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Over the years, synthetic pesticides like herbicides, algicides, miticides, bactericides, 
fumigants, termiticides, repellents, insecticides, molluscicides, nematicides, and 
pheromones have been used to improve crop yield. When pesticides are used, the 
over-application and excess discharge into water bodies during rainfall often lead to 
death of fish and other aquatic life. Even when the fishes still live, their consumption 
by humans may lead to the biomagnification of chemicals in the body system and can 
cause deadly diseases, such as cancer, kidney diseases, diabetes, liver dysfunction, 
eczema, neurological destruction, cardiovascular diseases, and so on. Equally, 
synthetic pesticides harm the soil texture, soil microbes, animals, and plants. The 
dangers associated with the use of synthetic pesticides have necessitated the need for 
alternative use of organic pesticides (biopesticides), which are cheaper, environment 
friendly, and sustainable. Biopesticides can be  sourced from microbes (e.g., 
metabolites), plants (e.g., from their exudates, essential oil, and extracts from bark, root, 
and leaves), and nanoparticles of biological origin (e.g., silver and gold nanoparticles). 
Unlike synthetic pesticides, microbial pesticides are specific in action, can be easily 
sourced without the need for expensive chemicals, and are environmentally 
sustainable without residual effects. Phytopesticides have myriad of phytochemical 
compounds that make them exhibit various mechanisms of action, likewise, they are 
not associated with the release of greenhouse gases and are of lesser risks to human 
health compared to the available synthetic pesticides. Nanobiopesticides have higher 
pesticidal activity, targeted or controlled release with top-notch biocompatibility and 
biodegradability. In this review, we examined the different types of pesticides, the 
merits, and demerits of synthetic pesticides and biopesticides, but more importantly, 
we x-rayed appropriate and sustainable approaches to improve the acceptability and 
commercial usage of microbial pesticides, phytopesticides, and nanobiopesticides 
for plant nutrition, crop protection/yield, animal/human health promotion, and their 
possible incorporation into the integrated pest management system.
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1. Introduction

From antiquity, the use of synthetic (chemical) pesticides to 
control crop pests for improved crop production is known (Anani 
et  al., 2020). Synthetic pesticides are made from chemicals and 
carriers, such as polymers (Rakhimol et al., 2020), which are specific 
for different pests. They range from those employed in the control of 
weeds (herbicides), algae (algicides), fungi (fungicide), mites or ticks 
(miticides/acaricides), bacteria (bactericides), rodents (rodenticide), 
termites (termiticides), insects (insecticides), molluscs 
(molluscicides), and nematodes (nematicides), which form the basis 
of their classification (Anakwue, 2019). Another mode of pesticide 
classification can be based on their active ingredients, which include 
organochlorines, dichlorvos, diazinon, diamide, chlorpyrifos, etc. 
Although synthetic pesticides have positive effects on crop yield and 
productivity, they also have some negative impacts on soil 
biodiversity, animals, aquatic life, and humans (Farooq et al., 2019). 
Synthetic pesticides usually render the soil brittle, reduce soil 
respiration, and lessen the activities of some macroorganisms in the 
soil, such as earthworms (Pertile et al., 2020; Pelosi et al., 2021). They 
also reduce the characteristics of animal offspring, animal immunity 
to diseases, vitality, and the success of mating in animals 
(Syromyatnikov et  al., 2020). They negatively affect soil 
microorganisms by limiting their biological services in the 
production of certain plant growth-promoting traits, such as 
siderophores, nitrogen, indole-3-acetic, etc. (Kumar and Kumar, 
2019). When synthetic pesticides get into the environment through 
different means, such as vapormovements, indiscriminate disposal, 
droplet drift, erosion, and leaching, some non-targeted plants are 
encountered, thus resulting in a decline in the plant’s photosynthetic 
ability and seed production (Hashimi et al., 2020). The intrusion of 
pesticides into the water bodies during runoff can lead to the death 
of aquatic life and water pollution. Also, the accumulation of 
pesticides in the water bodies can be transitional from the aquatic 
lives to the animals and humans, and their biomagnification can 
result in deadly diseases, such as cancer, kidney diseases, skin rashes, 
diabetes, etc. (Jayaraj et al., 2017; Sabarwal et al., 2018; Manfo et al., 
2020). However, biopesticides have emerged and have been very 
useful in the control of pests with lot of merits.

Biopesticides are cheap, environment-friendly, specific in their 
mode of action, sustainable, do not leave residues, and are not 
associated with the release of greenhouse gases (Borges et al., 2021). 
These biopesticides can be in the form of phytopesticides (plant 
origin; Idris et al., 2022), microbial pesticides (microbial origin; 
Harish et al., 2021), and nanobiopesticides (nanoparticles produced 
from biological agents; Abdollahdokht et al., 2022; Pan et al., 2023). 
Unlike synthetic pesticides, microbial pesticides are specific in 
action, can be  easily sourced without the need for expensive 
chemicals, and are environmentally sustainable without residual 
effects (Harish et al., 2021; Hummadi et al., 2021). Phytopesticides 
have myriad of phytochemical compounds that make them exhibit 
various mechanisms of action, likewise, they are not associated with 
the release of greenhouse gases and are of lesser risks to human 
health compared to the available synthetic pesticides (Malahlela 
et  al., 2021; Idris et  al., 2022). Nanobiopesticides have higher 

pesticidal activity, targeted or controlled release with top-notch 
biocompatibility, and biodegradability compared to the synthetic 
pesticides (Abdollahdokht et  al., 2022; Pan et  al., 2023). 
Biopesticides act through different mechanisms, which include the 
inhibition and destruction of the plasma membrane and protein 
translation of pathogens/pests. Although, a few drawbacks have 
reduced their acceptability and commercial utilization, yet, 
biopesticides are highly specific in their target, have a short shelf 
life, are less persistent in the soil environment, and originate from 
sustainable raw materials, unlike synthetic pesticides (Kumar et al., 
2021). Some of the merits of biopesticides mentioned above could 
also serve as their demerits. For example, the specificity in their 
target toward pest could be a demerit if the desire is to control many 
pests simultaneously. Also, their short shelf life means they are 
easily degradable and persist less in the environment, but this turns 
to a demerit if the goal is to completely eliminate the existing pests 
and prevent the growth of the pests that will come after the 
application of the biopesticides. The critical assessment of these 
merits and demerits, and the possible measures to improve on these 
seeming drawbacks has become very important. Therefore, this 
review examined the types, effects, advantages, and disadvantages 
of both synthetic and biopesticides. Also, different measures to 
improve on biopesticides (that is, microbial pesticides, 
phytopesticides, and nanobiopesticides) for possible incorporation 
into the integrated pest management system to reduce yield and 
quality loss were adequately discussed.

2. Classification of pesticides

Pesticides can be classified based on their active ingredients, 
functions, and sources. According to their active ingredients, 
pesticides are classified into organochlorines, propanil, and so on 
(Table 1). In terms of their functions, they can be classified into 
herbicides, fungicides, algicides, rodenticides, and so on (Figure 1). 
However, according to their sources, pesticides are classified into 
synthetic pesticides and biopesticides. Many pesticides, which 
include carbofuran, carbendazim, dichlorvos, anthraquinone, 
dinocap, paraquat, methomyl, aldicarb, and diuron have been 
banned for use in a lot of countries due to their toxicity to humans 
(Boucaud-Maitre et al., 2019). These banned pesticides are usually 
preferred by farmers because they are more affordable and more 
available compared to unbanned pesticides (Kehinde and Tijani, 
2021). It is therefore important for World Health Organization 
(WHO), Food and Agriculture Organization (FAO), and other 
regulatory bodies to impose a ban on such products worldwide and 
also sanction companies that produce them.

2.1. Classification of pesticides according to 
their functions

Pesticides can be  classified according to the functions they 
perform. For instance, algicides (acaricides) destroy algae on 
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TABLE 1 Classification of pesticides according to their active ingredients.

Biopesticides 
(Brand name)

Active ingredient Pest controlled Mode of action References

Endosulfan Organochlorines Silkworm and Armyworm It alters the enzymatic function and the 

electrophysiological properties of the 

nerve cell.

Anikwe et al. (2021); Indratin 

et al. (2021)

Mancozeb Metal–organic compounds Phytophthora infestans It disrupts the biochemical processes 

within the cells of pests by interfering 

with the enzymes containing sulphydryl 

groups.

Sari and Lubis (2021)

Diazol Diazinon B. invadens It inhibits the enzyme 

acetylcholinesterase (AChE), which 

hydrolyzes the neurotransmitter 

acetylcholine (ACh) in cholinergic 

synapses and neuromuscular junctions.

Abdullahi et al. (2020)

DDForce Dichlorvos Phytophthora capsici It inhibits the neural 

acetylcholinesterase enzyme.

Aba et al. (2018); Okoroiwu 

and Iwara (2018)

Aldicarb Carbamic and thiocarbamide 

derivatives

Thrips (Frankliniella sp.) It inhibits the cholinesterase enzyme. Allen et al. (2018)

Lefenuron Urea derivatives Dicotyledonous weed and broom 

corn plantation cereal

It interferes with the deposition 

synthesis, and polymerization, of chitin.

Abraham and Vasantha 

(2020); Ghelichpour et al. 

(2020); Surma et al. (2021)

Pyrinex Lorsban Chlorpyrifos Chlorpyrifos B. invadens Citrus peel miner 

larvae

It inhibits the cholinesterase enzyme. Abdullahi et al. (2020); 

Maurer et al. (2018)

Sniper Diamide S. exigua, mosquitoes It causes the misregulation of the 

ryanodine receptors (RyRs) in insects.

Ebuehi et al. (2017); Rabelo 

et al. (2020)

Cydim super Cypermethrin+dimethoate B. invadens It modulates the sodium channel. Abdullahi et al. (2020)

Talstar Pyrethroid Agrotis ipsilon, Tropical sob 

webworm

It modulates the sodium channel. Rabelo et al. (2020); Campos 

et al. (2022)

Pendillin Pendimenthalin Weed It inhibits root and shoots growth. Dugje et al. (2020)

Laraforce Lamdacyhalothrin Insect It disrupts gating by disrupting the 

gating mechanism of sodium channels.

Oso and Awe (2019)

Regalia Chlorothalonil Downy mildew and powdery 

mildew

It deactivates and reduces glutathione. Jones et al. (2020); Scariot 

et al. (2022)

Deltapaz Deltamethrin B. invadens It interferes with the normal production 

and conduction of nerve signals in the 

nervous system.

Abdullahi et al. (2020)

Alachlor Chloroacetanilide B. stearothermophilus It blocks the synthesis of lipids and 

isoprenoids.

Pereira et al. (2021)

Roundup Glycophosphate Broomrape It blocks the activity of the 5-enol-

pyruvyl-shikimate-3-phosphate 

synthase (EPSPS) enzyme

Kanissery et al. (2019); 

Elsakhawy et al. (2020)

Dinocap Phenol and nitrophenol derivatives Podosphaera pannosa It causes renal toxicity. Kumar and Chandel (2018)

Caocobre Copper-containing compounds Cocoa black pod disease It inhibits enzymes and disrupts the 

pest’s cellular proteins.

Husak (2015); Tsufac et al. 

(2020)

Paraeforce Paraquat Weed It inhibits photosynthesis. Imoloame (2021)

Aminforce 2,4-D Amine SL Weed It interferes with the hormones of the 

pest.

Dogara et al. (2022)

Butaforce Butachlor Bufo regularis tadpole It inhibits cell division in pests. Ejilibe et al. (2019)

Atrazine Atrazine Weed It interferes with photosynthesis. Sumekar et al. (2022)

Ronstar Oxidiaxone Weed It inhibits the protoporhyrinogen 

oxidase (PPO) enzyme.

Dugje et al. (2020)
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different surfaces (Zheng et al., 2018), and antifeedants prevent the 
destruction of plants or harvested and preserved crops by other 
pests which could feed on them (Peprah-Yamoah et  al., 2022). 
Herbicides prevent the growth of weeds and eliminate them (Loddo 
et al., 2019), while miticides are used to kill termites or ticks that 
destroy crops (Murcia-Morales et al., 2021). Similarly, bactericides 
and fungicides get rid of harmful bacteria and fungi, respectively, 
or inhibit their growth without tampering with the beneficial ones 
(Ullah and Dijkstra, 2019; Akanmu et al., 2021). Fumigants exhibit 
broad-spectrum activity against fungi, insects, and bacteria (Fang 
et al., 2020). Termiticides suppress the activities of termites on the 
soil (Singh et al., 2020). Repellents are used to repel insect pests and 
birds. Acaricides are used to control arachnids (Benelli, 2022) and 
insecticides help to destroy insects that affect plants, animals, and 
humans (Matsuda et  al., 2020). Equally, the effective use of 
nematicides in the control of nematodes, rodenticides in the control 
of mice and other rodents, and molluscicides in the control of 
molluscs have been documented (Horgan and Kudavidanage, 2020; 
Figure 1). Attractants lure and attract pests to a trap or bait (Souto 
et al., 2021). Insect growth regulators disrupt the molting, maturity 
from pupal stage to adult, or other life processes of insects (Jindra 
and Bittova, 2020).

2.2. Classification of pesticides according to 
their sources

Pesticides are classified into chemical and biological pesticides 
according to their source. Chemical pesticides are very effective and 
rapid in the control of pests. They are made from inorganic or synthetic 
salts, such as sulfur, copper sulfate, lime, and ferrous sulfate. Their 
chemical compositions are simple and highly soluble in water, which 
makes them easily absorbable by pests, thereby enhancing their activity 

and durability in the environment (Kim et  al., 2017; Abubakar 
et al., 2020).

Biological pesticides (biopesticides) are substances produced from 
biological agents that manage pests in agriculture to enhance crop 
production (Samada and Tambunan, 2020). They can be sourced from 
microorganisms, plants, or nanoparticles (Kidd et al., 2017; Samada and 
Tambunan, 2020; Adeleke et  al., 2022d). Microbes release certain 
metabolites, which protect plants from pests and are useful as microbial 
pesticides (Samada and Tambunan, 2020). Active compounds from 
plants used as phytopesticides include phenols, alkaloids, and terpenes 
(Abubakar et al., 2020). Generally, nanoparticles can be produced from 
chemical or biological agents (mainly plants or microbes; Omole et al., 
2018). Nanoparticles of biological origins that are used as pesticides are 
termed nanobiopesticides and are also very important as plant 
protectants (Pan et al., 2023). Nanobiopesticides have found application 
as pesticidal agents in agriculture because of their excellent 
physicochemical characteristics like size, reactivity, surface area, and so 
on. Besides, nanobiopesticides have unambiguous biological interactions 
with plants, as well as clear transport and fate in the environment 
(Bratovcic et al., 2021; Kumar et al., 2022; Pan et al., 2023).

2.3. Adverse effects of synthetic pesticides

Synthetic pesticides are faced with drawbacks, which include the 
cost of purchase and production, persistence in the soil, pest resistance, 
impacts on health and the environment, economic harm to organic 
producers due to pesticide drift, disposal of contaminated crops, 
removal of stockpiles of unused pesticides as well as regular containers, 
and the disposal of expired/unused products, which can affect organic 
farms or innocent populace (Hicks et al., 2018; Essiedu et al., 2020).

A large portion of pesticides when applied on the soil for 
agricultural purposes remains non-degradable. Hence, they are 

FIGURE 1

Classification of Bio-pesticides and their target pests.
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more persistent in the environment and leach to underground and 
surface water, thus leading to loss of biodiversity and pollution. Of 
all the pesticides applied on the soil, about 98% affect organisms 
that are not targeted. For instance, in Europe, pesticides decrease 
soil respiration by 35%, reduce insect biomass by 70%, and decrease 
the number of farm birds by 50%; and in America and Europe, it 
reduces the honeybee population by 30% (Ali et al., 2021). Research 
by Tongo et al. (2022) revealed Aldrin pesticide as a major pesticide 
detected in the Ikpoba river in the Southern part of Nigeria. 
Although, other chemicals, such as diazinon, endrin, glyphosate, 
aldrin, endosulfan I, heptachlor, heptachlor epoxide, and carbofuran 
present with the tendencies of being biomagnified need proper 
monitoring. Furthermore, pesticides (e.g., carbamate and 
organophosphate) have been reported to negatively affect soil’s 
nutrients, as they chelate some important metal ions, thus making 
them unavailable for plant uptake (Kaur et  al., 2017). Likewise, 
plant photosynthesis, reproduction, and seed production can 
be adversely affected by pesticides (Hashimi et al., 2020).

Residues of pesticides in food crops can be consumed directly 
by humans or used in the production of animal feeds (Choudhary 
et  al., 2018). This can come to play when pesticides are applied 
toward harvesting (Jallow et  al., 2017). Biomagnification of 
pesticides occurs in animals when they feed on accidentally or 
deliberately contaminated harvested food crops or forage. Topical 
pesticides are applied on food crops to control parasites, and 
through other means, such as disposal, spraying, and formulations 
of pesticides (Choudhary et al., 2018). Pesticide accumulation in the 
granular tissues of animals can lead to the death of cells, necrosis 
(causing a reduced hormone production), ovarian follicles 
(resulting in a reduced progesterone level), reduced oestrogen 
production, reduced libido, and a reduced sperm concentration and 
quality in male animals (Li et al., 2022).

Accumulation of pesticides in birds (e.g., bald eagles, ospreys, 
grebes, cormorants, seagulls, pelicans, and peregrine falcons) living 
in pesticide-polluted areas can lead to reproduction problems 
(Garces et al., 2020). Pesticides lead to crossed bill deformity in 
birds. For example, a high concentration of DDT pesticides led to 
crossed-bill deformity in a wild bald eagle (Garces et al., 2020). In 
reptiles inhabiting areas close to rivers where water from 
agricultural farms is washed, deformities could be observed. For 
example, snapping turtles living in Erie and Lake Ontario in Canada 
were found to have deformities, such as deformed jaws, limbs, 
cranium, carapaces, nostrils, and tails, enlarged yolk sacs, dwarfism, 
missing eyes, unhatched eggs, and these were traced to chemical 
pesticides contamination (Garces et  al., 2020). In soils, the 
reduction in the function and population of fungi, actinomycetes, 
and bacteria has been linked to the usage of three pesticides, namely 
glyphosate, malathion, and alphacypermethrin (Kumar et al., 2019). 
All the negative effects of synthetic pesticides lead to the loss of 
biodiversity and genetic conservation in animals. Furthermore, it 
also alters soil biodiversity and health, by affecting the microbial 
functions in the soil, which directly or indirectly enhances soil 
nutrients and plant health.

Consumption of vegetables, food crops, fruits, milk, and meat 
from animals that contain high pesticide residue can lead to 
different diseases in humans (Omoyajowo et  al., 2018; Li et  al., 
2022). Onwujiogu et  al. (2022) found pesticides in Bambara 
groundnut quantity, which is beyond the Maximum Residual Limit 
(MRL) recommended by the WHO and could pose a threat to the 

health of humans, especially children who feed on them. 
Omoyajowo et al. (2018) also experimented to unravel the level of 
pesticides in three fruits and realized that the pesticide level of 
watermelon was above the MRL level specified by the WHO/FAO, 
which equally poses a health threat to the consumers. Similarly, 
pesticides are used to protect harvested food crops, vegetables, and 
fruits and those used for other purposes aside that which they are 
manufactured. For instance, the use of calcium carbide to ripen 
fruits poses health threats to humans. Calcium carbide contains 
calcium arsenide and calcium phosphide, and when reacts with 
water, forms arsine and phosphide, thus leading to headache, 
vomiting, dizziness, nausea, unconsciousness, and fatigue in 
humans (Andrew et al., 2018). Equally, ethepon, a pesticide used to 
hasten the ripening of fruits, vegetables, and cereals exhibited 
hepatocyte properties when tested on albino rats (Bhadoria 
et al., 2018).

Furthermore, in humans, biomagnification of pesticides through 
food (such as fish), drinking water, skin pores (while spraying), post-
harvest crop preservation, and inhalation, give rise to diseases, such as 
cancer, Parkinson’s diseases, eye irritation, diabetes, kidney diseases, 
hypertension, skin rashes, liver dysfunction, eczema, birth defects, 
Alzheimer’s diseases, neurological destruction, cardiovascular diseases, 
and endocrine disorder (Damalas and Koutroubas, 2016; Jayaraj et al., 
2017; Sabarwal et al., 2018; Manfo et al., 2020). Likewise, high pesticides 
level can lead to about 25–30% increase in mental ailments, and a 50% 
increase in severe brain cancer, leukaemia, lymphoma, and cancer.

3. Biopesticides as an alternative to 
synthetic pesticides

Due to the drawbacks of synthetic pesticides, an alternative means 
of pest control is being encouraged, which is the use of biopesticides 
(Ojuederie et al., 2021; Ayilara et al., 2022b; Figure 2). Biopesticides are 
effective and safer means of controlling pests, they have a mild effect on 
the environment compared to their synthetic counterpart, and they are 
specific in their target, hence preventing bioaccumulation (Saberi et al., 
2020; Kumar et  al., 2021). Biopesticides are made from natural 
substances, such as plants, microbes, and nanoparticles of biological 
origin, thus, making them a sustainable means of pest control (Kumar 
et al., 2021).

Some successes have been recorded in the use of biopesticides in the 
control of some pests to which chemical pesticides are being applied 
(Table 2).

FIGURE 2

Comparison of the advantages of synthetic pesticides and 
biopesticides.
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TABLE 2 Different Biopesticides and the pest they control.

Microbial 
pesticides

Entomopathogenic viruses Target insects and pests References

Nucleopolyhedroviruses Lepidoptera Harish et al. (2021)

Imported cabbageworm (PiraGV) NPV (AucaMNPV) Artogeia (Pieris) rapae Singh et al. (2019)

Potato tuber moth GV (PhopGV) Phthorimaea operculella Singh et al. (2019)

Entomopathogenic fungi

Paecilomyces lilacinus Soil nematodes Moreno-Gavíra et al. (2020)

Beauveria bassiana Whitefly McGuire and Northfield (2020)

Hirsutella thompsonii Spider mites and whitefly Saranya et al. (2021)

Isaria fumosorosea Termites, grasshoppers, caterpillars, and beetles Gautam (2020)

Metarhizium brunneum Nematodes (pathogens) Hummadi et al. (2021)

Paecilomyces fumosoroseus Insects and mealy bugs Abbas (2020)

Verticillium lecanii Nematodes, mites & thrips, scale insects, mealy bugs, etc. Pathania et al. (2022)

Myrothecium verrucaria Nematodes Hagag (2021)

Lagenidium giganteum Pest mosquito species Kaczmarek and Boguś (2021)

Entomopathogenic bacteria

B. thuringiensis Elm Leaf Beetle,Alfalfa weevil Saberi et al. (2020)

Beauveria bassiana Whitefly McGuire and Northfield (2020)

B. thuringensis var. israelensis Fungus gnats, black flies, larvae of mosquitoes Lee et al. (2021)

B. sphaericus, B. lentimorbus, and B. popilliae Larvae of Aedes spp., Culiseta, Psorophora, and Culex 

mosquitoes

Falqueto et al. (2021)

Entomopathogenic nematodes

Heterorhabdits taysearae Bactrocera dorsalis Godjo et al. (2018)

Steinernema carpocapsae, Heterorhabditis bacteriophora, Larvae of cabbage white butterfly Aioub et al. (2021)

Steinernema feltiae

Steinernema carpocapsa,

Steinernema riobrave, Armyworm Gozel and Gozel (2021)

Steinernema feltiae

Steinernema carpocapsae,

S. bicornutum, Leafminers Abbas (2022)

Heterorhabditis indica and

H. bacteriophora.

Steinernema carpocapsae

Potato tuber moth Ebrahimi et al. (2022)

Nanobiopesticides

Nano-sized particles

Mesocyclops longisetus-derived nanoparticles Culex quinquefasciatus Narware et al. (2019)

Mesocyclops scalpelliformis-derived nanoparticles Culex quinquefasciatus Rodrigues et al. (2019)

Silver nanobiopesticide Alternaria solani, A. alternata Narware et al. (2019)

Silver nanoparticles Xanthomonas axonopodis pv. citri, X. oryzae pv. oryzae 

and Ustilaginoidea virens

Roseline et al. (2019)

Gold nanoparticles Culex quinquefasciatus, Anopheles stephensi and Aedes 

aegypti

Kovendan et al. (2018)

Phytopesticides

Plants

Lantana camara Eggs of root-knot nematode- Meloidogyne incognita Malahlela et al. (2021)

(Continued)
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The effectiveness of biopesticides in pest management comes from 
various modes of action, which include actions that regulate gut 
disruption, pest growth, and pest metabolism. Biopesticides work by 
denaturing protein, causing metabolic disorder and paralysis, activating 
target-poisoning mechanisms, exhibiting multisite inhibitory actions, 
and releasing neuromuscular toxins and bioactive compounds (Figure 3; 
Sparks and Nauen, 2015; Dar et al., 2021; Fenibo et al., 2021). These 
multiple actions offer biopesticides the capacity to alter the course of 
pest resistance as compared to chemical pesticides. Studies have 
indicated that biopesticides are eco-friendly, possess low toxicity 
properties, are biodegradable, and specific in action with little or no 
negative impact on non-target organisms (Deravel et al., 2014; Kalpana 
and Anil, 2021), Unlike biopesticides, conventional pesticides are a 
major source of environmental pollution, which promotes pest 
resistance with high post-harvest contamination and bioaccumulation 
in food crops (Fenibo et al., 2021).

However, there are various limitations to the full adoption, 
development, and use of biopesticides in agriculture. Biopesticides are 
often ranked as having low efficacy and a slower rate in the control of 
pests and diseases (Damalas and Koutroubas, 2016; Delgado‐Carrillo  
et al., 2018). Commercial biopesticide products are highly expensive and 
not readily available in the global market. In addition to the problem of 
commercialization, biopesticides also face quality control problems and 
concise shelf-life (Arthurs and Dara, 2019).

Many farmers also worry about dosage recommendations and fear 
the evaluation of new pest species that may be resistant to the existing 
biopesticides (Stevenson et al., 2017). The advantages and disadvantages 
of biopesticides are summarized in Table 3. Biopesticides have also been 
classified into three groups based on their extraction source and the 
constituting molecule/compound. The three groups include; (i) 
Microbial Biopesticides; (ii) Biochemical Pesticides; and (iii) 
GMO-Based Biopesticides. The source characteristics and the consisting 
molecules of biopesticide influence the mechanisms by which 
biopesticides protect the crops from the attack of pathogens. For 
example, fungicides and bactericides derived from microorganisms act 
by inhibiting or disrupting the process of protein translation, or cause a 
major disruption in plasma membrane permeability, thus leading to cell 
death, while some may prevent glucose formation in target pathogens 
(Parker and Sperandio, 2009; Svidritskiy, et al., 2013; Gwinn, 2018).

3.1. Microbial pesticides

Microbial pesticides consist of substances derived from 
microorganisms like bacteria, fungi, viruses, protozoa, and algae, which 
are used in the control of pests (Adeleke et al., 2022c). Microbes use the 
toxic metabolites produced to destroy and prevent the growth of pests. 
Microbial pesticides are applied to the environment through different 

FIGURE 3

Mechanism of action of biopesticides.

Microbial 
pesticides

Entomopathogenic viruses Target insects and pests References

Azadirachta indica Colletotrichum coccodes Opeyemi et al. (2018)

Jimson weed, Camelina and White hellebore Colorado beetle Basiev et al. (2019)

Andropogon nardus S. rolfsii and Pestalotia sp

Atalantia guillauminii, Eucalyptus procera Tenebrionid pests Idris et al. (2022)

Siparuna guianensis Lepidoptera sp.

Lourenço et al. (2018)

TABLE 2 (Continued)
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techniques, such as emulsion, electrospraying system, fluidized bed, 
spray drying, extrusion, lyophilization, spray cooling, and coacervation 
(De Oliveira et al., 2021). The major categories of microbes used as 
biopesticides include bacteria genera, Chromobacterium, Pseudomonas, 
and Yersinia, fungal genera Beauveria, Paecilomyces, Verticillium, 
Hirsutella, Metarhizium, and Lecanicillium and nematodes belonging to 
the genera Steinernema and Heterorhabditis (Chang et al., 2003; Kumar 
et al., 2021; Adeleke et al., 2022b).

A fungi species, Trichoderma sp. has been reported to prevent the 
activity of numerous fungi inhabiting the soil that cause root rot, black 
gram, and green gram in chickpeas, and groundnut (Samada and 
Tambunan, 2020). Likewise, Beauveria bassiana and M. brunneum have 
been reported in the control of thrips, beetles, weevil, aphids, whiteflies, 
and mites infestation in ornamental crops, fruits, and vegetables (Dara, 
2017; Arthurs and Dara, 2019). Other examples of microbial pesticides 
are listed in Table 2.

Of all the bacterial pesticides, Bacillus thuringiensis (Bt) is well-
known and have been made into products available for commercial 
purpose (Ujvary, 2010; Ruiu, 2018). Bacillus thuringiensis is a Gram-
positive bacteria that acts as an insecticide by producing exudates, 
such as poisonous parasporal crystals and endospores which when 
consumed by insects get dissolved in their midgut by the alkaline 
environment and release delta-endotoxin, a protein that has a lethal 
effect on insects (Xiao and Wu, 2019). Bacillus thuringiensis is used to 
reduce pest infestation in plants, such as cabbage and potato, and is 
capable of controlling lepidopterans in different plants (Berini et al., 
2018; Samada and Tambunan, 2020). As good as the positive effects of 
commercially available Bt sounds, they come with some drawbacks 

which include quick deactivation when exposed to light, short activity 
time, slow lethal rate, and low awareness and sensitivity to the 
environment (Xiao and Wu, 2019). The short life and environmental 
sensitivity of microbial pesticides, which reduce their awareness and 
usage are the major challenges associated with their use (Pathak et al., 
2017). For instance, baculoviruses only survive in their host and 
cannot reproduce outside their host; hence, they cannot be  used 
outside their host (Borges et al., 2021). Their host may have an adverse 
environmental impact on the environment, and their use might 
be dangerous.

Fungi are also used to control plant pests. An example is the 
mycoinsecticide, which is a microbial insecticide whose active ingredient 
is a living fungus that exhibits an antagonistic effect on insects or other 
arthropod pests, with some strains releasing metabolites while inside the 
pest that may also injure or kill it (Zaki et al., 2020). Only a few rare 
fungal strains have been developed as commercial mycoinsecticides, 
hence, the technology is still in its early stages. Attachments, 
germination, penetration, invasion, replication, and host death are the 
six general phases of action for mycoinsecticides (Zaki et al., 2020).

Spores can land on and attach to the target host’s cuticle when the 
formulated product is diluted and applied according to label instructions. 
Adhesion is primarily achieved through hydrophobic interactions 
between the cuticle and the spore. The number of spores attached to the 
host’s body determines their efficacy. The spore germinates in response 
to chemical cues on the cuticle and then develops an aspersorium, which 
is the penetration structure. The fungus penetrates the layers of the 
cuticle through a combination of mechanical pressure and enzyme 
degradation (Zaki et al., 2020).

TABLE 3 Advantages and disadvantages of biopesticides.

Pesticides Advantages Disadvantages References

Microbial pesticides They are specific in their mode of action, have a 

short residual effect, they are environment 

friendly, are made from different species, which 

ensures sustainability in their production, are 

cost-effective, and it is easy to make a mass 

production in vitro. They are not associated 

with the emission of greenhouse gases.

They have short shelf lives, there is a challenge with their 

stability in different environments, and there are 

uncertainties regarding the exposure rate/level and 

duration. They are easily degraded and their effects last for 

a short period. In many countries, the regulations for their 

registration are very stringent which reduces their 

availability.

Borges et al. (2021); Kumar et al. 

(2021); Llamas et al. (2021); Adeleke 

et al. (2022c)

Plant pesticides They are cost-effective and sustainable 

compared to synthetic alternatives. They can 

be derived from different plant species.

They are specific; thus may not be able to control more 

than one pest at a time. Therefore, any plant that has the 

potential to be affected by more than one pest may require 

more than one phytopesticide. Their quality is dependent 

on the quality of the raw materials used; therefore, the 

plant materials used must be harvested during the time of 

the day when the plant phytochemicals are active. There 

might be issues with the consistency of products because 

the concentration and constituents of plant 

phytochemicals change across different geographical and 

ecological locations. Their registration and registration 

procedure are tedious.

Damalas and Koutroubas (2020); 

Souto et al. (2021)

Nanobiopesticides They are cheaper, more stable, and sustainable 

compared to their chemical counterparts; they 

have no residual effects and are not associated 

with greenhouse gases emission.

The dosage of nanoparticles in the environment might 

be difficult to control because they are small in size and 

because many nanoparticles, which are occurring naturally 

might be identical to the ones introduced to the 

environment. They are more active in the laboratory, and 

not much work has been done on their field application. 

The procedure for their regulations is tedious and time-

consuming and they have a slow mode of action.

Chaudhary and Sharma (2019); 

Damalas and Koutroubas (2020); 

Sabry (2020); Saleh (2020); Adeleke 

et al. (2022a)
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Generally, microbial pesticides exert no adverse effects on the 
environment, producers, and consumers of agricultural products 
because their ingredients are generally considered safe and are target-
specific (Guven et al., 2021). In addition, their usage lower greenhouse 
gas emissions compared to chemical pesticides (Llamas et al., 2021). 
Furthermore, there is a wide variety of organisms from which 
microbial biopesticides can be  derived to solve the problem of 
resistance and ensures sustainability. Since different microbes used as 
biopesticides might require different storage condition, it might 
be cumbersome for sellers, producers, marketers, and end users to 
cope with their storage and transportation. Hence, more research is 
needed to ensure a sustainable and extended shelf-ability of 
microbial pesticides.

3.2. Phytopesticides

Essential oil and extract from different parts of plants have been 
successfully used to control plant diseases (Ayilara et al., 2022a). They 
attract, repel, prevent respiration, detect host plants from specific pests, 
destroy the eggs and larvae of pests, and destroy pests from feeding on 
plants (Tripathi et al., 2009; Halder et al., 2013; Ali et al., 2017). Essential 
oil from Coleus aromaticus Benth., Hyptis suaveolens (L.), Azadirachta 
indica, Ageratum conyzoides L., and Achillea sp., have been reported to 
control the infestation of Tribolium castaneum (Herbst), a red flour 
beetle that destroys many crop species (Singh et al., 2014; Jaleel et al., 
2015; Upadhyay et al., 2018). Other plant parts, such as bark, flowers, 
roots, leaves, peels, seeds, and buds can be used to control different plant 
pathogens (Tongnuanchan and Benjakul, 2014).

Plant families that have been reported to contain bioactive 
compounds with activity against important crop pests include 
Myrtaceae, Lauraceae, Rutaceae, Lamiaceae, Asteraceae, Apiaceae, 
Cupressaceae, Poaceae, Zingiberaceae, Piperaceae, Liliaceae, 
Apocynaceae, Solanaceae, Caesalpinaceae, and Sapotaceae (Gakuubi 
et al., 2016). They are easily available which makes them inexpensive and 
can be  easily incorporated into agricultural production systems. 
Secondary metabolites, such as steroids, alkaloids, tannins, terpenes, 
phenols, flavonoids, and resins are commonly found in botanical 
pesticides and have shown antifungal, antibacterial, antioxidant, or 
insecticidal properties (Ahmad et al., 2017). The specific compounds 
found in certain plant species make them effective against a specific 
category of pests and also determine their mode of action on the target 
pests (Lengai et  al., 2020). Botanical pesticides contain bioactive 
compounds that act in a variety of ways against pests, such as insects, 
fungi, bacteria, nematodes, and plant host cells infected with viral 
pathogens (Lengai et al., 2020). Depending on the botanical compound 
and pest, the modes of action may include repellence, inhibition, protein 
denaturation, and other effects. Pesticides derived from pyrethrum 
target insect nerve cells, thus causing paralysis and death. Also, neem-
based pesticides with antifeedant and repellent properties, induce 
moulting abnormalities, hinder oviposition, and disrupt the endocrine 
system (Lengai et al., 2020).

Pesticides from plants have been well-reported to interfere with the 
normal metabolism of insect pests, which include the octopamine and 
acetylcholinesterase pathways (Polsinelli et al., 2010; Pang et al., 2012; 
Dassanayake et al., 2021). Acetylcholinesterase is an enzyme used by 
insects in their neuronal communication and neuromuscular functions 
and can be  toxic to insects by destroying the membrane of the 
postsynaptic junction and the current of the nerve. Octapamine on the 

other hand is a hormone involved in neuromodulation and 
neurotransmission in insects and can impair the muscle juncture and 
homeostasis of the body fluids of insects (Dassanayake et al., 2021). 
Equally, plant pesticides can prevent cell wall biosynthesis, cell 
membrane structure, ATPases function, quorum sensing, efflux pumps, 
and biofilm formation (Lang and Buchbauer, 2012; Hu et al., 2017). 
Extracts from four weed plants, namely Lippia javanica, Tithonia 
diversifolia, Vernonia amygdalina, and ephrosia vogelii, in Tanzania 
were used to control insects in common bean (Mkenda et al., 2015). 
Similarly, Lovatto et al. (2004) carried out an experiment where nine 
different aqueous plant extracts from the leaves, fruits, and flowers of 
nine plants were used to repel and kill Brevicoryne brassicae. Solanum 
pseudocapsicum L., and Solanum guaraniticum A were reported to 
be the most effective.

3.3. Nanobiopesticides

Nanobiopesticides can be defined as biological protection products 
that are developed using nanotechnology to enhance efficacy and reduce 
an environmental load of pesticides (Chaudhary et  al., 2021b,d). 
Nanobiopesticides are formulated from nanomaterials and applied 
specially fixed on a hybrid substrate, encapsulated in a matrix or 
functionalized nanocarriers for external stimuli or enzyme-mediated 
triggers (Agostini et al., 2012; Khati et al., 2018; Kumari et al., 2020; Agri 
et al., 2021, 2022; Chaudhary et al., 2022; Pan et al., 2023). They are 
nanostructures with two or three dimensions used for carrying 
agrochemical ingredients and can help increase water solubility and 
bioavailability, and protect agrochemicals against environmental 
degradation. It also helps revolutionize the control of pathogens, weeds, 
and insects in crops (Yadav et al., 2020). They are available in different 
forms, such as nano-gel, nano-encapsulation, nano-fibres, nano-sphere, 
etc. (Rajna and Paschapur, 2019; Pan et al., 2023).

Nanoparticles in recent years are being reported to be very helpful 
in agriculture (Omole et  al., 2018). They have been used as active 
ingredients and carriers to stabilize many agrochemicals and their 
products from them include nanofertilizers, nanopesticides, etc. 
(Chaudhary and Sharma, 2019; Chaudhary et al., 2021a). For instance, 
pesticides from nanomaterials, such as magnesium oxide, magnesium 
hydroxide, copper oxide, and zinc oxide derived from aqueous extracts 
of Chamaemelum nobile flowers, Punica granatum peels, green peach 
aphid (GPA) and Olea europaea leaves have been reported in the control 
of insects (Grillo et  al., 2021; Konappa et  al., 2021). Also, silver 
nanoparticles derived from the leaf extract of Euphorbia hirta have been 
explored in the control of the causative agent of cotton bollworm, 
Helicoverpa armigera (Devi et al., 2014). The ability of copper oxide 
nanoparticles and zinc oxide nanoparticles to control Alternaria citri, a 
causative agent of citrus black rot disease in the plant has as well been 
reported (Lasso-Robledo et al., 2022). In addition, Sardar et al. (2022) 
used combined and individual zinc oxide and copper oxide to control 
citrus black rot disease in a potato dextrose medium. The fungal and 
insecticidal effects of copper nanoparticles have been demonstrated 
against Tribolium castaneum, a pest that affects grain (El-Saadony et al., 
2020). The major interactions which occur between plants and 
nanoparticles have been studied using different techniques, which 
include fluorescence spectroscopy, microscopy, and magnetic resonance 
imaging (Chhipa, 2019). The effectiveness of nanobiopesticides can 
be determined by the composition, surface charge, concentration, size, 
and chemical and physical changes (Chhipa, 2019).
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The critical role of nanoformulations in reducing active 
ingredient degradation, improving water solubility equilibrium, and 
increasing the biological availability of active ingredients is well 
understood, and this has helped in avoiding endemic pest infestation, 
plant injury, and economic loss by lowering the quality and quantity 
of agricultural products and foods (Syafrudin et al., 2021; Chaudhary 
et al., 2021a,c).

Because of their small size and larger surface area, nanopesticides’ 
chemical properties differ significantly from conventional pesticides, 
and these properties can be used to develop an efficient assemble of a 
structure with several advantages, such as the possibility of better 
interaction and mode of action at a target site of the desired pest. Nano-
sized products exhibit greater selectivity without impairing compound 
bioactivity against the target pathogen. Their increased toxicity can also 
increase pest penetration (Priya et al., 2018). Nanoparticle application 
reduces drifting and leaching issues and allows for the use of a smaller 
amount of active compound per area, as long as the formulation can 
provide optimal concentration delivery for the target insecticide for 
longer periods. There are several methods for creating pesticide 
nanoproducts, such as nanoemulsions, nanocapsules, and inorganic 
engineered nanoparticles (such as metal oxides, metals, and clays), and 
can be further developed to improve the efficacy of existing pesticides, 
reduce their environmental toxicity, or both.

On a general note, biopesticides have been reported to be capable of 
controlling pests but their sole use for sustainable agriculture may not 
be  realistic, majorly because they are not readily available in many 
locations and their mode of action can be very slow. Hence, they should 
be incorporated with the existing synthetic pesticides and be applied 
majorly close to the harvest period of crops since residual chemicals 
observed in plants are those majorly applied close to harvest periods. 
Furthermore, this will help to maintain suitable agriculture, pending the 
improvements of biopesticides.

3.4. Molecular mechanisms of the 
application of biopesticides

It is very important to understand the molecular mechanisms 
underlying the action of biopesticides at each stage of action to ensure 
better control strategies over pests. Understanding the biopesticides 
mechanisms of action against insect pests at the molecular level will 
allow for synergistic approaches among biopesticides, which have 
different mechanisms of action without an overlapping mechanism. This 
will also give allowance for the exploration of different toxic molecules 
present in biopesticides that can enlarge the pesticidal arsenal of these 
biopesticides. The widely used biopesticides and their mechanisms of 
action at the biochemical level have been described. However, the 
entomopathogenic fungus, Beauveria bassiana has gained wide 
acceptance and can be  used as a model to describe the molecular 
mechanism of biopesticides’ application.

Beauveria bassiana is an example of an entomopathogenic fungus 
that has been widely used as biopesticide because it is highly 
efficacious against a lot of arthropod hosts (Boomsma et al., 2014). 
However, to understand their effectiveness and sustainability against 
pests, there is a need to fully evaluate their molecular mechanism of 
pathogenicity beyond the conventional approach. The mechanism of 
pathogenicity of B. bassiana begins with adhesion to the host pest, 
penetration of cuticle, and colonization of the pest heaemocoel 
(Wojda et al., 2009).

The hydrophobins-coated aerial conidia of B. bassiana allow its 
hydrophobic interaction with the cuticles of insects (Holder and Keyhani, 
2005). This hydrophobicity of the B. bassiana aerial conidia can 
be influenced by the role that several genes expressed by B. bassiana play 
in lipid homeostasis. It has been revealed by transcriptomics analyses that 
there is an upregulation of gene expressions for hydrophobins and 
Metarhizium adhesion-like protein 1, 2 (MAD 1, MAD2) by B. bassiana 
which are crucial for its hydrophobic attachment to the cuticle of insect 
(Wang and St Leger, 2007). The transportation and storage of lipids in the 
conidia, and maintenance of the lipid homeostasis of B. bassiana is 
possible when mammalian-like perilipin 1 (MPL1) genes are over-
expressed (Chen et al., 2018). The role that the MPL1 gene plays is crucial 
because its deletion causes a reduction in the turgor pressure of the 
appressoria impairing the adhesiveness of B. bassiana (Wang and Leger, 
2007). Also, the surface sensing and signaling for the germination of 
conidia and formation of appressoria is made possible by CFEM-domain-
containing genes in B. bassiana (Sabnam and Barman, 2017). Proteomics 
has also revealed that B. bassiana secretes sphingomyelin 
phosphodiesterase, which allows it to disrupt the membrane of the host 
insect upon contact with the cuticles of the insect (Santi et al., 2019).

Once B. bassiana completed adhesion to the host insect, its conidia 
germinate and develop appressoria to allow penetration into the cuticle of 
the host. The penetration efficiency of B. bassiana usually increased when 
the structural outlook of the appressorium allows the synergistic 
functioning of enzymatic digestion and mechanical pressure (Singh et al., 
2017). The hyphae of B. bassiana germinate in the exoskeleton of the 
insect as the penetration proceeds and B. bassiana produces secondary 
hyphae inside the cuticle. The hyphae switch to blastospores (motile, more 
hydrophilic, and better evade the insect’s host immunity) when exposed 
to hyperosmotic environment in the haemocoel (Ortiz-Urquiza and 
Keyhani, 2016). Through transcriptomics, it has been reported that chitin 
synthase is responsible for chitin production, and β-1,3-glucanases soften 
the cell wall to allow germination, while several cell wall protein-
conferring genes give the cell wall of B. bassiana its building blocks (Tartar 
et al., 2005; Mouyna et al., 2013; Chen et al., 2018). Genes necessary for 
the cell body differentiation in B. bassiana include osmosensor Mos1, 
signaling-related genes, and mitogen-activated-protein kinases (MAPKs) 
like protein kinase A (PKA; Chen et al., 2018; Zhou et al., 2019). For 
penetration into the cuticle of the host insect, notable proteases, lipases, 
chitinases, and carboxypeptidases have been reported and these include 
subtilisin-like protease (Pr) isoform 1A (Pr1A) and 1B (Pr1B), cytochrome 
P450s (CYPs) and GH18 family chitinases (Lai et al., 2017).

In response to the penetration into the cuticle of the insect, the 
insect activates melanization and produces antimicrobial peptides 
(AMPs), reactive oxygen species (ROS), and protease inhibitors (Ortiz-
Urquiza and Keyhani, 2016). Stress management and immune-evasion-
related genes are upregulated to overcome the host insect defense 
mechanisms. Glutathione S-transferases (GSTs), catalases, peroxidases, 
superoxide dismutase (SODs), thioredoxins, and oxidoreductases are 
anti-oxidative enzyme-producing genes over-expressed in B. bassiana 
(Lai et al., 2017). Heat shock proteins (HSPs) are expressed to maintain 
internal cellular integrity against diverse types of stress (Santi et al., 
2019). Another mechanism used by B. bassiana is the production of 
secondary metabolites that are toxic to the insect cell. These metabolites 
include oosporeins, beauvericin, isarolides, beauverolides, tenellins, and 
bassianolide (Chandler, 2017). The biosynthesis of oosporein happens 
in the haemocoel and it is mediated by the over-expression of polyketide 
synthase (PKS) gene (Lai et al., 2017). It is interesting to note that a 
greater amount of beauverolides secreted by B. bassiana usually occur 
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when live insect tissues are present than in the presence of dead insect 
tissues (de Bekker et al., 2013). With these fantastic mechanisms of 
action, B. bassiana stands out among the entomopathogenic fungi, thus 
making it an attractive and widely used biopesticide against a lot of 
arthropod hosts.

Lastly, it is good to note that the complex mechanism of pathogenesis 
exhibited by B. bassiana cannot be fully understood by a singular omics 
approach, there is a need to examine the total expressions of different 
proteins, secondary metabolites, and their genes at every infection stage. 
Hence, researchers in different fields of omics need to collaborate to 
work with the same parameters to have a holistic view of the mechanism 
of action of different biopesticides.

4. Integrated pest management system

Integrated Pest Management (IPM) system refers to the mechanism 
of controlling pests using different techniques, such as habitat 
manipulation, biological and chemical control measures, use of pest-
resistant varieties, and the modification of cultural practices. These 
techniques can be merged to ensure the long-term protection of plants 
(Deguine et al., 2021). For instance, IPM has been used in the control of 
Tuta absoluta, a deadly pest that affects tomatoes globally, and has 
developed resistance to insecticides (Desneux et al., 2021). Here, the 
synthetic pesticides and biological pesticides include the release and 
conservation of sex pheromones and arthropod natural enemies 
(Desneux et al., 2021). The use of IPM has been reported to be cost-
effective and reduces the loss of crop yield (Hagstrum and Flinn, 2018). 
Currently, the adoption of IPM is limited owing to several factors, which 
include awareness, user preference, production industry, technology, 
policy, and culture (Deguine et al., 2021). It is, therefore, necessary to 
increase awareness of the inclusion of biological pesticides from 
microorganisms, plants, and nanobiopesticides in IPM. The awareness 
of many people about IPM will be an advantage to encourage producers 
to produce more of it, enhance its adoption and encourage researchers 
to carry out more research on it.

5. Future prospects and conclusion

A lot of crops are lost yearly to pest, but the emergence of 
synthetic pesticides have helped to reduce the loss. Nevertheless, the 
adverse effects of synthetic pesticides limit their use; thus, promoting 
the use of biological pesticides. Since biopesticides have proven as 
good alternative to chemical pesticides, it will be very important to 
explore them for maximum use in agriculture. The demand and 
availability of biopesticides are very poor, hence discouraging the 
producers and the users, respectively. Therefore, making grants or 
capital available for researchers, entrepreneurs, producers, and 
marketers will help to enhance the production and availability 
of biopesticides.

The shelf-life of biopesticides is short, as they require special 
temperatures and conditions for survival during transportation and 
storage. Hence, more research to unravel the mechanisms to make 
biopesticides more stable and improve their shelf-life will go a long way 
in increasing their efficiency.

The fact that biopesticides have no residual effects on the 
environment could serve as an advantage and a disadvantage. An 
advantage because it will not remain long enough to be dangerous to the 

plants, humans, and animals (which is one of the major demerits of 
synthetic pesticides), and it is a disadvantage because it will only protect 
crops as long as it has contacts with the pests, and pests that infest after 
their application would not be  affected and might need another 
application, thus leading to a higher cost implication and labor for 
farmers. Consequently, more research should be  carried out to 
incorporate bio-carriers and other sustainable methods, which can 
be used to enhance the persistence of biopesticides in the environment. 
Since biopesticides are highly specific in their mode of action, chemical 
reactions may occur if more than a biopesticide is applied to a crop that 
is affected by different pests. Hence, it is important to carry out more 
research on the compatibility of different biopesticides, which are likely 
to be  used together on the same crop. Furthermore, most research 
carried out on biopesticides was focused on yield and not the nutritional 
quality of the crops, an insight into the nutritional quality of 
biopesticides will enhance their use.

The Maximum Residual Limit for pesticides in local markets (not 
only for food crops that would be exported) should be enforced and 
awareness should be created on the effectiveness of biopesticides so that 
farmers can explore them. In addition, a mobile meter, device, or strip 
could be developed, made affordable and easily available to enhance the 
easy and rapid detection of pesticide levels in food crops. This will help 
farmers to take caution and also help the populace to avoid feeding on 
crops with a Maximum Residual Limit greater than the WHO specified 
value. Awareness of the effects of the indiscriminate use and health 
effects of biopesticides in humans will also help to promote a good 
environment and health. Due to the numerous challenges still 
encountered with the use of biopesticides, the sole use of biopesticides 
might not be feasible. Therefore, their incorporation with the existing 
synthetic pesticides will be a better means of preventing crops from 
pests and ensuring sustainable agriculture.
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