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The relationship between the human gut microbiota and disease is of increasing

scientific interest. Previous investigations have focused on the differences in intestinal

bacterial abundance between control and affected groups to identify disease

biomarkers. However, different types of intestinal bacteria may have interacting

effects and thus be considered biomarker complexes for disease. To investigate

this, we aimed to identify a new kind of biomarker for atopic dermatitis using

structural equation modeling (SEM). The biomarkers identified were latent variables,

which are complex and derived from the abundance data for bacterial marker

candidates. Groups of females and males classified as healthy participants [normal

control (NC) (female: 321 participants, male: 99 participants)], and patients afflicted

with atopic dermatitis only [AS (female: 45 participants, male: 13 participants)],

with atopic dermatitis and other diseases [AM (female: 75 participants, male: 34

participants)], and with other diseases but without atopic dermatitis [OD (female:

1,669 participants, male: 866 participants)] were used in this investigation. The

candidate bacterial markers were identified by comparing the intestinal microbial

community compositions between the NC and AS groups. In females, two latent

variables (lv) were identified; for lv1, the associated components (bacterial genera)

were Alistipes, Butyricimonas, and Coprobacter, while for lv2, the associated

components were Agathobacter, Fusicatenibacter, and Streptococcus. There was a

significant difference in the lv2 scores between the groups with atopic dermatitis

(AS, AM) and those without (NC, OD), and the genera identified for lv2 are associated

with the suppression of inflammatory responses in the body. A logistic regression

model to estimate the probability of atopic dermatitis morbidity with lv2 as an

explanatory variable had an area under the curve (AUC) score of 0.66 when assessed

using receiver operating characteristic (ROC) analysis, and this was higher than that

using other logistic regression models. The results indicate that the latent variables,

especially lv2, could represent the effects of atopic dermatitis on the intestinal

microbiome in females. The latent variables in the SEM could thus be utilized as

a new type of biomarker. The advantages identified for the SEM are as follows: (1)

it enables the extraction of more sophisticated information when compared with

models focused on individual bacteria and (2) it can improve the accuracy of the

latent variables used as biomarkers, as the SEM can be expanded.
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1. Introduction

Human gut microbiome research has been notably enhanced by
the recent advances in bacterial isolation (Moore and Holdeman,
1974), culture techniques (Hayashi et al., 2002), and phylogenetic
classification (Rajilić-Stojanović and de Vos, 2014). In recent years,
large-scale metagenomic analyses have become available, which have
enabled the elucidation of the gut microbiome diversity among the
population (Cénit et al., 2014) and its associations with disease [e.g.,
obesity (Turnbaugh et al., 2009), type 2 diabetes (Vijay and Valdes,
2022), atherosclerosis (Karlsson et al., 2012; Yoshida et al., 2018),
Crohn’s disease (Sokol et al., 2008), allergic diseases (Lunjani et al.,
2018), autoimmune diabetes (Shimokawa et al., 2020), colorectal
cancer (Ahn et al., 2013), chronic obstructive pulmonary disease
(Bowerman et al., 2020), and multiple sclerosis disease (Miyake
et al., 2015)]. There has been significant interest in developing risk
assessment methods based on gut microbiome data (Li et al., 2017;
Xu et al., 2019; Chu et al., 2021; Loftus et al., 2021; Shen et al.,
2021; Yao et al., 2021). Attempts have also being made to identify
gut bacteria as biomarkers of disease (Yu et al., 2017; Loftus et al.,
2021; Yao et al., 2021; Lu et al., 2022). For example, Yao et al. (2021)
proposed the use of Fusobacterium as an indicator for colorectal
cancer (detection) based on the results of linear discriminant analysis
and effect size, while Lu et al. (2022) identified 15 genera, including
Lactobacillus, Bifidobacterium, and Akkermansia, using a random
forest classification model as biomarkers (targeted biomarkers)
for cognitive impairment. Most previous studies have focused on
individual intestinal bacteria. However, there are over 1,000 species
of intestinal bacteria in the human gut (Rajilić-Stojanović and de Vos,
2014; Yang et al., 2020), and their ecosystem is diverse and complex.
Consequently, the idea that only one or several specific genera or
species of gut bacteria are associated with any single disease seems
illogical. However, the previous models that have been used to assess
disease risk either use a single bacterium as a biomarker, such as
Yao et al. (2021), or multiple bacteria independently as variables,
such as Lu et al. (2022), and they do not consider the interactions
among bacteria. Given the complexity of the intestinal microbiome,
it is difficult to obtain a complete picture of the association between
the intestinal microbiome and disease, or to assess the risk of disease
from the intestinal microbiome simply by analyzing the association
between individual intestinal bacteria and disease.

We therefore propose the use of structural equation modeling
(SEM; Tarka, 2018) as a method to solve this problem. In SEM,
both factor analysis (Howard, 2016) and path analysis (Streiner,
2005) are performed. For factor analysis, latent variables, which
are based on the common results for several observed variables
(in the case of this study, variables representing the abundance of
each genus) are determined using variance results and summarized
in one factor (Dragan and Topolšek, 2014) for use in further
analysis. This is thought to reflect to some extent, the interactions
of multiple observed variables. Since the value of this latent variable

Abbreviations: AGFI, Adjusted goodness-of-fit index; ASVs, amplicon
sequence variants; AUC, area under the curve; bcl, base call; BMI, body
mass index; CES-D, Center for Epidemiologic Studies Depression Scale;
CLR, centered log-ratio; GFI, goodness-of-fit index; lv, latent variables;
NC, normal control; AS, patients afflicted with atopic dermatitis only; AM,
patients afflicted with atopic dermatitis and other diseases; OD, patients
afflicted with other diseases but without atopic dermatitis; ROC, receiver
operating characteristic; RMSEA, root mean square error of approximation;
SEM, structural equation modeling.

can be obtained for each participant (DiStefano et al., 2009), it
is possible to calculate and use features that aggregate multiple
observed variables with common characteristics for each participant.
In addition, in SEM, latent variables can be freely set based on
prior hypotheses (De Carvalho and Chima, 2014), and the observed
variables used in their synthesis. Thus, the interpretation of the
composite (latent) variables is easier than in principal component
analysis (Wold et al., 1987), where all observed variables are
aggregated to create a composite variable. In addition, observed
variables can be added at will; for example, if a latent variable is
estimated to be related to anti-inflammatory effects in the body, it
can be improved by adding a new observed variable that is related
to anti-inflammatory effects. This study has utilized a large Japanese
intestinal microbial community composition database, which is
obtained with 16S rRNA amplicon sequencing analysis. The database
consists of 14,693 samples (4,907 males and 9,786 females aged∼20–
79 years), which were collected by the Benno Laboratory of RIKEN
(Wako, Saitama, Japan) and analyzed by the Japan Agricultural
Frontier Development Organization. In addition to the intestinal
microflora analysis data, information on lifestyle habits such as diet
and disease status were obtained from self-reported questionnaires.
The database contains information on approximately 940 diseases
according to the International Statistical Classification of Diseases
and Related Health Problems (International Statistical Classification
of Diseases and Related Health Problems, Tenth: ICD-10). Using this
database, models can be constructed based on sex and disease, using
detailed information such as age, sex, and disease status. In this study,
we have proposed a new method to analyze the relationship between
human intestinal microbiota and disease and estimate the degree
of likelihood of contracting a particular disease (disease risk) using
intestinal microbiota analysis data. The effectiveness (application to
clinical practice) of this method was assessed using atopic dermatitis
as a case study, as numerous reports have shown a relationship
between this disease and intestinal bacteria (Park et al., 2020; Ye et al.,
2021).

2. Materials and methods

2.1. Ethical considerations

This investigation utilized stool samples and questionnaire
responses that had been collected through the ONAKA Care
Project (20 September 2011–31 March 2021) conducted by the
Benno Special Laboratory (Wako City, Saitama Prefecture, Japan)
at the Institute of Physical and Chemical Research (RIKEN), Japan.
This project was approved by the Research Ethics Committee of
RIKEN (approval number: Wako 3 27-22), and consent to research
participation was obtained from all stool sample providers and
questionnaire respondents.

2.2. Sample collection

Stool samples from 17,952 (12,029 females and 5,923 males)
different Japanese people aged 20–79 years were obtained for the
ONAKA Care Project by the Benno Special Laboratory (Wako
City, Saitama Prefecture, Japan) at the Institute of Physical and
Chemical Research (RIKEN), Japan (Figure 1). Project participants
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were recruited using Japanese newspaper advertisements and
announcements at public lectures. The stool samples were collected
by the participants themselves using a stool collection brush type kit
(TechnoSuruga Laboratory Co., Ltd., Shizuoka, Japan) in accordance
with the manufacturer’s instructions. The samples were mailed
with no temperature control after being suspended in a guanidine
thiocyanate solution [100 mM Tris–HCL (pH 8.0), 40 mM Tris-
EDTA (pH 9.0), 4 M guanidine thiocyanate, 0.001% bromothymol
blue].

2.3. Questionnaire survey

A questionnaire survey was conducted with the 17,952
participants who provided stool samples to gather information
including the participants’ sex, age, body mass index (BMI),
defecation frequency, lifestyle (e.g., drinking, smoking, exercise
frequency), morbidity, sleep status, the Center for Epidemiologic
Studies Depression scale (CES-D), presence or absence of
Helicobacter pylori treatment, hospitalization or surgery experience,
status for prescription or over-the-counter medications, and for
females only, their menstrual status and whether they were pregnant
or breastfeeding. Disease morbidity was divided into 11 categories
(atopic dermatitis, bone and/or joint disease, bronchial asthma,
diabetes, dyslipidemia, gastrointestinal disease, heart disease,
hyperpiesia, kidney disease, liver disease, lower back and/or joint
pain) and identified for each participant, including whether or not
they were currently being treated. Free-form responses were also
be collected for diseases that did not fit in the above 11 categories.
Prescription or over-the-counter medication use was divided into 15
categories (gastric/duodenal ulcer/reflux esophagitis, hypertension,
hyperlipidemia, diabetes, hypnotics, painkillers/antipyretics, allergy,
angina treatment, laxative/constipation, osteoporosis, rheumatism,
corticosteroids, antibiotics, cold drugs, and antithrombotic drugs).
Free-form responses were also collected for medicines other than
those listed in the 15 categories.

2.4. DNA extraction

For DNA extraction, glass beads (400 mg) were added
to 600 µL of Tris-EDTA saturated phenol/chloroform solution
(phenol:chloroform = 1:1) and combined with 100 µL of 10%
SDS solution and the guanidine thiocyanate solution, in which
there was approximately 4 mg of a stool sample suspended. This
mixed solution was homogenized (MagNA Lyser; Roche Molecular
Diagnostic, Mannheim, Germany) at 7,000 rpm for 20 s, and then
allowed to stand at 70◦C for 10 min. This homogenization and
standing procedure were conducted twice, and afterward, the sample
was cooled in a water bath at 15◦C. The sample was then centrifuged
at 10,621 × g for 5 min at 25–28◦C, after which the supernatant was
separated. Then, 700 µL of cold isopropyl alcohol and 70 µL of 3 M
sodium acetate solution were added to the separated supernatant and
mixed by inversion. The mixed solution was centrifuged at 20,800× g
for 5 min at 25–28◦C, after which the supernatant was removed.
The precipitated DNA pellets were washed twice with a 70% ethanol
solution and dried using an evaporator (Tokyo Rikakikai Co., Ltd.,
Tokyo, Japan). The dried DNA pellets were dissolved in 200 µL
Tris-EDTA buffer and stored at−80◦C.

2.5. DNA sequencing

Deoxyribonucleic acid extracted from the stool samples
(12.5 ng) was used for DNA sequencing. The variable regions
V1–V3 of the 16S rRNA were the sequencing targets, and
the PCR amplicons were generated using the 35F primer (5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTGGCAC
AGGATGAACG-3′; Hayashi et al., 2004) and 520R primer (5′-
GTCTCGTGGGCTCGGAGATGTGTATAAGACAGACCGCGGCT
TG-3′). The PCR program used 20 cycles (98◦C, 10 s; 55◦C,
30 s; 72◦C, 60 s) with Q5 High-Fidelity DNA Polymerase (New
England Biolabs, Ipswich, MA, USA). Agarose gel electrophoresis
confirmed the amplification of the target length fragment, and the
PCR-amplified fragment was purified using AMPure XP Reagent
(Beckman Coulter, Brea, CA, USA). Index PCR was conducted with
the purified PCR-amplified fragments using the Nextera XT Index
Kit v2 primers (Illumina, San Diego, CA, USA) for eight cycles
(98◦C, 10 s; 55◦C, 30 s; 72◦C, 60 s). The concentration of the index
PCR product was measured using the QuantiFluor dsDNA System
(Promega, Madison, WI, USA), and the index PCR product was
diluted to 4 nM. For each sample, 5 µL was collected and used to
make one library and then denatured with 0.2 N aqueous sodium
hydroxide solution to adjust the final concentration to 8 p.m. Then,
8 p.m of the denatured PhiX was added to the solution to generate
a final concentration of 25–40% (v/v). This prepared solution was
treated with a MiSeq system (Illumina, San Diego, CA, USA) that
used Reagent Kit v3, and DNA sequencing was conducted using 300
cycles, twice with the MiSeq following the manufacturer’s settings.

2.6. 16S rRNA data analysis

A fastq file was created from the base call (bcl) file output of
the MiSeq DNA sequencing using the bcl2fastq software (version
2.20.0.422; Illumina). The fastq file was processed using the clsplitseq
software (version 0.2.2019.05.10),1 and the primer sequences were
removed to create the demultiplexed fastq file. The quality score
for clsplitseq was set to 20. The generated overlapping and paired-
end fastq file was processed using the DADA2 package (version
1.16; Callahan et al., 2017) in R (R Foundation for Statistical
Computing, Vienna, Austria) to create amplicon sequence variants
(ASVs; Callahan et al., 2017). The DADA2 package was run according
to the DADA2 pipeline tutorial version 1.162 and DADA2 workflow
for Big Data version 1.4 or later.3 Here, the arguments of the
filterAndTrim function included truncLen = c (0,0), maxN = 0,
maxEE = 5, truncQ = 4, rm.phix = TRUE, compress = TRUE,
multithread = TRUE, verbose = TRUE, and minLen = 50. A sample
was extracted in which the total number of reads for each unique ASV
sequence created was ≥ 5,000, and coverage-based rarefying (Chao
and Jost, 2012) was conducted using the vegan package (version 2.5.7;
Oksanen et al., 2020) based on the number of reads for each unique
ASV sequence. Silva version 132 was used to identify the genus name
for each uniquely created ASV sequence. Finally, ASV microbial
community composition data were obtained for 14,693 of the 17,952

1 https://www.claident.org/

2 https://benjjneb.github.io/dada2/tutorial.html

3 https://benjjneb.github.io/dada2/bigdata.html
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FIGURE 1

Flowchart showing the target groups analyzed in this study. There were a total 17,952 samples, each from a different Japanese participant aged
20–79 years, which were collected through the ONAKA Care Project. The amplicon sequence variant (ASV) data was obtained using 14,693 of the 17,952
samples. NC, normal controls; AS, patients with atopic dermatitis without other diseases; AM, patients with atopic dermatitis with other diseases; OD,
patients with other diseases but without atopic dermatitis. Please refer to the (Section “2. Materials and methods”) subsections (Section “2.7.1. Normal
control group”, “2.7.2. Patients with atopic dermatitis and no other diseases”, “2.7.3. Patients with atopic dermatitis and other diseases”, and “2.7.4. Patients
without atopic dermatitis but with other diseases”) for details on the criteria used to define each group.

participants, as the data for 3,259 participants were excluded due to
low quality read counts or missing bcl files (Figure 1).

2.7. Setting the analysis target groups

The following analysis groups were defined for each sex, using the
available data for the 14,693 participants from which the ASV data
were obtained, using a self-reported questionnaire. The number of
participants (Figure 1), distribution of age, BMI, CES-D (Table 1),
and disease morbidity (Table 2) for each of the groups has been
presented in the respective figures and tables.

2.7.1. Normal control group
The normal control (NC) group consisted of participants who

satisfied conditions (NC1) to (NC13), which were as follows: (NC1)
not afflicted by any disease; (NC2) no prescription or over-the-
counter drugs taken; (NC3) BMI value ≥ 18.5 and < 25; (NC4)
CES-D value < 16; (NC5) no experience of hospitalization or surgery;
(NC6) no experience of taking drugs for Helicobacter infection
at the time of stool collection; (NC7) no experience of medical
examinations regarding insomnia at the time of stool collection;
(NC8) defecation frequency of 1–2 times a day, or 4–6 times a week;
(NC9) frequency of alcohol consumption of ≤ 5 days a week, the
amount of which equates to ≤ 180 mL of Japanese sake, or no
alcohol consumption; (NC10) no history of smoking; (NC11) regular
menstrual cycle, or menopausal, but females aged < 40 and had

already undergone menopause were not included in the NC group
(conditions for females only); (NC12) not menstruating at the time
of stool collection (conditions for females only); (NC13) not pregnant
or breastfeeding (conditions for females only).

2.7.2. Patients with atopic dermatitis and no other
diseases

Patients with atopic dermatitis and no other diseases (henceforth
referred to as AS) were those who satisfied conditions (AS1) to (AS4),
which were as follows: (AS1) afflicted with atopic dermatitis; (AS2)
not afflicted by any other disease (BMI value < 18.5 or ≥ 25, CES-
D of ≥ 16, and those who had previously underwent colorectal
cancer/colorectal polyp surgery were considered to have had another
disease); (AS3) no prescription or over-the-counter drugs taken;
(AS4) not pregnant or breastfeeding (conditions for females only).

2.7.3. Patients with atopic dermatitis and other
diseases

Patients with atopic dermatitis and other diseases (henceforth
referred to as AM) were those who satisfied conditions (AM1)
to (AM4), which were as follows: (AM1) afflicted with atopic
dermatitis; (AM2) afflicted by a disease other than atopic dermatitis
(BMI value < 18.5 or ≥ 25, CES-D of ≥ 16, and those who
previously underwent colorectal cancer/colorectal polyp surgery were
considered to have other diseases); (AM3) no prescription or over-
the-counter drugs taken; (AM4) not pregnant or breastfeeding
(conditions for females only).
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TABLE 1 Age, Center for Epidemiologic Studies Depression scale, and body mass index distributions for the analyzed groups.

Metadata1 Statistic2 Male (n = 2,142) Female (n = 4,154)

NC3

(n = 99)
AS4

(n = 13)
AM5

(n = 34)
OD6

(n = 866)
NC3

(n = 321)
AS4

(n = 45)
AM5

(n = 75)
OD6

(n = 1,669)

Age Min 20 26 21 20 20 21 20 20

1st Qu 32 35 36 41 39 34 34 42

Median 41 37 42.5 51 50 39 40 50

Mean 41.39 39.77 42.53 51.11 48.96 40.93 41.11 49.82

3rd Qu 48 43 48.75 61.75 60 49 45.5 59

Max. 79 64 75 79 78 70 72 79

NAs – – – – – – – –

CES-D Min 0 1 4 0 0 0 0 0

1st Qu 3.5 2 8.25 5 3 4 8.5 6

Median 7 6 13.5 10 7 5 16 11

Mean 6.919 6.154 13.68 11.55 6.782 6.533 16.44 12.81

3rd Qu 10 9 18 16 10 11 22 18

Max 15 15 39 48 15 15 43 58

NA’s – – – – – – – –

BMI Min 18.51 18.61 17.3 13.63 18.51 18.54 15.24 11.43

1st Qu 20.48 19.96 19.79 21.11 19.63 19.11 18.37 18.36

Median 21.45 21.26 21.88 23.01 20.69 20.61 19.98 20.44

Mean 21.71 21.25 22.32 23.27 20.92 20.61 20.27 21.08

3rd Qu 23.09 21.97 24.66 25.4 21.91 21.62 21.46 23.02

Max 24.69 23.94 32.04 46.17 24.92 24.53 28.48 44

NA’s – – – – – – – 1

1CES-D, the Center for Epidemiologic Studies Depression scale; BMI, body mass index.
2Min., 1st Qu, Median, Mean, 3rd Qu, and Max. Represent the minimum value, first quartile, median, mean, third quartile, maximum, respectively. NA represents the number of patients with
missing values for each item (age, CES-D, or BMI).
3Normal controls.
4Patients with atopic dermatitis without another disease.
5Patients with atopic dermatitis with other diseases.
6Patients with other diseases but without atopic dermatitis.

2.7.4. Patients without atopic dermatitis but with
other diseases

Patients without atopic dermatitis but with other diseases
(henceforth referred to as OD) were those who satisfied conditions
(OD1) to (OD4), which were as follows: (OD1) not afflicted with
atopic dermatitis; (OD2) afflicted by a disease other than atopic
dermatitis (BMI value < 18.5 or ≥ 25, CES-D of ≥ 16; and those
who previously underwent colorectal cancer/colorectal polyp surgery
were considered to have other diseases); (OD3) no prescription or
over-the-counter drugs taken; (OD4) not pregnant or breastfeeding
(conditions for females only).

2.8. CLR transformation of the intestinal
microbial community composition data

The microbial community composition data derived from
the ASVs were converted using a centered log-ratio (CLR)
transformation. The CLR transformation of the intestinal
microbial community composition data was conducted using
the aldex.clr function in the ALDEx2 package (version 1.24.0;
Fernandes et al., 2013) in R (R Foundation for Statistical

Computing). At this time, mc.samples = 128 and demon = “all”
were set as the arguments of the function. The CLR-transformed
data were used in the analyses described in subsections (Sections
“2. 9. Identification of genera with expression differences in the
intestinal microbiomes of the healthy and atopic dermatitis-afflicted
individuals,” “2.10. SEM,” “2.11. Estimation of the latent variable
score,” and “2.12. Construction of an atopic dermatitis morbidity
probability estimation model”). The CLR transformation was
performed with set.seed (1234).

2.9. Identification of genera with
expression differences in the intestinal
microbiomes of the healthy and atopic
dermatitis-afflicted individuals

Genera that reflected the differences in the intestinal
microbiomes of the healthy and atopic dermatitis-afflicted
individuals were identified for the male and female groups. The
search was conducted between healthy participants (henceforth
referred to as NC) and AS to rule out the effects of diseases other

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1035002
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1035002 January 21, 2023 Time: 15:22 # 6

Tokuno et al. 10.3389/fmicb.2023.1035002

TABLE 2 Disease morbidity in the target populations analyzed.

Disease name Count

Male (n = 2,142) Female (n = 4,154)

NC1

(n = 99)
AS2

(n = 13)
AM3

(n = 34)
OD4

(n = 866)
NC1

(n = 321)
AS2

(n = 45)
AM3

(n = 75)
OD4

(n = 1,669)

Allergic rhinitis 0 0 0 3 0 0 0 12

Anemia 0 0 0 1 0 0 2 25

Angina pectoris 0 0 0 1 0 0 5 2

Apnea syndrome 0 0 0 11 0 0 0 2

Arrhythmia 0 0 0 9 0 0 0 10

Asthma 0 0 2 13 0 0 0 22

Atopic dermatitis 0 13 34 0 0 45 75 0

Autoimmune disease 0 0 0 1 0 0 1 8

BMI < 18.5 0 0 0 56 0 0 0 341

BMI ≥ 25 0 0 0 202 0 0 0 161

Bone joint disease 0 0 0 17 0 0 3 72

Breast cancer 0 0 0 0 0 0 1 17

Cataract 0 0 0 5 0 0 0 7

Cerebrovascular disease 0 0 0 1 0 0 0 4

CES-D ≥ 16 0 0 0 185 0 0 0 393

Colorectal cancer 0 0 0 4 0 0 0 9

Colorectal cancer
and/or
polyp treatment

0 0 5 162 0 0 3 200

Colorectal polyp 0 0 0 4 0 0 0 6

Constipation 0 0 0 0 0 0 0 0

Depression 0 0 0 1 0 0 0 5

Diabetes 0 0 1 24 0 0 0 17

Dyslipidemia 0 0 1 51 0 0 5 99

Gastritis 0 0 0 0 0 0 0 1

Gastrointestinal disease 0 0 3 25 0 0 1 74

Glaucoma 0 0 0 22 0 0 30

Gout 0 0 1 12 0 0 0 0

Graves Basedow disease 0 0 0 0 0 0 0 5

Hashimoto disease 0 0 0 0 0 0 2 16

Headache 0 0 0 0 0 0 0 3

Heart disease 0 0 0 19 0 0 1 26

Hepatitis 0 0 0 2 0 0 0 10

Hyperpiesia 0 0 2 47 0 0 0 47

Irritable bowel syndrome 0 0 0 3 0 0 1 4

Kidney disease 0 0 0 10 0 0 1 16

Knee osteoarthritis 0 0 0 3 0 0 0 5

Liver disease 0 0 1 8 0 0 0 23

Low back joint pain 0 0 1 89 0 0 16 196

Menopause 0 0 0 0 0 0 0 6

Menstrual disorder 0 0 0 0 0 0 1 3

Myocardial infarction 0 0 0 2 0 0 0 0

(Continued)
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TABLE 2 (Continued)

Disease name Count

Male (n = 2,142) Female (n = 4,154)

NC1

(n = 99)
AS2

(n = 13)
AM3

(n = 34)
OD4

(n = 866)
NC1

(n = 321)
AS2

(n = 45)
AM3

(n = 75)
OD4

(n = 1,669)

Nervousness 0 0 0 1 0 0 0 4

Osteoarthrosis 0 0 0 0 0 0 0 6

Osteoporosis 0 0 0 0 0 0 0 8

Others 0 0 21 42 0 0 39 125

Pollinosis 0 0 0 8 0 0 2 22

Prostate 0 0 0 9 0 0 0 0

Prostatic cancer 0 0 0 5 0 0 0 0

Reflux esophagitis 0 0 0 3 0 0 0 15

Rheumatoid arthritis 0 0 0 0 0 0 0 6

Rhinitis 0 0 0 5 0 0 1 13

Sjogren syndrome 0 0 0 1 0 0 0 5

Sleep disorder 0 0 0 0 0 0 0 1

Thyroid abnormalities 0 0 0 0 0 0 2 42

Ulcerative colitis 0 0 1 5 0 0 0 7

Uterus disease 0 0 0 0 0 0 0 40

1Number of normal controls.
2Number of patients with atopic dermatitis without other diseases.
3Number of patients with atopic dermatitis with other diseases.
4Number of patients with other diseases but without atopic dermatitis.

than atopic dermatitis. The effect size between the NC and AS was
calculated using the aldex.effect function in the ALDEx2 package.
In the ALDEx2 package, Monte Carlo sampling was used in the
calculation process (Fernandes et al., 2013), and consequently, it was
affected by the pseudo-random simulation of values (Supplementary
Figure 1). Therefore, the effect size for both males and females was
calculated 500 times and arranged in descending order based on
the absolute value of the effect size. In each 500-time calculation,
different random numbers were used. In this manner, we obtained
500 lists of the top 20 genera for both males and females and
identified the genera that intersected across all lists. We then
searched for genera in which the absolute value of a relatively large
effect size was calculated in a stable manner even under the influence
of random numbers. Calculations of effect sizes were performed with
set.seed (1,234).

2.10. SEM

We constructed SEM using the CLR-transformed intestinal
microbial community composition data from all participants (male
or female) in NC and AS groups and the atopic dermatitis morbidity
data. The SEM used the cfa function of the lavaan package (version
0.6-9; Rosseel, 2012). At this time, std.lv = TRUE, std.ov = TRUE,
and check.gradient = TRUE were set as the function arguments.
Additionally, the observed variable that represented atopic morbidity
in the structural equation was set as a categorical variable, and the
estimation method was set as diagonally weighted least squares. To
construct the SEM, we assumed that there were two latent variables
(one with a positive effect on atopic dermatitis and the other with

a negative effect) that explained the binary categorical variables
representing atopic dermatitis morbidity. Indicators were assigned
to the latent variables with reference to the result of the effect size
calculation described in subsection (Section“2.9. Identification of
genera with expression differences in the intestinal microbiomes of
the healthy and atopic dermatitis-afflicted individuals”). We used
this SEM as a starting point from which to make modifications. The
indicators were deleted until no negative components appeared in the
variance-covariance matrix calculated in the process. Subsequently,
the indicators were deleted so that the p-value of each parameter,
whose null hypothesis was that the estimated parameters equaled
zero, was < 0.05; for the final model, we adopted those with values
close to one for their goodness-of-fit index (GFI) and adjusted
GFI (AGFI), values close to 0 for the root mean square error of
approximation (RMSEA), and the maximum absolute value for the
path coefficient from the latent variable to the variable representing
disease morbidity. The estimation of each standardized parameter for
the SEM was conducted using the standardizedSolution function in
the lavaan package. The calculation of each GFI for the SEM was
conducted using the fitmeasures function of the lavaan package. The
calculations for each latent variable value in the structural equation
model were conducted for participants belonging to each of the NC,
AS, AM, and OD groups using the lavPredict function in the lavaan
package. Here, method = “Bartlett” was set for the argument of the
function. The usage of the lavaan package was based on Rosseel
(2012), Toyoda (2014), and the lavaan package manual implemented
in the package. The latent variable values were compared between
groups using the Wilcoxon–Mann–Whitney rank sum test with the
ggsignif package (version 0.6.3; Ahlmann-Eltze and Patil, 2021).
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2.11. Estimation of the latent variable score

A new SEM was constructed by extracting the measurement
equation portion of the previously constructed SEM. Each parameter
in this model was set to the same value as for the original. The
extraction of the measurement equation part of the first SEM was
performed as follows:

1. Let Fi (i = 1, 2) be a latent variable in first SEM, xij [j = 1, 2,
. . ., max(m, n)] be an indicator of Fi, aij be a factor loading of
xij calculated in first SEM, c be a covariance between F1 and
F2 calculated in first SEM, and vij be a residual variance of xij
calculated in first SEM. If F1 = ∼ x11 + x12 + . . . + x1n, F2 = ∼
x21 + x22 + . . . + x2m, y ∼ F1 + F2, F1 ∼∼ F2 are structural
equations of first SEM inputted to the cfa function,

2. Set the structural equation of the new SEM for the cfa function
as follows: F1 = ∼ a11

∗x11 + a12
∗x12 + . . . + a1n

∗x1n, F2 = ∼
a21
∗x21 + a22

∗x22 + . . . + a2m
∗x2m, F1 ∼∼ c∗F2, xij ∼∼ vij

∗xij.

The SEM used the CLR-transformed intestinal microbial
community composition data for all females in the NC and AS
groups based on the new SEM and the cfa function. At this time,
the std.lv = TRUE, std.ov = TRUE, and check.gradient = TRUE were
set as the arguments, and the estimation method was diagonally
weighted least squares. Based on the result, the estimated values for
each latent variable of the participants belonging to the NC, AS, AM,
and OD groups were obtained using the lavPredict function. Here,
method = “Bartlett” was set as the argument for the function. The
estimations for the latent variable values were compared between
groups using the Wilcoxon–Mann–Whitney rank sum test with the
ggsignif package.

2.12. Construction of an atopic dermatitis
morbidity probability estimation model

The merged populations of the NC, AS, AM, and OD groups
were randomly divided in a stratified manner with 80% as the
training population and 20% as the verification population. The
sample_frac and group_by functions of the dplyr package (version
1.0.7; Wickham et al., 2021) were used for the divisions. The number
of atopic dermatitis and non-atopic dermatitis patients in the training
population was balanced using the synthetic minority over-sampling
technique (Chawla et al., 2002) with the smote function of the
performanceEstimation (version 1.1.0; Torgo, 2014). A multivariate
logistic regression model was used as the model for estimating the
atopic dermatitis morbidity probability. The latent variable values
of the training populations were used to determine the parameters
during model construction. For the prediction models, the estimated
latent variable values of the verification population were used.
The glm function was used to construct the multivariate logistic
regression model and predict the function to fit the verification
population to the model. To investigate the accuracy of the models,
ROC analysis was conducted using the roc function in the pROC
package (version 1.18.0; Robin et al., 2011). The inputs to the function
were atopic dermatitis morbidity probability, which was estimated
by the models, and the actual atopic dermatitis morbidity for each
participant. The ggroc function of the pROC package was used to
draw the ROC curves and calculate the area under the curve (AUC)

FIGURE 2

Differences in the intestinal microbiome genera of healthy and atopic
dermatitis-afflicted individuals. The effect size between the normal
control group (NC) and patients with atopic dermatitis without other
diseases (AS) was calculated separately for (A) females and (B) males
using the aldex.effect function in the ALDEx2 package (version 1.24.0;
Fernandes et al., 2013). The effect size was calculated 500 times and
arranged in descending order based on the absolute value of the
effect size. In this manner, we obtained 500 lists of the top 20 genera,
and identified the genera intersecting all lists (nine genera for the
females and eight for the males). The effect size value is the average
value of the 500 calculations.

scores. The atopic dermatitis morbidity probability was compared
between groups using the Wilcoxon–Mann–Whitney rank sum test
in the ggsignif package.

2.13. R software versions

The R software used in subsection (2.6. “16S rRNA data analysis”)
was R version 4.0.3 (R Foundation for Statistical Computing, R
Core Team, 2020). The statistical or data analyses described in
subsections (Sections “2.8. CLR transformation of the intestinal
microbial community composition data,” “2.9. Identification of
genera with expression differences in the intestinal microbiomes of
the healthy and atopic dermatitis-afflicted individuals,” “2.10. SEM,”
“2.11. Estimation of the latent variable score,” and “2.12. Construction
of an atopic dermatitis morbidity probability estimation model”)
were performed with R version 4.1.0 (R Foundation for Statistical
Computing, R Core Team, 2021).

3. Results

3.1. Expression differences of the genera
in the intestinal microbiome

In females, Erysipelatoclostridium, Coprobacter, Butyricimonas,
Alistipes, and Oscillibacter were found to have an effect on AS;
and Ruminococcaceae UCG-005, Agathobacter, Streptococcus, and
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FIGURE 3

Structural equation model for females and the parameter values. An ellipse (lv1 or lv2) represents a latent variable, and a rectangle (atopic dermatitis or
genus name) represents an observed variable or indicators. Circles (e) represent the residual terms for each observed variable or indicator and the
numerical value on the circle represents the residual variance. The numerical value of the double-headed blue arrow represents the correlation
coefficient between the latent variables; that of the brown arrow represents the loading value from the latent variable to the indicator of the genera; and
that of the yellow arrow represents the path coefficient from each latent variable to the observed variable for atopic dermatitis. The goodness-of-fit
indices of this structural equation model were goodness-of-fit index (GFI) = 0.95, adjusted GFI (AGFI) = 0.85, and the root mean square error of
approximation (RMSEA) = 0.06. The black framed part indicates the SEM portion that was used for estimating latent variable values in subsection (Section
“3.4. Estimation of the latent variable values”).

Fusicatenibacter were found to have an effect on NC (Figure 2A).
While in males, Coprobacter, Collinsella, and Oscillibacter were found
to have an effect on AS; and Faecalibacterium, Christensenellaceae R-7
group, Streptococcus, Ruminiclostridium 9, and Erysipelatoclostridium
were found to have an effect on NC (Figure 2B). We assumed that
these genera reflected the differences in the intestinal microbiomes
of the healthy and atopic dermatitis-afflicted individuals and used
them as the indicators (or explanatory variables) in the analyses
in subsections (Section “3.2. SEM,” “3.3. Comparison of latent
variable values between groups in the structural equation model,”
“3.4. Estimation of the latent variable values,” “3.5. Atopic dermatitis
morbidity probability estimation model with latent variable scores as
explanatory variables,” and “3.6. Comparison between groups using
the atopic dermatitis morbidity probability estimation model and the
latent variable values as explanatory variables”).

3.2. SEM

Starting point model structures were constructed first
(Supplementary Figures 2, 3), and the resultant model structures
obtained after the model modification steps are shown in Figure 3
and Supplementary Figure 4. In females, Erysipelatoclostridium,
Oscillibacter, and Ruminococcaceae UCG-005 were excluded from the
indicators as a result of the model modifications (Figure 3). In males,
Coprobacter, Faecalibacterium, and Streptococcus were excluded
from the indicators (Supplementary Figure 4).

The data for the NC and AS groups were merged and then used in
the structural equation model, for each parameter calculated. In this
manner, we investigated how the genera that were set as the indicators
explained the variables that represented atopic dermatitis morbidity

using the assumed latent variables when focusing on healthy and
atopic dermatitis-afflicted individuals.

For women, the standardized path coefficient from latent variable
1 (lv1), which was assumed to have a positive effect on atopic
dermatitis, to the atopic dermatitis morbidity variable was 0.32± 0.11
(p < 0.01); and the standardized path coefficient from latent
variable 2 (lv2), which was assumed to have a negative effect on
atopic dermatitis, to the atopic dermatitis morbidity variable was
−0.41 ± 0.12 (p < 0.01). The standardized factor loading values
from lv1 to each of indicators of lv1 were as follows: 0.54 ± 0.10
for Alistipes, 0.53 ± 0.10 for Butyricimonas, and 0.44 ± 0.09 for
Coprobacter. The standardized factor loading values from lv2 to each
indicator of lv2 was as follows: 0.58 ± 0.11 for Fusicatenibacter;
0.42 ± 0.09 for Agathobacter; and 0.20 ± 0.08 for Streptococcus.
The standardized factor loading values from the latent variables to
each indicator were all significant at p < 0.05. The residual variance
of the atopic dermatitis morbidity variable was 0.75, and the two
assumed latent variables in the structural equation model for females
explained approximately 25% of the variance of the atopic dermatitis
morbidity variables (Figure 3 and Table 3). The GFI of the structural
equation model for females was 0.95, AGFI was 0.85, and RMSEA
was 0.06 (RMSEA < 0.08 represents adequate fitting; Browne and
Cudeck, 1993). In males, the standardized path coefficient from
latent variable lv1 to the atopic dermatitis morbidity variable was
0.96 ± 0.93 (p = 0.30), and the standardized path coefficient from
latent variable lv2 to the atopic dermatitis morbidity variable was
−0.90± 0.93 (p = 0.33). The standardized factor loading values from
lv1 to each indicator of lv1 was 0.30 ± 0.13 (p = 0.02) for Collinsella
and 0.80 ± 0.22 (p < 0.01) for Oscillibacter. The standardized factor
loading values from lv2 for each indicator of lv2 were 0.77 ± 0.24
(p < 0.01) for Ruminiclostridium 9, −0.20 ± 0.13 (p = 0.13) for
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TABLE 3 Results of the structural equation modeling (SEM) for women.

lhsa opb,j rhsc Stand-
ardized

parametersd

see Z-valuef P-valueg 95% confidence limits

Lower
limith

Upper
limiti

lv1 =∼ Alistipes 0.54 0.10 5.32 <0.01 0.34 0.75

lv1 =∼ Butyricimonas 0.53 0.10 5.16 <0.01 0.33 0.73

lv1 =∼ Coprobacter 0.44 0.09 4.87 <0.01 0.27 0.62

lv2 =∼ Fusicatenibacter 0.58 0.11 5.14 <0.01 0.36 0.80

lv2 =∼ Agathobacter 0.42 0.09 4.63 <0.01 0.24 0.59

lv2 =∼ Streptococcus 0.20 0.08 2.59 0.01 0.05 0.36

Atopic dermatitis ∼ lv1 0.32 0.11 2.76 0.01 0.09 0.54

Atopic dermatitis ∼ lv2 −0.41 0.12 −3.54 <0.01 −0.64 −0.18

Alistipes ∼∼ Alistipes 0.70 0.11 6.31 <0.01 0.48 0.92

Butyricimonas ∼∼ Butyricimonas 0.72 0.11 6.68 <0.01 0.51 0.93

Coprobacter ∼∼ Coprobacter 0.80 0.08 9.92 <0.01 0.64 0.96

Fusicatenibacter ∼∼ Fusicatenibacter 0.67 0.13 5.15 <0.01 0.41 0.92

Agathobacter ∼∼ Agathobacter 0.83 0.07 11.02 <0.01 0.68 0.97

Streptococcus ∼∼ Streptococcus 0.96 0.03 30.32 <0.01 0.90 1.02

Atopic dermatitis ∼∼ Atopic
dermatitis

0.75 0.12 6.50 <0.01 0.52 0.98

lv1 ∼∼ lv1 1.00 0.00 NA NA 1.00 1.00

lv2 ∼∼ lv2 1.00 0.00 NA NA 1.00 1.00

lv1 ∼∼ lv2 0.07 0.10 0.69 0.49 −0.13 0.27

Alistipes ∼1 0.00 0.09 0.00 1.00 −0.18 0.18

Butyricimonas ∼1 0.00 0.08 0.00 1.00 −0.16 0.16

Coprobacter ∼1 0.00 0.08 0.00 1.00 −0.16 0.16

Fusicatenibacter ∼1 0.00 0.10 0.00 1.00 −0.20 0.20

Agathobacter ∼1 0.00 0.07 0.00 1.00 −0.13 0.13

Streptococcus ∼1 0.00 0.05 0.00 1.00 0.11

Atopic dermatitis ∼1 0.00 0.00 NA NA 0.00 0.00

lv1 ∼1 0.00 0.00 NA NA 0.00 0.00

lv2 ∼1 0.00 0.00 NA NA 0.00 0.00

This table shows the results from the SEM shown in Figure 3.
aComponents on the left-hand side of the SEM.
bOperators for each equation in the SEM.
cComponents on the right-hand side of the SEM.
dStandardized estimated value for each parameter in the SEM. If op is =∼ this column represents standardized factor loading of indicator in rhs, which consists latent variable in lhs. If op is∼ this
column represents the standardized path coefficient from the latent variable in rhs to the observed variable in lhs. If op is ∼∼, this column represents standardized residual variance of the variable
in lhs or rhs (lhs = rhs case) or correlation between variables in lhs and rhs (lhs 6= rhs case). If op is∼1, this column represents an intercept of the variable in the lhs.
eStandard error for the index in the standardized parameters column.
fZ-values from the statistical test with a null hypothesis for the index when the standardized parameters column is zero.
gP-values from the statistical test with a null hypothesis for the index when the standardized parameters column is zero.
hLower upper bounds of the 95% confidence interval of the standardized parameters column.
iUpper bounds of the 95% confidence interval of the standardized parameters column.
j= ∼ Indicates that the variable in the rhs column is an indicator of the latent variable in the lhs column; ∼ indicates that the observed variable in the lhs column is a response variable for the
equation which represents the path analysis part of the structural equation model and the latent variable in the rhs column is an explanatory variable of the path analysis. If the variables in the lhs
and rhs columns are same, the operator ∼∼ indicates that the value in the standardized parameters column is a variance of residual of the variable in the lhs and rhs. If the variables in the lhs and
rhs columns are different, the operator ∼∼ indicates that the value in the standardized parameters column is a correlation between the variables in the rhs and the lhs. The operator ∼1 indicates
that the value in the standardized parameters column is an intercept of the variable in the lhs.

the Christensenellaceae R-7 group, and 0.18 ± 0.12 (p = 0.12)
for Erysipelatoclostridium. The residual variance of the atopic
dermatitis morbidity variable was 0.42 (Supplementary Figure 4 and

Supplementary Table 1). The GFI of the SEM for males was 0.93,
AGFI was 0.75, and RMSEA was 0.06. In males, the p-values for the
parameters from lv1 or lv2 to the atopic dermatitis morbidity variable
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FIGURE 4

Comparison of the latent variable values between groups for females obtained for each parameter of the structural equation model defined in Figure 3.
Latent variable values for (A) lv1 and (B) lv2. Numerical values on the boxplot represent the p-values in the Wilcoxon–Mann–Whitney rank sum test. NC:
normal controls (n = 321), AS: patients with atopic dermatitis without other diseases (n = 45), AM: patients with atopic dermatitis with other diseases
(n = 75), OD: patients with other diseases but without atopic dermatitis (n = 1,669). The bottom line of the box represents the first quartile value, the
middle line represents the median, the top line represents the third quartile, and the points represent outliers.

were ≥ 0.1 for the two latent variable models, and the structural
equation model could not be constructed (Supplementary Table 2).

3.3. Comparison of latent variable values
between groups in the structural equation
model

The latent variable values were calculated for each female from
each parameter of the SEM in Figure 3 and compared between groups
(Figure 4). The lv1 value in females was not significantly different
between the NC and OD (p = 0.27), while that for the AS was
significantly higher than that for the NC (p < 0.01). The value for
the AM tended to be higher than that for the NC, but there was no
significant difference observed (p = 0.12). There was no significant
difference in the lv2 values for females between the NC and OD
groups (p = 0.55), and the values for the AS and AM were significantly
lower than those of the NC (p < 0.01).

3.4. Estimation of the latent variable values

A SEM was constructed to estimate the lv1 and lv2 values
for females when the participant’s atopic dermatitis morbidity was
unknown (Figure 3 black frame), by extracting the measurement
equation portion of the initial SEM in Figure 3. The estimated latent
variable values tended to be lower for lv1 and higher for lv2, when
compared with the values in Figure 4 for the AS and AM groups.
However, the tendency of significant differences in the comparison of
the estimated latent variable values between the groups was the same
as in Figures 4, 5.

3.5. Atopic dermatitis morbidity
probability estimation model with latent
variable scores as explanatory variables

Figure 6 shows that, for women, the AUC was 0.66 (95%
confidence interval (CI): 0.57–0.75) for the model using only lv2
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FIGURE 5

Comparison of the latent variable values between groups for females estimated from the structural equation model in this figure. Estimated latent
variable values for (A) lv1 and (B) lv2. Numerical values on the boxplots represent the p-values in the Wilcoxon–Mann–Whitney rank sum test. NC:
normal controls (n = 321), AS: patients with atopic dermatitis without other diseases (n = 45), AM: patients with atopic dermatitis with other diseases
(n = 75), OD: patients with other diseases but without atopic dermatitis (n = 1,669). The bottom line of the box represents the first quartile value, the
middle line represents the median, the top line represents the third quartile, and the points represent outliers.

(Figure 6 red line), 0.49 (95% CI: 0.37–0.62) for the model using only
lv1 (Figure 6 polygonal gray line), and 0.59 (95% CI: 0.48–0.70) for
the model using lv1 and lv2 (Figure 6 dotted gray line). The model
using only lv2 had the best accuracy (the highest AUC) of the models
assessed.

3.6. Comparison between groups using
the atopic dermatitis morbidity probability
estimation model and the latent variable
values as explanatory variables

The atopic dermatitis morbidity probabilities were estimated
for the verification population using an atopic dermatitis morbidity
estimation model with latent variables as explanatory variables,
after which the results were compared between groups (Figure 7).
When lv1 was used as the only explanatory variable, the estimated
atopic dermatitis morbidity probability was not significantly different
between the four groups (Figure 7A). When both lv1 and lv2 were
used as the explanatory variables, the atopic dermatitis morbidity
probability in AS was significantly higher than in NC (p < 0.05), but

no significant differences were observed between the AM and NC,
and no increasing tendency was observed (Figure 7C). Finally, when
only lv2 was used as the explanatory variable, the atopic dermatitis
morbidity probability of AS was significantly higher than that of NC
(p < 0.05), and the atopic dermatitis morbidity probability of AM did
not show any significant differences from that of the NC, but there
was an increasing tendency (Figure 7B).

4. Discussion

There are over 1,000 species of intestinal bacteria in the human
gut (Rajilić-Stojanović and de Vos, 2014; Yang et al., 2020), and
these bacteria may interact each other. Therefore, it is necessary
to consider explanatory variables that reflect this interaction when
disease risk is estimated using human gut microbiome information.
SEM is a useful method that can achieve this because it constructs
latent variables consisting of indicators with common characteristics
(Dragan and Topolšek, 2014; Andersson and Yang-Wallentin, 2021).
Furthermore, the number of latent variables and combination
of indicators of latent variables can be set freely; therefore,
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FIGURE 6

Receiver operating characteristic (ROC) curve for a logistic regression
model using lv1 or lv2 as the explanatory variables. The solid gray and
red lines represent the results of the model with lv1 and lv2 as the
explanatory variables, respectively. The dashed gray line represents
the results of the model with both lv1 and lv2 as the explanatory
variables. AUC represents the area under the curve, and a 95% CI
represents the 95% confidence interval of the AUC.

interpretation of latent variables is easier than principal components.
In our SEM, the latent variables in females could be interpreted
as follows: We assumed that there are two latent variables, one
assumed to have a positive effect on atopic dermatitis (lv1) and
the other assumed to have a negative effect on atopic dermatitis
(lv2). Each indicator was assigned to latent variables by referring
to sign of the indicator’s effect size. We obtained the SEM shown
in Figure 3 and Table 3. The genera of bacteria that comprise lv1
are all reportedly involved in inflammatory reactions in the body.
For example, Alistipes is reported to be involved in inflammatory
responses in human and mouse studies (Parker et al., 2020) and
is common in patients with chronic obstructive pulmonary disease
(Bowerman et al., 2020). Coprobacter is also reported to be increased
in patients with autism spectrum disorder and constipation, with
a concomitant decrease in butyrate-producing bacteria (Liu et al.,
2019). Butyrate inhibits histone deacetylase and suppresses intestinal
inflammation-induced macrophage function (Chang et al., 2014).
Furthermore, Butyricimonas is reportedly involved in the production
of inflammatory cytokines such as interleukin-1β and transforming
growth factor-β1 (Kim et al., 2019). Thus, lv1 could show the
association between the intestinal microbiota and atopic dermatitis as
an enhanced inflammatory response involving Alistipes, Coprobacter,
and Butyricimonas. However, one of the genera in lv2 is Agathobacter,
which is a butyrate-producing bacterium (Rosero et al., 2016)
that is reportedly reduced in patients with non-febrile Mycoplasma
pneumoniae pneumonia when compared with healthy children
(Jiang et al., 2022). Fusicatenibacter is also a butyrate-producing
bacterium; Fusicatenibacter saccharivorans is decreased in patients
with ulcerative colitis, and its administration is reported to improve
enteritis in mice (Takeshita et al., 2016). Furthermore, Streptococcus
salivarius is shown to have anti-inflammatory effects (Kaci et al.,
2014), and the abundance of Streptococcus is reported to be lower in
patients with transient atopic dermatitis than in healthy individuals

(Park et al., 2020). Thus, since the bacterial genera in lv2 are all related
to the suppression of inflammatory responses, lv2 is considered a
latent variable related to the suppression of inflammatory responses.
In other words, lv2 could show the relationship between the
intestinal microbiome and atopic dermatitis as an inhibitory effect
on inflammatory reactions involving Agathobacter, Fusicatenibacter,
and Streptococcus that comprise lv2. As mentioned above, SEM
provides easily interpretable variables that reflect the interaction of
the indicators.

Structural equation modeling contains path analysis (Dragan and
Topolšek, 2014; Andersson and Yang-Wallentin, 2021); therefore, the
influence of latent variables on the objective variable can be estimated
as path coefficients. In women, the path coefficient from lv1 to the
atopic dermatitis incidence status showed a variance of 0.32 ± 0.11
(p < 0.01), and the path coefficient from lv2 to the atopic dermatitis
incidence status showed a variance of −0.41 ± 0.12 (p < 0.01;
Figure 3) in our SEM. The GFI of the SEM was 0.95, AGFI was 0.85,
and RMSEA was 0.06 (RMSEA < 0.08 represents adequate fitting;
Browne and Cudeck, 1993). Recall a flexibility of model construction
of SEM, it is possible to find more effective latent variables by adding
or removing indicators to the model referring these indices. Actually,
we obtained lv1 and lv2 in Figure 3 by such way.

In men, a SEM could not be constructed. A parallel analysis
using the genera in Figure 2B as variables showed that the estimated
number of latent factors was 0 (Supplementary Figure 5), indicating
that these genera showed high uniqueness values and do not
constitute latent variables.

As discussed above, SEM can provide variables which reflect
the interaction of bacteria in human gut microbiome and their
design method. Especially, a flexibility of model construction of SEM
allows more complex variable design than previous methods, for
example, the stepwise variable selection in multivariate regression
analysis. These properties of SEM can enhance construction of
models which try to estimate a disease risk from human gut
microbiome information.

We constructed models estimate atopic dermatitis risk using
latent variables in our SEM in Figure 3. Assuming actual clinical
settings, the model constructions and accuracy assessments of the
models were performed using the NC (healthy participants), AS
(patients affected with only with atopic dermatitis), AM (patients
affected with atopic dermatitis and other diseases), and OD (patients
affected with diseases other than atopic dermatitis) groups.

First, we compared values of the latent variables between the
groups. The values for lv1 were significantly higher for the AS group
than the NC and OD groups (Figure 4A). On the other hand,
there were no significant increases in the AM lv1 values with NC
and OD. The values for lv2 were significantly lower in the atopic
dermatitis-affected groups (AS and AM) than in the atopic dermatitis
-unaffected groups (NC and OD; Figure 4B). These results imply
that lv1 is influenced by fluctuations in the gut microbiota associated
with other diseases and lv2 could be a latent variable that captures
the association with atopic dermatitis with some reliability, regardless
of whether the patient has a disease other than atopic dermatitis,
that is, without being affected by the variations in the gut microbiota
associated with other diseases.

Next, a SEM was then constructed to estimate the values of lv1
and lv2 when the participant’s atopic dermatitis status was unknown
(Figure 3 black frame). In general, the value of each latent variable
in a SEM is calculated using all observed variables and all indicators
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FIGURE 7

Atopic dermatitis morbidity probability estimation model using the verification population, the latent variables as explanatory variables, and
between-group comparisons. The risk on the vertical axis represents the atopic dermatitis morbidity probability calculated from the logistic regression
models. The numerical values on the boxplot represent the p-values in the Wilcoxon–Mann–Whitney rank sum test. Calculation results from the model
with latent variables (A) lv1, (B) lv2, and (C) lv1 and lv2 as the explanatory variables. NC: normal controls (n = 321), AS: patients with atopic dermatitis
without other diseases (n = 45), AM: patients with atopic dermatitis with other diseases (n = 75), OD: patients with other diseases but without atopic
dermatitis (n = 1,669). The bottom line of the box represents the first quartile value, the middle line represents the median, the top line represents the
third quartile, and the points represent outliers.

in the model (Dragan and Topolšek, 2014; Andersson and Yang-
Wallentin, 2021). However, when using gut microbiota analysis data
to estimate the risk of disease, it is necessary to estimate latent
variables in the SEM with the observed variables if disease prevalence
is unknown. Therefore, we constructed a SEM (Figure 3 black
frame) by extracting the measurement equation part from the original
SEM (Figure 3) and used this to estimate the values of the latent
variables lv1 and lv2. The resulting latent variable value estimates
(lv1est and lv2est) showed a similar trend to the latent variable
values calculated by the original SEM, and the lv2est was significantly
lower in the atopic dermatitis-affected group (AS, AM) than in the
atopic dermatitis-unaffected group (NC,OD; Figure 5). This suggests
that lv2 could be used for women when constructing a model to
estimate the probability of atopic dermatitis (disease risk) from the
gut microbial community composition information.

We constructed a disease risk estimation model for atopic
dermatitis using a logistic regression model, in which lv2 are
explanatory variables for the atopic dermatitis incidence status
variable. The model is designed to estimate the disease risk for
atopic dermatitis in new participants using the following procedure:
(1) A model is trained using each participant’s lv2 (explanatory

variables) calculated from the intestinal bacteria analysis data and
atopic dermatitis prevalence variables for each participant collected
in advance, and a model is constructed to estimate the disease
risk for atopic dermatitis from the lv2; (2) For new participants,
lv2est are calculated and the values are fit to the model in (1)
to estimate disease risk. For comparison, we also constructed a
model with lv1 as the explanatory variable and both lv1 and lv2
as explanatory variables. Estimates of disease risk were calculated
by fitting the lv1 and/or lv2 estimates (lv1est and/or lv2est) of the
validation population to the three models constructed using data
from this training population, and the accuracy of each model
was compared using ROC analysis. The results showed that the
model with lv2 as the explanatory variable had the highest accuracy
(AUC = 0.66; satisfactory; Trifonova et al., 2014) and the model with
lv1 as the explanatory variable had the lowest accuracy (AUC = 0.49;
unsatisfactory; Trifonova et al., 2014). The accuracy of the model with
both lv1 and lv2 as explanatory variables was lower (AUC = 0.59;
unsatisfactory; Trifonova et al., 2014) than the model with lv2
alone (Figure 6). The results of the intergroup comparisons for
the calculated estimates for disease risk for atopic dermatitis also
show a similar trend (Figure 7). These results may reflect the
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results of Figures 4, 5, in which lv1 may be affected by fluctuations
in the intestinal microbiota associated with diseases other than
atopic dermatitis, making it difficult to capture the association with
atopic dermatitis, while lv2 may be unaffected by fluctuations in
the intestinal microbiota associated with other diseases and may be
somewhat stable and capture the association with atopic dermatitis,
and these results are reflected in Figures 4, 5.

To compare these results with the disease risk estimates for atopic
dermatitis made using individual bacterial genera, we compared
the accuracy of the disease risk estimation model for atopic
dermatitis with the relative abundance of individual bacterial genera
as explanatory variables and further assessed the results using AUC
analysis. The accuracy of the model constructed in this study using
lv2 as the explanatory variable was higher than that of the model
using the CLR-transformed abundance of individual genera as the
explanatory variable, except for the model using Agathobacter as
the explanatory variable (Supplementary Table 1). The model with
only Agathobacter as the explanatory variable showed higher AUC
values than the model using lv2, but it is limited as it requires that
the association between the gut microbiota and atopic dermatitis is
captured by the amount of Agathobacter alone. For example, lv2,
which in this study consisted of three genera of bacteria (indicators),
was suggested to be a latent variable related to the inhibitory
effects of inflammatory responses, but it is possible that there are
participants whose Agathobacter abundance is not greatly different
from that of healthy participants, and that the decrease in lv2 is
caused by a decrease in the relative abundance of Fusicatenibacter or
Streptococcus (in Figure 3, factor loadings from lv2 are all positive,
and therefore, the decrease in lv2 is considered a decrease in the
abundance of Fusicatenibacter or Streptococcus when there is no
change in the abundance of Agathobacter). For such participants,
a model that uses only the amount of Agathobacter present as an
explanatory variable cannot accurately estimate the participant’s risk
for disease.

In this study, we showed it is possible to use latent variables
in SEM as explanatory variables to estimate the disease risk with
satisfactory accuracy (Figure 6 and Supplementary Table 1). We also
noted the following properties of SEM: (1) latent variables in SEM
are thought to reflect, to some extent, the interactions of multiple
indicators, (2) a high flexibility of model construction makes more
complex variable design possible compared with previous methods.
Therefore, we showed SEM can be a novel choice for construction
of explanatory variables to estimate disease risk. In particular, the
high flexibility of model construction in SEM allows identification of
latent variables that have better accuracy with model modifications.
In future research, SEM using other microbiome data (e.g., gene
expression data) or metadata of participants (e.g., nutritional intake
data) may be constructed, and the whole picture of the relationship
between microbial community composition and disease may be
described as SEM with these variables. Such SEM will advance the
construction of models to estimate the disease risk, and these risk
models will support diagnosis, treatment, and prevention of diseases
in clinical settings.

Data availability statement

The 16S rRNA amplicon sequencing data presented in the study
are deposited in the European Nucleotide Archive (ENA) repository

(https://www.ebi.ac.uk/ena/browser/home), accession number:
PRJEB57381. The other raw data supporting the conclusions of
this article will be made available by the authors, without undue
reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by the Research Ethics Committee of RIKEN (approval
number: Wako 3 27-22). The patients/participants provided their
written informed consent to participate in this study.

Author contributions

HT, HM, and YB contributed to the conception and design of
the study. YB conducted the DNA extraction, 16S rRNA amplicon
sequencing, and questionnaire survey. HT, TI, and JK performed data
curation and performed statistical and data analysis. HT, KO, KH,
and HM wrote specific sections in the first draft of the manuscript.
All authors contributed to manuscript revision, read, and approved
the submitted version.

Acknowledgments

We thank RIKEN and the Japan Agricultural Frontier
Development Organization for providing the 16S rRNA amplicon
sequencing and questionnaire data used in this study. We also thank
the participants who provided samples and questionnaire answers
for the datasets.

Conflict of interest

HT, TI, JK, KH, HM, and KO were employed by Symbiosis
Solutions Inc.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1035002/
full#supplementary-material

Frontiers in Microbiology 15 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1035002
https://www.ebi.ac.uk/ena/browser/home
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1035002/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1035002/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1035002 January 21, 2023 Time: 15:22 # 16

Tokuno et al. 10.3389/fmicb.2023.1035002

References

Ahlmann-Eltze, C., and Patil, I. (2021). ggsignif: R package for displaying significance
brackets for “ggplot2. PsychiatryArxiv [Preprint] doi: 10.31234/osf.io/7awm6

Ahn, J., Sinha, R., Pei, Z., Dominianni, C., Wu, J., Shi, J., et al. (2013). Human gut
microbiome and risk for colorectal cancer. J. Natl Cancer Inst. 105, 1907–1911. doi:
10.1093/jnci/djt300

Andersson, G., and Yang-Wallentin, F. (2021). Generalized linear factor score
regression: A comparison of four methods. Educ. Psychol. Meas. 81, 617–643. doi: 10.
1177/0013164420975149

Bowerman, K. L., Rehman, S. F., Vaughan, A., Lachner, N., Budden, K. F., Kim,
R. Y., et al. (2020). Disease-associated gut microbiome and metabolome changes in
patients with chronic obstructive pulmonary disease. Nat. Commun. 11:5886. doi: 10.
1038/s41467-020-19701-0

Browne, M. W., and Cudeck, R. (1993). “Alternative ways of assessing model fit,” in
Testing structural equation models, eds K. A. Bollen and J. S. Long (Newbury Park, CA:
Sage), 136–162.

Callahan, B. J., McMurdie, P. J., and Holmes, S. P. (2017). Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis. ISME J. 11,
2639–2643. doi: 10.1038/ismej.2017.119

Cénit, M. C., Matzaraki, V., Tigchelaar, E. F., and Zhernakova, A. (2014). Rapidly
expanding knowledge on the role of the gut microbiome in health and disease. Biochim.
Biophys. Acta 1842, 1981–1992. doi: 10.1016/j.bbadis.2014.05.023

Chang, P. V., Hao, L., Offermanns, S., and Medzhitov, R. (2014). The microbial
metabolite butyrate regulates intestinal macrophage function via histone deacetylase
inhibition. Proc. Natl. Acad. Sci. U.S.A. 111, 2247–2252. doi: 10.1073/pnas.132226
9111

Chao, A., and Jost, L. (2012). Coverage-based rarefaction and extrapolation:
Standardizing samples by completeness rather than size. Ecology 93, 2533–2547. doi:
10.1890/11-1952.1

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. JAIR 16, 321–357. doi: 10.1613/jair.953

Chu, Y., Sun, S., Huang, Y., Gao, Q., Xie, X., Wang, P., et al. (2021). Metagenomic
analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes
7:66. doi: 10.1038/s41522-021-00235-2

De Carvalho, J., and Chima, F. O. (2014). Applications of structural equation modeling
in social sciences research. Am. Int. J. Contemp. Res. 4, 6–11.

DiStefano, C., Zhu, M., and Mîndril, D. (2009). Understanding and using factor scores:
Considerations for the applied researcher. Pare 14:20. doi: 10.7275/da8t-4g52

Dragan, D., and Topolšek, D. (2014). “Introduction to structural equation modeling
[review], methodology and practical applications,” in Proceedings of the International
Conference on Logistics & Sustainable Transport, (Celje).

Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G., and Gloor, G. B. (2013).
ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq.
PLoS One 8:e67019. doi: 10.1371/journal.pone.0067019

Hayashi, H., Sakamoto, M., and Benno, Y. (2002). Phylogenetic analysis of the human
gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based
methods. Microbiol. Immunol. 46, 535–548. doi: 10.1111/j.1348-0421.2002.tb02731.x

Hayashi, H., Sakamoto, M., and Benno, Y. (2004). Evaluation of three different
forward primers by terminal restriction fragment length polymorphism analysis for
determination of fecal Bifidobacterium spp. in healthy subjects. Microbiol. Immunol. 48,
1–6. doi: 10.1111/j.1348-0421.2004.tb03481.x

Howard, M. C. (2016). A review of exploratory factor analysis decisions and overview
of current practices: What we are doing and how can we improve? Int. J. Hum. Comput.
Interact. 32, 51–62. doi: 10.1080/10447318.2015.1087664

Jiang, Y., Bao, C., Zhao, X., Chen, Y., Song, Y., and Xiao, Z. (2022). Intestinal bacteria
flora changes in patients with Mycoplasma pneumoniae pneumonia with or without
wheezing. Sci. Rep. 12:5683. doi: 10.1038/s41598-022-09700-0

Kaci, G., Goudercourt, D., Dennin, V., Pot, B., Doré, J., Ehrlich, S. D., et al. (2014).
Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the
oral cavity and digestive tract. Appl. Environ. Microbiol. 80, 928–934. doi: 10.1128/AEM.
03133-13

Karlsson, F. H., Fåk, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., et al.
(2012). Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat.
Commun. 3:1245. doi: 10.1038/ncomms2266

Kim, J., Lee, H., An, J., Song, Y., Lee, C. K., Kim, K., et al. (2019). Alterations in gut
microbiota by statin therapy and possible intermediate effects on hyperglycemia and
hyperlipidemia. Front. Microbiol. 10:1947. doi: 10.3389/fmicb.2019.01947

Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., et al. (2017). Gut microbiota
dysbiosis contributes to the development of hypertension. Microbiome 5:14. doi: 10.1186/
s40168-016-0222-x

Liu, S., Li, E., Sun, Z., Fu, D., Duan, G., Jiang, M., et al. (2019). Altered gut microbiota
and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep.
9:287. doi: 10.1038/s41598-018-36430-z

Loftus, M., Hassouneh, S. A.-D., and Yooseph, S. (2021). Bacterial community
structure alterations within the colorectal cancer gut microbiome. BMC Microbiol. 21:98.
doi: 10.1186/s12866-021-02153-x

Lu, S., Yang, Y., Xu, Q., Wang, S., Yu, J., Zhang, B., et al. (2022). Gut microbiota
and targeted biomarkers analysis in patients with cognitive impairment. Front. Neurol.
13:834403. doi: 10.3389/fneur.2022.834403

Lunjani, N., Satitsuksanoa, P., Lukasik, Z., Sokolowska, M., Eiwegger, T., and
O’Mahony, L. (2018). Recent developments and highlights in mechanisms of allergic
diseases: Microbiome. Allergy 73, 2314–2327. doi: 10.1111/all.13634

Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., et al. (2015).
Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking
depletion of species belonging to Clostridia XIVa and IV clusters. PLoS One 10:e0137429.
doi: 10.1371/journal.pone.0137429

Moore, W. E., and Holdeman, L. V. (1974). Human fecal flora: The normal flora of 20
Japanese-Hawaiians. Appl. Microbiol. 27, 961–979. doi: 10.1128/am.27.5.961-979.1974

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al.
(2020). vegan: Community ecology package. R package version 2.5-7. Available online at:
https://CRAN.R-project.org/package=vegan (accessed October 11, 2022).

Park, Y. M., Lee, S. Y., Kang, M. J., Kim, B. S., Lee, M. J., Jung, S. S., et al. (2020).
Imbalance of gut Streptococcus, Clostridium, and Akkermansia determines the natural
course of atopic dermatitis in infant. Allergy Asthma Immunol. Res. 12, 322–337. doi:
10.4168/aair.2020.12.2.322

Parker, B. J., Wearsch, P. A., Veloo, A. C. M., and Rodriguez-Palacios, A. (2020). The
genus Alistipes: Gut bacteria with emerging implications to inflammation, cancer, and
mental health. Front. Immunol. 11:906. doi: 10.3389/fimmu.2020.00906

R Core Team (2020). R: A language and environment for statistical computing. Vienna:
R Foundation for Statistical Computing.

R Core Team (2021). R: A language and environment for statistical computing. Vienna:
R Foundation for Statistical Computing.
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