2 (Figure 3A). Phytoplasma 
infection modulated the expression of the three genes to a different 
degree. While the transcript level of MXI was more than doubled, 
transcription of MXI-1 was not affected whereas MXI-2 was 
downregulated to about 65% as compared to healthy plants (Figure 3A). 
Furthermore, we determined the expression levels of SYT1, VAP27-1 
and NET3C, presumably engaged in ER-PM anchoring or linking 
(Figures  3B–D). SYT1 and NET3C were significantly overexpressed 
(ca. + 30 and + 50%, respectively) in case of phytoplasma infection 
(Figures 3B,D), whereas the expression of VAP27-1 was the same in 
healthy and infected plants (Figure 3C).

Prior to the investigation of the expression levels of genes related to 
UPR, specific primers were designed to distinguish the bZIP60 spliced 
(bZIP60s) and unspliced forms (bZIP60u), present in Arabidopsis 
(Figure 4A). Both forms were expressed to a significantly higher degree 
in response to phytoplasma infection (+41% and + 150%, respectively) 
(Figure  4A). Arabidopsis disposes of two genes with IRE1-related 
sequences, IRE1a and IRE1b. Phytoplasma infection caused a consistent 
increase of the IRE1a transcript level (+267%), but IRE1b expression was 
not changed (Figure  4A). While bZIP28 expression was slightly 
downregulated (−15%), the transcription of the two genes encoding the 
proteins that activate bZIP28, S1P and S2P, were upregulated in reaction 
to infection (+77% and + 540%, respectively) (Figure 4A). Finally, the 
transcript level of another ER membrane-associated transcription factor, 
bZIP17 that is activated in a manner similar to bZIP28, remained stable 
(Figure 4A).

Phytoplasma infection induced the upregulation of BiP1/2 
transcripts, but led to BiP3 downregulation (−60%) (Figure 4B). The 
Arabidopsis genome harbors 12 PDI-like genes, but only some of them 
are induced by the UPR. Among them, PDI1 and PDI5 were selected as 
representatives of this group. Transcription of both genes was 
significantly increased by phytoplasma infection (+60% for PDI1 
and + 106% for PDI5) (Figure 4B). Moreover, the transcription of two 
genes encoding CNXs in A. thaliana, CNX1 and CNX2, were 
significantly upregulated by phytoplasma infection (roughly +20% 
and + 140%, respectively) (Figure 4B). Finally, three CRT genes, CRT1, 
CRT2 and CRT3 present in the Arabidopsis genome, infection increased 
CRT1 and CRT2 (+140% and + 111%) transcript levels, but not that of 
CRT3 (Figure 4B).

4. Discussion

The r-ER displays a highly dynamic morphology to meet changing 
cellular requirements, including those associated with pathogenic 
attacks (Breeze et  al., 2020; Jing and Wang, 2020). Similarly, SE-ER 
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TABLE 2 List of primers and accession number of Arabidopsis sequences used in real-time RT-PCRs in the present study.

Gene Forward primer 5’–3’ Reverse primer 5’–3’ nM NCBI accession no.

UBC9a TCACAATTTCCAAGGTGCTGCb CGAGCAGTGGACTCGTACTTb 300 NM_179131.3

NM_118934.3

TIP41 CCTCTTGCGATTTTGGCTGAGb ACGAAGAACAGTTGGTGCCTb 300 NM_119592.5

SAND AGATCAATCGCGGAAGGTGGb TATGTCGGGACCAGGTGAGTb 300 NM_128399.4

UBQ10a CGTCTTCGTGGTGGTTTCTAAb ACAAGGCCCCAAAACACAAACb 300 NM_178968.5

NM_001084884.5

NM_001340546.1

NM_116771.5

NM_202787.4

NM_001340547.1

NM_178969.6

NM_178970.5

MXI-Ka ACAGCCATTGAAGTGCCAGA TTCGCCTCTGCGGTGTTAAA 300 NM_001161252.2

NM_001343670.1

NM_001343671.1

MXI-1 AGACGTGAATGCTGCTCGTT AGCCGAACCAACAAACTCCT 300 NM_101620.3

MXI-2a ACTCCAAGCAGCCAAGAACA TCCAGGTCAGTCCTTATCCGT 300 NM_001203536.1

NM_123757.5

NM_001203536.1

bZIP17 GCTCTATCCTCTGGCTCTGC ATGGGACCTGCAACACCTTC 300 NM_129659.3

bZIP28 TTCCCGGATCTTTGTGGTGG TCAGGTGGCTACGAGATGGA 300 NM_111917.5

bZIP60u AGGAGTCTGCTGTGCTCTTG TCTGGACGTAGGAGGCAACA 300 NM_103458.3

bZIP60s GAGTCTGCTGTTGGGTTCCC TCTGGACGTAGGAGGCAACA 300 NM_103458.3

IRE1A AAAGTTTTCGTCGAGGGGCA TCCTTCGCGGATTTACGGTT 300 NM_127306.4

IRE1Ba ATTTGAGACCGAGAGCACAAG TATCGCTTGCATCCCGAAGA 300 NM_001203453.2

NM_122344.5

NM_001203454.1

S1Pa AGGCATCAAAGGAAGACCCTG CAGGAGCCAGTAGCAGTTGG 300 NM_121971.3

NM_001343619.1

NM_001343620.1

S2Pa TGTGGTGATGGATGGGTGAC AGTCACCCTGTGGACATACG 300 NM_001341415.1

NM_001341416.1

NM_001341418.1

NM_001341412.1

NM_001341413.1

NM_001160784.2

NM_001341417.1

NM_001341414.1

BIP1/2a AGGACTTTGACCACAGGATCA TGCCCTCTCACATTCCCTTC 300 NM_122737.4

NM_001344430.1

NM_180788.3

NM_123567.3

BIP3a CAAGGAACCCAGCAAAGGGA GGCGCAACATCAAGCAGTAG 300 NM_001198015.2

NM_100779.5

(Continued)
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stacks frequently detached from the plasma membrane and fragmented 
into lobes and vesicles following phytoplasma infection (Buxa et al., 
2015; Pagliari et al., 2016). These morphological changes are specific for 
the SE-ER in phytoplasma-infected SEs (Figures 1H–K). In contrast, the 
r-ER structure in neighboring cells (i. e. CCs, phloem parenchyma cells, 
or cortical parenchyma cells) remained unchanged during infection 
(Figures 1E–G). As a potential analogy, infection with a Pseudomonas 
syringae pv. tomato, strain DC3000, provoked a rapid r-ER remodelling 
in Arabidopsis leaf parenchyma cells, which solely occurred in cells 
bordering established bacterial colonies and was induced by effectors, 
but not by elicitors such as flagellin (Breeze et al., 2020).

Like other microbial pathogens, phytoplasmas secrete effectors that 
modulate both plant host and insect vector cell biology (Tomkins et al., 
2018). The mode(s) of action exerted by phytoplasma effectors in the 
SE-ER modification is, however, unknown. Significant structural 
alterations and loss of viability of Nicotiana benthamiana protoplasts 
expressing the “Candidatus Phytoplasma mali” effector PME2ST support 
the idea that phytoplasma effectors may primarily target plant cell 
membrane systems (Mittelberger et  al., 2019). Effectors might also 
induce the formation of contact sites between phytoplasmas and SE-ER, 
as shown for numerous intracellular bacteria, docking on diverse host 
organelles (Dumox et al., 2012). Consistent with earlier work (Pagliari 
et  al., 2016, 2017), the present observations (Figure  2) confirm 
phytoplasma anchoring of unknown identity to proximal SE-ER stacks. 
Such junctions may also serve as bridges for effector trafficking and 
pathways for host-resources supply (Tilney et  al., 2001; Kagan 
et al., 2004).

However, the coarse approach applied - grinding entire midribs for 
gene-expression analysis - has an inevitable disadvantage, as it was not 

possible to assign infestation responses to specific cell types e.g. SEs or 
CCs. We could only sketch some tentative outlines of molecular SE-CC 
interaction, following a pathogenic attack (Figure 5).

We hypothesize that the presence of phytoplasmas is likely perceived 
by the SE-ER (Jing and Wang, 2020). However, it is unknown whether 
sensing is limited to the SE-ER, or if it also extends to the r-ER in 
SE-adjacent cells, in particular CCs (Figure  5), set in motion by 
phytoplasma effectors diffusing via plasmodesmata (Bai et al., 2009). 
Effectors may be responsible for an increased misfolding of proteins 
(Celli and Tsolis, 2015) and for partial cleavage of BiPs, as suggested by 
Jing and Wang (2020) (Figure 5). In addition, they could trigger bZIP-
release from the dictyosomes in CCs (Figure  5). Moreover, bZIP 
messengers may be liberated in SEs and CCs due to cleavage of BiPs 
(Figure 5). On the other hand, local cleavage of BiPs in the SE-ER may 
confer diffusional loss of BiPs from the ER in CCs via the connection 
between SE and SE-ER inside the PPU (Figure 5). Amidst all these 
uncertainties regarding the location(s) of response, it is obvious that the 
enucleate SEs cannot be responsible for an increased or decreased gene 
expression, and that SE-responses to phytoplasma infection should 
primarily be  investigated through CC-studies (van Bel and Musetti, 
2019). Bearing this in mind, the question emerges whether UPR-related 
proteins move from CCs to SEs via cytoplasmic PPU channels or SE-ER/
r-ER connecting PPU corridors (Figure 5).

To examine potential involvement of class XI myosin motor proteins 
(Griffing et al., 2014) in regulating SE-ER reorganization in response to 
phytoplasma infection, myosin gene expression was analyzed in healthy 
and phytoplasma-infected midrib tissues by real-time RT-PCR. We limited 
our analysis to genes coding for a subset of class XI myosins, i. e. MXI-K, 
MXI-1, and MXI-2, which are among the most highly expressed myosin 

TABLE 2 (Continued)

Gene Forward primer 5’–3’ Reverse primer 5’–3’ nM NCBI accession no.

PDI1a CCACTACCGGAAAATAACGATGG GGCCACACCAAGGAGCATA 300 NM_001125370.1

NM_115353.5

PDI5a CATCCAACAAGGGACAGGGT GTCCAAAGTACTGGAATGCACC 300 NM_102024.4

NM_179365.1

CNX1 GGTCTCAAGAGCTACCAGAAGG GTTTGGTTGTTGCTCGGCTT 300 NM_125573.4

CNX2a CCACACGAATCTTTTCAGTCCA TCGCAAGTGAATTTGTTGTTGTT 300 NM_001336358.1

NM_001036384.2

NM_179846.4

NM_001336359.1

NM_001336357.1

CRT1a AAGCACAAGGATGCGGAGAA CTTCCTCAGCGTCGGATTCA 300 NM_104513.5

NM_001036122.2

CRT2 AAGCTCAAGGATGCGGAGAA CAGCATCAGATTCCGCAGGT 300 NM_100791.4

CRT3a CCGGTATGGAGACAGGAGGA GCCTCATAGCTCGTCATGGT 300 NM_100718.5

NM_001198007.1

NM_202064.1

SYT1 CGGTCAGAGATCCCCAGACT TCTCGGGATTCCCAACCTGT 500 NM_127668.4

VAP27-1 AGAGACGGGGTGGAGAGAAT AACTGCAACGTTCGTGGTTG 500 NM_115924.4

NET3C GCATTGAGGTCTCCTTTGCG TCCCTAACACAACAACATATCCCA 500 NM_001337284.1

aThis primer pair amplifies every gene transcript variant.
bPagliari et al. (2017).
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isoforms in Arabidopsis (Ueda et al., 2010). MXI-K was significantly over-
expressed in phytoplasma-infected midribs, whereas MXI-1, and MXI-2 
expression was not modulated or down-regulated, respectively 
(Figure 3A). The differential modulation of the myosin-encoding genes 
likely reflects their diverse functions. The r-ER-associated MXI-K is one 
of the chief controllers of reticulum movement and configuration (Ueda 
et al., 2010). MXI-K further modulates-likely indirectly–deposition of 
cellulose, callose, lignin-like compounds at infection sites (Ueda et al., 
2010; Yang et al., 2014; Zhang et al., 2021), as described for other hosts 
responding to phytoplasma infection (Musetti et al., 2013; Buxa et al., 
2015; De Marco et al., 2016; Pagliari et al., 2017).

MXI-1 and MXI-2 are effective in promoting plant growth (Duan 
et al., 2020). Their down-regulation (Figure 4A) is thus expected to 
concur with reduced host growth (Pagliari et al., 2017; Buoso et al., 
2019; Bernardini et  al., 2022). In addition to myosins XI, SYT1 is 
essential for maintaining the polygonal reticulum network in 
Arabidopsis. Moreover, SYT1 is vital for the stability/dynamics of other 

proteins, i.e., the VAP27-1/NET3C complexes that function as junctions 
at the ER-PM contact sites (Pérez-Sancho et al., 2015). Over-expression 
of SYT1, together with modulation of VAP27-1 and/or NET3C would 
imply a drastic change in the number of ER-PM contact sites, in turn 
inducing r-ER deformation (Siao et  al., 2016). Such a network 
malformation was found in response to abiotic stresses (Lee et al., 2019; 
Ruiz-Lopez et al., 2021) and also observed in phytoplasma-infected 
SE-ER (Figures 1H–J).

Apart from controlling r-ER network stability (Siao et al., 2016; 
Ishikawa et al., 2018) additional tasks have been attributed to SYT1, such 
as being involved in responses to wounding (Pérez-Sancho et al., 2015) 
and in the resistance to biotic challenges, such as viruses (Lewis and 
Lazarowitz, 2010; Uchiyama et al., 2014) and fungi (Kim et al., 2016). 
Apparently, SYT1 is also engaged in endocytotic processes, related to 
defense responses in Arabidopsis (Romanenko et al., 2002). Hence, 
increased SYT1 expression levels (Figure 4B) could be related to the 
increased endocytic activity after phytoplasma attack, as demonstrated 

FIGURE 1

Representative TEM micrographs of healthy (A–D,I) and phytoplasma-infected (E–H,J,K) midrib cell types of Arabidopsis. In healthy midribs (A–D,I), rough 
endoplasmic reticulum (r-ER) shows a conventional morphology in cortical parenchyma cells (A), phloem parenchyma cells (B), and companion cells (C). 
The r-ER consists of regular tubules dotted with ribosomes, embedded in the cytosolic environment. In healthy sieve elements (D,I) sieve-element 
endoplasmic reticulum (SE-ER) stacks are free of ribosomes, firmly appressed in the cell perifery and mostly orientated in parallel to the plasma membrane. 
In infected midribs (E–H, J,K), the r-ER does not show significant morphological alterations in the diverse cell types as compared to those in healthy plants 
(E–G), with exception of the SE-ER in SEs (H,J,K). The SE-ER shows dramatic conformational alterations such as increased number of stacks and the 
slackening or swelling of reticular cisternae (H,J,K). In insets of (A)–(K) areas of interest are magnified. Arrows = phytoplasmas; asterisks: r-ER or SE-ER; ch: 
chloroplast; m: mitochondrion; n: nucleus; pl.: plastid; pp.: sieve-element protein; v: vacuole; SE: sieve element; sp.: sieve plate.
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in Arabidopsis plants infected by the biotrophic fungus Golovinomyces 
orontii (Kim et al., 2016).

r-ER modifications, similar to those of the SE-ER configuration 
in infected midribs (Figures 2H–J), were described to reflect the 
UPR (Bernales et  al., 2006; Choi and Song, 2020 and literature 
therein). In phytoplasma-infected Paulownia plants, genes encoding 

UPR-related proteins were among the top 20 differentially expressed 
(Mou et  al., 2013). Regulation of genes associated with UPR in 
response to phytoplasma infection has not yet been investigated. 
IRE1a is over-expressed in infected plants (Figure 4A), which seems 
a general response to biotic stresses (Moreno et  al., 2012). By 
contrast, expression of IRE1b, required to activate cell autophagy in 

FIGURE 2

Representative TEM micrographs of infected sieve elements illustrate an adhesion of phytoplasmas to the sieve-element endoplasmic reticulum (SE-ER) 
(A–D). The junction sites seldom show clear-cut outlines. In insets i and ii, areas of interest of (A) and (B) are magnified. Arrows = phytoplasmas; arrow-
heads: phytoplasma-SE-ER contacts; asterisks: SE-ER; pp.: sieve-element protein.

A B

C D

FIGURE 3

Expression of genes involved in endoplasmic reticulum architecture (MXI-K, MXI-1, MXI-2, SYT1, VAP27-1, NET3C) (A–D) in healthy and infected midrib 
tissue. Expression values were normalized to the UBC9 transcript level, arbitrarily fixed at 100, then expressed as gene expression level (which corresponds 
to mean normalized expression, MNE) ± SD. At least five individuals (and three technical repeats of PCR reaction) were used for MNE determination of each 
gene in both healthy (H) and infected (I) plants. Statistical analyses were performed using an unpaired t-test. Family-wise significance and confidence 
level = 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant).
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response to persistent stress (Bao et  al., 2018), is not modulated 
(Figure 4A), consistent with the notion that phytoplasmas must save 
host-cell viability to ensure their own survival and propagation (van 
Bel and Musetti, 2019). Concomitant non- or down-regulation of 
bZIP17/28 in response to phytoplasmas indicates complex 
interactions between several UPR-related TFs (Gayral et al., 2020; 
Pastor-Cantizano et al., 2020). Overlapping functions of bZIP60 and 
bZIP17/28 TFs, for which a precise extent is yet to be determined 
may provide an explanation for the discontinuity as well as the 
modulation of the targeting process (Ruberti et al., 2015). Therefore, 
it has to be defined whether activation of bZIP28 and bZIP60 occurs 
simultaneously or sequentially, at the onset of the reticulum stress.

The genes encoding S1P and S2P proteins, located in Golgi bodies, 
absent in SEs, were modulated in phytoplasma-infected midribs 
(Figure  5). S1P and S2P were up-regulated in infected samples, 
suggesting that transcriptional induction of proteases (i. e. S1P and 
S2P) might precede the induction of the target proteins during UPR 
(i. e. bZIP28; Vitale et al., 2015). S1P and S2P are involved in pathways 
related to hormone signaling (Zhou et al., 2015), which are strongly 
affected by phytoplasma attacks (Dermastia, 2019; Bernardini 
et al., 2020).

Phytoplasmas trigger UPR, that affects the transcription of 
ER-quality control compounds. After being activated, TFs reach the 
nucleus and modulate the expression of a set of stress-responsive genes 
(Figure 5), including those coding for BiP, CNX, CRT, and PDI (Nawkar 
et  al., 2018). In general, UPR-associated genes are upregulated in 

response to phytoplasma infection (Figures 3, 4), which demonstrates 
the need of proper protein folding, that may become unbalanced by 
phytoplasma proliferation.

While sequences and folding structures are highly similar, the 
three BiP genes of Arabidopsis are readily distinguishable by their 
expression in different tissues (Reyes-Impellizzeri and Moreno, 
2021), in response to distinct stimuli (Herath et al., 2020). BiP1 and 
BiP2 are nearly identical (99% protein identity), and seem to have 
partly overlapping functions (Herath et  al., 2020 and literature 
therein). They are constitutively expressed and linked to 
developmental processes, whereas BiP3 is exclusively expressed in 
reaction to stress (Herath et  al., 2020). As for plant/pathogen 
interactions, modulation of BiP encoding genes serves reticulum 
stress-protective mechanisms, as well as the regulation of plant 
immune responses (Moon and Park, 2016).

An increase in BiP2 transcripts is likely required to induce 
pathogenesis-related (PR) protein synthesis and to promote systemic 
acquired resistance (SAR). Knocking out BiP2 provokes compromised 
secretion of PR1 and enhanced colonization by viral, bacterial and 
fungal pathogens (Verchot and Pajerowska-Mukhtar, 2021). Upon virus 
infection, overexpression of BiP2 also suppresses imminent cell-death 
symptoms, caused by r-ER collapse (Pagliari et al., 2021; Verchot and 
Pajerowska-Mukhtar, 2021). Thus, the phytoplasma-elicited 
overexpression of BiP1/2 (Figure 4B) is not only related to an induction 
of a reticulum-stress response (Lu and Christopher, 2008), but is also 
an attempt to prevent host cell death. Phytoplasma-induced BIP1/2 
expression is thus consistent with a simultaneous down-regulation of 
cell-death promoting BiP3 (Figure 4B; Moon and Park, 2016). A lower 
expression level of BiP3 upon phytoplasma infection (Figure 4B) also 
coincides with a reduction of bZIP28 transcripts (Figure 4A).

Modulation of other UPR-associated marker genes (i. e. PDI, CNX, 
CRT) further indicates further phytoplasma-triggered reticulum stress. 
The 12 PDI genes of A. thaliana encode signal proteins, some of which 
(i. e. PDI 1 and 5) possess an ER retention signal (KDEL sequence) at 
the carboxyl terminus (Alanen et  al., 2003) and display chaperone 
activities, helping correct protein folding/unfolding (Strasser, 2018). 
Arabidopsis mutants silenced for PDI1 showed an increased sensitivity 
to stress, whereas plant lines overexpressing PDI1 exhibited increased 
tolerance, which suggests that PDI1 has a role in stress mitigation 
(Zhang et  al., 2018). The genes encoding CNXs and CRTs were 
up-regulated upon phytoplasma infection, with exception of CRT3, 
which was not modulated. The over-expression is indicative of enhanced 
activity of the protein folding machinery (Liu and Howell, 2016). CNXs 
are central elements of the ER-quality control system for N-glycoproteins 
in eukaryotic cells. Interestingly, a role of protein N-glycosylation in 
defensive responses to bacterial infection has been described for 
Arabidopsis (Gao et al., 2022).

CRT1/CRT2 have a unique function as key alleviators of ER stress 
in plants (Qiu et  al., 2012). Furthermore, CRT2 is considered an 
important player in the Arabidopsis immune response, as it may 
promote or suppress the plant defense reaction, by a self-regulatory 
activity (Qiu et al., 2012). This is a finely-tuned mechanism, which 
favors, for example, the infection process of the biotrophic pathogen 
Pseudomonas syringae pv. tomato DC3000, by limiting the salicylic 
acid-mediated plant defense response (Qiu et  al., 2012). A similar 
mechanism could be  elicited by phytoplasmas to ensure their own 
survival (Bernardini et al., 2020). Expression of CRT3 was not modified 
in Arabidopsis by phytoplasma infection, because it may be specifically 
required for biogenesis of the EF-Tu (elongation factor-thermo 

A

B

FIGURE 4

Expression of genes encoding UPR-promoting transcription factors 
(bZIP60, IRE1a, IRE1b, bZIP17, bZIP28, S1P, S2P) (A), and UPR proteins 
(BiP1/2, BIP3, CNX1, CNX2, CRT1, CRT2, CRT3) (B) in healthy and 
infected midrib tissue. Expression values were normalized to the UBC9 
transcript level, arbitrarily fixed at 100, then expressed as gene 
expression level (which corresponds to mean normalized expression, 
MNE) ± SD. At least five individuals (and tree technical repeats of PCR 
reaction) were used for MNE determination of each gene, in both 
healthy (H) and infected (I) plants. Statistical analyses were performed 
using an unpaired t-test. Family-wise significance and confidence 
level = 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not 
significant).
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unstable) receptor, associated with its responsiveness to bacterial 
pathogen-associated molecular patterns (Li et al., 2009).

5. Concluding remarks

Phytoplasma infection induces (1) restructuring and reorientation of 
the SE-ER; (2) differential expression of genes encoding proteins involved 
in shaping and anchoring the SE-ER; (3) increased release of bZIP60 signals 
from the SE-ER/r-ER stacks; (4) massive changes in the expression of 
UPR-associated genes that likely reflect a trade-off between survival of host 
cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas.

In conclusion, UPR must be considered as part of the phloem-
based immune reaction induced by phytoplasma infection. It should 
be stressed once again that the modified expression levels likely rely 
on the activities of the nucleate CCs (van Bel and Musetti, 2019) and 

that trafficking of proteins from and to SEs depends on the SE-ER/
r-ER corridor and/or cytoplasmic channels within PPUs (Figure 5).

Key contribution

Phytoplasmas modulate sieve-element endoplasmic reticulum 
structure and function in such a manner that their biotrophic lifestyle is 
sustained, while the host cells remain viable.
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FIGURE 5

Model of hypothetical unfolded protein response (UPR) as the result of an interplay between the sieve element (SE) and the companion cell (CC). Upon 
perception of phytoplasma effectors, the sieve-element endoplasmic reticulum (SE-ER) is subject to stress (Buxa et al., 2015; Breeze et al., 2020) so that the 
number of misfolded proteins is rising due to the cleavage of BiPs. Stress sensing extends to the rough endoplasmic reticulum (r-ER) in the SE-adjacent 
cells (CCs, in particular) due to the effect of phytoplasma effectors (Bai et al., 2009) moving via cytosolic channels and/or r-ER/SE-ER connections in the 
pore-plasmodesma units (PPUs). Effectors are responsible for increased misfolding of proteins (Celli and Tsolis, 2015) and for the cleavage of BiPs, 
provoking the release of bZIP60 and bZIP28 transcription factors (TFs) in SEs and CCs. Local cleavage of BiPs in the SE-ER may confer diffusional 
withdrawal of BiPs from the r-ER in CCs via the connections between SE and SE-ER inside the PPUs. The question marks indicate uncertainties or missing 
knowledge on the putative events. The modified expression levels of the UPR-related genes must rely on the activities of the nucleate CCs or phloem 
parenchyma cells (PPCs; van Bel and Musetti, 2019) and UPR-associated proteins may traffic from the CCs to the SEs via both the r-ER-connections and 
the cytoplasmic corridors within the PPUs. For reasons of clarity, the structure of the PPUs does not represent the actual situation, in which the PPUs are 
branched at the CC-side.
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