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Effect of ginsenosides on 
microbial community and enzyme 
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Root exudates contain plant metabolites secreted by the roots into the soil, such 
as ginsenosides secreted by the ginseng root. However, little is known about 
ginseng root exudate and its impact on the chemical and microbial properties 
of soil. In this study, the effect of increasing concentrations of ginsenosides on 
the chemical and microbial properties of soil was tested. Chemical analysis and 
high-throughput sequencing techniques were used to evaluate the soil chemical 
properties and microbial characteristics following exogenous application 
of 0.1 mg·L−1, 1 mg·L−1, and 10 mg·L−1 ginsenosides. Ginsenosides application 
significantly altered soil enzyme activities; SOM-dominated physicochemical 
properties were significantly reduced which altered the composition and 
structure of the soil microbial community. In particular, treatment with 10 mg∙L−1 
ginsenosides significantly increased the relative abundance of pathogenic fungi 
such as Fusarium, Gibberella and Neocosmospora. These findings indicate that 
ginsenosides in root exudates are important factors that may lead to increased 
deterioration of soil during ginseng cultivation and provided new research 
direction for the subsequent study on the mechanism of interaction between 
ginsenosides and soil microbial communities.
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1. Introduction

Ginseng (Panax ginseng C. A. Meyer) is a perennial herb with a long planting history in the 
world and an important cash crop (Baeg and So, 2013). With the rapid economic development 
and shortage of soil resources, the intensive cultivation system characterized by continuous 
monoculture has become an important part of the current industry of ginseng production and 
is widely used in the world (Banerjee et al., 2019). Numerous studies have shown that ginseng 
has a strong contraindication to the soil, and continuous planting of ginseng seems to cause its 
roots to rust and rot due to soil sickness, which hinders the healthy growth of ginseng (Wang 
et al., 2016; Dong L.-L. et al., 2017; Dong L. et al., 2017; Zhang et al., 2022). Consequently, the 
yield and quality of P. ginseng cannot be  guaranteed, causing huge economic losses and 
impeding the healthy and sustainable development of the ginseng industry (Tong et al., 2021). 
Studies to date suggest that several factors are associated with ginseng soil sickness, including 
deterioration of soil physicochemical properties and an imbalance in soil microbial communities 
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(Dong L.-L. et al., 2017; Dong L. et al., 2017; Bao et al., 2020). The 
diversity and composition of soil microbial communities are essential 
to maintain soil health and quality (Garbeva et  al., 2004). And, 
changes in microbial community diversity and composition are 
associated with a number of biotic or abiotic factors, such as cropping 
system, root secretions, and soil type (Green et al., 2008; Berg and 
Smalla, 2009).

More and more studies are confirming the relationship between 
root exudates and soil microbial communities (Fujimatsu et al., 2020). 
Phenolic acids are one of the important substances of root exudates 
and produced by various plants (Ma et al., 2015; Wang et al., 2018; Lin 
et al., 2019). For example, p-hydroxybenzoic acid released from roots 
of cucumber can promote the growth of pathogenic fungi and increase 
the density of inter-root bacteria and fungi (Zhou et al., 2012). Root 
exudates can also directly suppress pathogens or alter the composition 
of microbial communities. In Arabidopsis, the gene cluster responsible 
for the synthesis of specific metabolites (e.g., triterpenoids, esters, and 
coumarins) would prenyltransferase-terpene synthase (PT-TPS) 
be altered to promote de novo functionalization of genes, a result that 
reveals the function of metabolites in being able to regulate microbial 
communities (Lundberg et  al., 2012; Stringlis et  al., 2018; Chen 
et al., 2019).

Ginsenosides are the major active compounds in ginseng, and 
ginseng contains at least 20 different ginsenosides, accounting for 
more than 6% of the plant biomass (Yang et al., 2015; Zhang et al., 
2021). As the main root metabolites of the Panax L., ginsenosides can 
be released into the rhizosphere soil through root exudation, leaching 
or decomposition of plant residues (Yang et al., 2015). Although many 
studies have been conducted to investigate the pharmacological 
properties of ginsenosides, little is known about the ecological role of 
these important secondary metabolites once released from Panax 
L. into the surrounding soil (Ng, 2006). Furthermore, more than 65 of 
the known ginsenosides at different concentrations have been shown 
to play an important role in the growth of ginseng, and it has been 
demonstrated that many ginsenosides have a stimulating effect on the 
growth of important ginseng pathogens such as Pythiumirregulare, 
Cylindrocarpon destructans, Phytophthora cactorum, and Fusarium 
solani (Nicol et al., 2003; Yousef and Bernards, 2006; Li et al., 2020). 
However, there is limited information on the effect of different 
concentrations of ginsenosides on microbial communities leading to 
soil sickness.

In this study, we aimed to (1) investigate whether ginsenosides 
might be  one of the main causes of soil sickness during ginseng 
cultivation; and (2) evaluate the effects of different concentrations of 
ginsenosides on the soil microbial community.

2. Materials and methods

2.1. Field experiment description and 
design

The soil used in this experiment was obtained from a ginseng 
plantation in Baixi Forestry Field, Fusong County, Jilin Province 
(127°01′-128°06′E, between 1°42′-42°49′N), which is located in south 
eastern Jilin province, upstream of the Songhua River, and has a 
temperate continental monsoon climate. Samples of soil were collected 
from the ginseng rhizosphere. The basic physicochemical properties of 

this dark brown loan soil were pH, 5.61; soil organic matter (OM) 
content, 139.51 (g∙kg−1); electrical conductivity (EC), 40.2 (μs·cm−1); 
fast-acting phosphorus (AP), 35.55 (mg∙kg−1); fast-acting potassium 
(AK), 659.3 (mg∙kg−1); and fast-acting nitrogen (AN), 95.68 (mg∙kg−1).

Sampling was carried out at the sampling location in 2019 using 
the S-shaped random multi-point mixed sampling method, taking the 
uppermost 0–20 cm of soil from each processing group. And, the five 
soil sampling points were mixed into one composite sample. This 
method meant that four composite soil samples were obtained from 
each treatment. After sample collection, soil fauna and plant residues 
were removed and 10 kg were taken in sterile sampling bags according 
to the quadrat method and brought back to the laboratory. One part 
of the samples was dried naturally in a ventilated room and then 
passed through a 2-mm mesh size sieve, and used for determining the 
physicochemical properties and enzymatic activity of the soil; the 
other part was used for microbial diversity analysis.

2.2. Experimental design

Sub-samples of soil (200 g) were added to 100 ml of distilled water 
and incubated in a constant temperature incubator at 25°C for 15 d. 
The three treatment groups, SP_1, SP_2, SP_3 represent the three 
ginsenosides (Shanghai yuanye Bio-Technology Co., Ltd) 
concentrations, 0.1 mg·L−1, 1 mg·L−1, and 10 mg L −1, in 20 ml of 
solution, added to soil samples and incubated for 15 d. An untreated 
control group was included for each experiment. All soil samples were 
placed in wide mouth bottles containing test tubes with 5 ml deionized 
water, incubated at a constant temperature of 25°C, and the water 
content measured every 3 d and replenished when insufficient. In this 
experiment, 4 treatment groups were set up, and 4 parallel trials were 
conducted for each treatment group, totaling 16 test samples. On the 
90th day, samples of culture were removed, stored at −80, and 3 g of 
fresh soil added.

2.3. Soil enzyme activity analysis

The pH of the soil was determined at a ratio of 1: 2 using a glass 
electrode pH meter (Jiang et al., 2019); EC was determined using a 
conductivity meter (Meng et al., 2013) and OM was determined using 
the potassium dichromate oxidation method (Flowers and Bremner, 
1991) AP in soil was determined by leaching molybdenum antimony 
anti-colorimetric method (Kovar and Pierzynski, 2009); AK was 
determined by extraction using the acetamide method (Tardy et al., 
2015), and AP was determined by phosphor molybdenim blue 
colorimetric method (Matula, 2010).

Important enzymes involved in soil nutrient cycling processes and 
microbial metabolism including catalase (S-CAT), laccase (SL), urease 
(S-UE), and sucrase (S-SC) were determined for each sample. Urease 
(S-UE) activity was determined using urea as substrate by colorimetric 
method with NH3

−N. Laccase (SL) was determined using ABTS as 
substrate, incubated for 1 h, and detected at 420 nm by UV 
spectrophotometer (Eichlerova et  al., 2012) Sucrase (S-SC) was 
determined using sucrose as a substrate and the glucose produced was 
measured colorimetrically (Shi et al., 2008). Catalase (CAT) activity 
was determined in the samples by adding H2O2 solution (Rodíguez-
Kábana, 1982).
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2.4. Soil DNA extraction and sequencing

Total DNA was extracted from 0.5 g of soil sample using the 
E.Z.N.A.® soil DNA kit (Omega Bio-Tek, Norcross, GA, United States; 
Wang et al., 2020) according to the manufacturer’s instructions, and 
DNA concentration and purity were determined using a 
NanoDrop2000. Each soil sample was extracted in triplicate and the 
three DNA solutions were thoroughly mixed. The DNA samples were 
stored in a container in a − 20°C refrigerator for subsequent analysis.

Primers 338F and 806R were used to amplify the V3-V4 variable 
region of the 16srRNA gene. Transcript amplicons were used to 
amplify the fungal gene spacer region using primer ITS1 (Nottingham 
et al., 2018). The initial denaturation steps were 5°C pre-denaturation 
for 3 min, 27 cycles (95°C denaturation for 30 s, 55°C annealing for 
30 s, 72°C extensions for 30 s), followed by 72°C stable extensions for 
10 min, and finally storage at 4°C (PCR instrument: ABI GeneAmp® 
model 9,700). the PCR reaction system was: 5× Trans Start Fast Pfu 
buffer 4 μL, 2.5 mM dNTPs 2 μL, upstream primer (5uM) 0.8 μL, 
downstream primer (5uM) 0.8 μL, Trans Start Fast Pfu DNA 
polymerase 0.4 μL, template DNA 10 ng, made up to 20 μL 3 replicates 
per sample.

2.5. Illumina Miseq sequencing and data 
processing

PCR products from the same sample were mixed and recovered 
using a 2% agarose gel, purified using the AxyPrep DNA Gel 
Extraction Kit (Axygen Bios-sciences, Union City, CA, United States), 
detected by 2% agarose gel electrophoresis, and quantified using a 
Quantus™ Fluorometer (Promega, United  States). A fluorometer 
(Promega, USA) was used to quantify the recovered products. 
Sequencing was performed using Illumina’s Miseq PE300 platform 
(Shanghai Majorbio Bio-Pharm Technology Co Ltd.). The raw reads 
were deposited into the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (SRA) database 
(PRJNA886310).

The raw sequenced sequences were quality-controlled using faster 
(Nottingham et al., 2018) software, spliced using FLASH (Magoc and 
Salzberg, 2011) software, and sequences were OTU clustered and 
chimeras removed based on 97% (Goebel and Stackebrandt, 1994; 
Edgar, 2013) similarity using UPARSE (Edgar, 2013) software. Each 
sequence was annotated with species classification using an RDP 
classifier (Wang et al., 2007), compared to the Silva 16S rRNA database 
(v138), and a comparison threshold of 70% was set.

2.6. Statistical analysis

Experimental data were organized using Microsoft Excel. The 
statistical software SPSS 21.0 was used for one-way analysis of variance 
(ANOVA), and the value of p threshold of <0.05 was used to 
characterize significant differences between the three groups of data. 
Sequences were clustered at 97%, similarity analysis of OTUs was 
performed using UPARSE software, and chimeras were removed using 
UCHIME software. The analysis was performed according to different 
classification levels, richness and diversity indices. In the heat map 
analysis, Spearman’s rank correlation coefficients were calculated to 

assess the relationship between soil properties and microbial 
communities. Principal coordinate analysis (PCOA) was performed 
based on Bray-Curtis distance matrices in bacteria and fungi, 
respectively, to visualize pairwise community differences between 
samples. VIF (Variance Inflation Factor) was used to filter out the 
environmental factors with VIF > 10.

All graphics are built using the drawing software GraphPad Prism 
8.01 and the Majorbio platform.

3. Result

3.1. Effects of different concentrations of 
ginsenoside on soil physicochemical 
properties and enzyme activities

3.1.1. Soil physicochemical analysis
Results from ANOVA showed that most soil physicochemical 

properties (pH, EC, AN, AP, AK and OM) changed significantly 
following application of the different ginsenosides concentration 
treatments (Table 1). The overall soil pH was significantly lower than 
the control and soil acidity increased after the application of different 
concentrations of ginsenosides treatments. In addition, EC, AN, and 
AK contents were significantly increased by 8.5, 7.33, and 33.47% in 
the SP_2 treatment group compared to the untreated control (CK) 
(p < 0.05). In the SP_1 group, EC and AN were the lowest, differing 
from the untreated control group (CK) by 4.77, 12.93, and 13.91%, 
respectively (p < 0.05). There was no significant difference in AP levels 
between the SP_1 and SP_2 groups. However, the SP_3 group had a 
significantly lower AP value than the untreated control (CK) group (at 
2.59%). In addition, the OM values were significantly lower in the 
three different concentration treatment groups compared to the 
untreated control (CK).

3.1.2. Soil enzyme activity analysis
Compared to the untreated control (CK), we observed significant 

differences with a significant decrease in CAT activity, which was 
directly correlated with an increase in ginsenosides concentration 
(Table 2). Urease activity (S-UE) increased in the SP_1 group, but with 
an increase in ginsenosides concentration, the S-UE activity in the 
SP_2 group and SP_3 group significantly decreased compared to the 
untreated control (CK). In contrast, the S-SL activity of the SP_2 
group was significantly higher than that of the SP_1 and SP_3 groups, 
which was not significantly different from that of the untreated control 
(CK). Sucrase (S-SC) activity gradually decreased, and in the SP_1 
group was close to that of the untreated control (CK). However, the 
activity gradually decreased with an increase in ginsenosides 
concentration. The four soil enzyme activities showed increased 
activity in each individual treatment group, but overall decreased with 
the increase in ginsenosides concentration.

3.2. Effect of different concentrations of 
ginsenosides on the diversity of soil 
bacterial communities

A total of 693,116 high-quality 16srRNA sequences were obtained 
from the 16 soil samples these sequences have been distributed with 
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97% similarity in as many different OTUs, with flat a and b dilution 
curves in the samples for measuring the changes in microbial 
communities at different concentrations of ginsenosides. This 
indicated that the data obtained from this study was large enough for 
bacterial and fungal diversity analysis.

The α-diversity indices, including the number of species observed 
and the diversity and richness indices of bacteria and their fungal 
pools, were different in all soil samples (Table 3). For bacteria, the 
community diversity and richness (Shannon = 4.122, ace = 456.596, 
Chao1 = 456.335) of soils in the SP_3 group was the lowest of all 
samples (p < 0.05); for fungi, SP_1 (Shannon =4.122, ace =249.145, 
Chao1 = 247.547) was the lowest (p < 0.05). In particular, the diversity 
indices of bacteria and fungi showed similar trends. Fungal and 
bacterial alpha diversity indices were significantly different between 
the SP_3 and untreated control (CK) groups. The estimated abundance 
of bacteria and fungi (ACE and Chao1) reached the highest values 
recorded under SP_2 and SP_1, respectively. The SP_3 group resulted 
in a significant reduction in the number of bacterial and fungal 
communities OTUs under the three different treatments (Figure 1). 
This indicates that the species richness and diversity of bacterial and 
fungal communities in the soil were differentially affected in soils 
treated with different concentrations of ginsenosides.

3.3. Soil microbial community distribution

Principal coordinate analysis (PCoA) grouped the soils from the 
four groups (Figure 2C) and, analysis of similarity based on Bray-
Curtis distance showed significant differences in the distribution of 
bacterial communities among the four groups. Interestingly, the other 
three groups clustered on the same side but distantly from the SP_3 
group (Figure 2C). The hierarchical clustering analysis (Figure 2A) 
was validated. In particular, the other three groups clustered together 
with the SP_3 group at a clustering level of 0.1 (Figure  2B). The 

distribution of fungal communities in the four groups was also clearly 
different, with the SP_3 group being very distant from the other three 
groups (Figure  2D). The distribution of bacterial and fungal 
communities showed that the microbial populations dramatically 
changed after the application of various ginsenoside concentrations.

3.4. Soil microbial community structure

The four groups were also studied for soil microbial community 
composition at different levels. The main bacterial families 
were  Xanthobacteraceae, Chthoniobacteraceae, Gaiellales, 
Sphingomonadaceae, Gaiellaceae, Mycobacteriace, Methyloligellaceae 
Burkholderiaceae, Rhodanobacteraceae, Nocardiodaceae, 
Nocardionidaceae, Rhizobiaceae, Propionibacteriaceae, etc., which 
accounted for about 65% of the total soil bacteria (Figure 3A). In 
addition, some species were emphasized despite their low 
relative  abundance, such as Frankiaceae, Hyphomicrobiaceae, 
Xiphinematobacterace, Pyrinomonadaceae, etc. However, the 
relative abundances of these clades differed significantly between 
the four groups, especially in the relative abundances of 
Actinobacteria, Acidobacteria, Chloroflexi, and Gemmatimonadetes 
(p < 0.05) (Figure  3C). Compared to, Chthoniobacteraceae, 
Mycobacterium, and Rhodanobacteraceae the relative abundance of 
the SP_3 group was significantly higher (Figure  3A). Gaiellales 
showed a significant decrease in relative abundance with increasing 
concentration of exogenously added ginsenosides. The relative 
abundance of Gaiellaceae and others in SP_2 increased significantly.

As in (Figure 3B), among the dominant fungal genera, Mortierella, 
Neocosmopora, Exophiala, Pseudogymnoascus, Trichoderma, 
Penicillium, Trichocladium, Soilcoccozyma, Fusarium unclassified_p__
Ascomycota, Tausonia, etc. together accounted for about 80% of the 
soil. Distinct from the other treatment group. Notably the relative 
abundance of Pseudogymnoascus reached the highest in the SP_2 

TABLE 1 Changes of soil physical and chemical properties under different concentrations of ginsenosides.

Parameter Untreated control 
(CK)

SP_1 0.1 mg∙L−1 SP_2 1 mg∙L−1 SP_3 10 mg∙L−1

pH 5.61 ± 0.03ab 5.64 ± 0.06a 5.43 ± 0.06c 5.56 ± 0.11b

EC (us∙cm−1) 40.20 ± 2.42c 35.43 ± 4.53d 48.17 ± 1.26a 43.63 ± 0.39b

AN (mg∙kg−1) 95.68 ± 2.61b 82.75 ± 5.06c 103.01 ± 6.40a 95.37 ± 2.58b

AK (mg∙kg−1) 659.30 ± 14.9b 577.56 ± 17.42c 692.77 ± 8.81a 506.06 ± 13.41d

AP (mg∙kg−1) 35.55 ± 0.39a 34.40 ± 0.78a 35.10 ± 0.69a 32.96 ± 0.46b

OM(g∙kg−1) 139.51 ± 3.78a 125.60 ± 5.72b 127.39 ± 2.10b 128.41 ± 4.28b

Values in the table are “mean ± standard deviation.” Different lowercase letters in the same column indicate significant differences (p < 0.05).

TABLE 2 Effects of different concentrations of ginsenosides on enzyme activities in soil.

Untreated control 
(CK)

SP_1 0.1 mg∙L−1 SP_2 1 mg∙L−1 SP_3 10 mg∙L−1

CAT(U∙g−1) 426.03 ± 6.22a 387.22 ± 16.35b 334.59 ± 12.50c 306.96 ± 4.59d

S-UE (U∙g−1) 775.80 ± 2.90b 796.56 ± 2.42a 585.10 ± 2.89c 400.33 ± 5.57d

S-SL (U∙g−1) 93.48 ± 1.24a 82.50 ± 1.44b 91.19 ± 1.54a 60.28 ± 1.37c

S-SC (U∙g−1) 23.18 ± 0.87a 22.95 ± 1.24a 10.43 ± 0.46c 16.99 ± 0.74b

CAT: catalase; SL: laccase; S-UE: urease; S-SC: sucrase.
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group. Compared with the untreated control (CK), the community 
structure of both fungi and bacteria changed significantly after 
application of ginsenosides, verifying the speculation of this study.

The relative abundance of the pathogenic fungi Fusarium, 
Gibberella, and Neocosmospora increased with an increase in 
ginsenosides concentration (Figure 4). In contrast to the untreated 
control (CK), the relative abundance of the three pathogenic bacteria 
was significantly enhanced in the SP_3 treatment group. Interestingly, 
the trend of relative abundance change was similar in the three groups, 
with SP_1 relative abundance higher than SP_2. Ilyonectria, unlike the 
other three groups of pathogenic fungi, showed less change in relative 
abundance after exogenous application of ginsenoside.

3.5. Functional prediction of soil microflora 
under different concentrations of 
ginsenoside treatment

The microbial community composition of soil samples was closely 
related to environmental conditions, which have been shown to 
be highly relevant to microbial community function. For example, 

microbial communities may differ significantly in similar 
environments, while their community functions may be  similar 
(Gibbons, 2017). Therefore, in addition to revealing the composition 
and interactions of microbial communities in soil, it is particularly 
important to reveal differences in the metabolic functions of microbial 
populations in soil samples treated with different concentrations of 
ginsenosides. In this study, we used Tax4Fun as a reference database 
to explore the changes in metabolic potential in the soil after 
exogenously applied ginsenosides treatment at different concentrations 
(Aßhauer et al., 2015). This method was used by comparing metabolic 
pathways predicted based on genes and genomic encyclopedia 
(KEGG) between the treated and control samples (Aßhauer et al., 
2015). Inter-root soil bacterial functions include six classes of primary 
metabolic pathways predicted as Cellular Processes, Environmental 
Information Processing, Genetic Information Processing, Human 
Diseases, and Metabolism The predicted results (Table 4) showed that 
the main pathways of KEGG predicted at level 1 in the treated and 
control samples were controlled by Metabolism and Environmental 
Information Processing (65 and 17%). Metabolism and Organismal 
Systems pathways were significantly different from the other treatment 
groups (p < 0.05).

TABLE 3 Microbial community under different concentrations of ginsenosides α diversity index.

Bacteria Fungi

Index Shannon Simpson ace Chao1 Shannon Simpson ace Chao1

Untreated 

control (CK)
4.413a 0.027a 510.726a 512.206ab 3.320b 0.104a 274.237a 275.701a

SP_1 4.298a 0.033a 493.174a 503.522ab 3.345b 0.111a 284.186a 293.375a

SP_2 4.427a 0.027a 508.874a 520.929a 3.218ab 0.118a 262.369a 263.535a

SP_3 4.122b 0.340a 456.596b 456.335b 2.927b 0.178b 249.145b 247.547b

Different lowercase letters indicate significant differences under different concentrations of ginsenoside treatment (p < 0.05), data are mean values.

FIGURE 1

Venn diagram of microbial communities following treatment of soil with different concentrations of ginsenosides. (A) Bacterial community; (B) fungal 
community.
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According to the results of FUNGuild functional prediction 
analysis (Figure  5), the fungal community trophic types included 
pathotrophs, saprotrophs, and symbiotrophs. The untreated control 
(CK) was dominated by saprotrophs with litter saprotrophs accounting 
for 26% of the total community. Plant-pathogens were significantly 
lower in the three treatment groups, and litter saprotrophs were 
significantly higher (7%) in the SP_2 treatment group than in the 
untreated control (CK) group. Animal pathogens were significantly 
increased in the SP_3 treatment group compared to all the other 
treatment groups.

3.6. Relationship between key soil factors, 
enzyme activity, and microbial structure

As might be expected, environmental factors have an effect on the 
growth of ginseng. Five factors with low multicollinearity were 
screened for environmental factors (Table 5). Key soil factors such as 
OM, and EC showed significant correlations with increasing 
ginsenosides concentrations. The effects of three different 
concentrations of ginsenosides on soil nutrient factors and enzyme 
activities were investigated and showed complex relationships. Heat-
map-based correlation analysis showed that Sphingomonadaceae, and 
Mycobacteriaceae had the highest relative abundance compared to 

other families and were significantly affected by AK (*p ≤ 0.05; ** 
p ≤ 0.01) (Figure  6A). Gaiellaceae belonging to the phylum 
Actinomycetes are usually present in the soil as beneficial bacteria, 
and showed a significant positive correlation with S-SL, and 
AK. Unlike the Gaiellaceae, Rhizobiaceae, and Rhodanobacteraceae 
showed a significant negative correlation with AK, and S-SL. Bacteria 
such as Burkholderiaceae, and Sphingomonadaceae, in contrast, 
showed significant negative correlations (**p ≤ 0.01; ***p ≤ 0.001) with 
OM and EC, while Nocardioidaceae showed significant positive 
correlations with OM. S-SL and had more significant effects on the 
bacterial community compared to S-SC.

Soil factors and enzymatic activity had significant effects on 
fungal genera, and at the genus level, the most abundant were 
Mortierella, Neocosmospora, and Exophiala. Spearman correlation 
coefficients were also used to assess the relationship between the 
top 20 fungal genera, soil factors, and enzyme activity. Tausonia and 
Neonectria, Titaea were significantly positively correlated with AK, 
and S-SL (**p ≤ 0.01; ***p ≤ 0.001). For Mortierella, the factor that 
significantly mimicked the abundance of this fungus was AK 
(*p ≤ 0.05). AK and S-SL were significantly negatively correlated with 
Neocosmospora and Penicillium (**p ≤ 0.01; ***p ≤ 0.001) (Table 5B). 
The genus was also positively correlated with EC and OM, respectively. 
EC was found to be  a dynamic factor, positively correlated with 
Saitozyma and Trichocladium, and negatively correlated with 

FIGURE 2

Principal component analysis of microbial communities following treatment of soil with different concentrations of ginsenosides. (A) Principal 
component analysis of bacterial community; (B) principal component analysis of fungal community; (C) hierarchical cluster analysis of bacterial 
samples; (D) hierarchical cluster analysis of fungal samples.
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Pseudogymnoascus. Saitozyma and Exophiala were positively 
correlated with S-SC and OM (Figure 6B). Pathogenic Fusarium was 
negatively correlated with both environmental factors and enzyme 
activity (*p ≤ 0.05).

4. Discussion

4.1. Effects of different concentrations of 
exogenous ginsenosides addition on soil 
chemistry and enzyme activity

Plants and microorganisms can grow in soil, and the 
physicochemical characteristics and enzymatic activities of soil have 
an impact on both the organization of microbial communities and 
plant growth and development (Congreves et  al., 2015; Lemaire 
et al., 2019). An important foundation for assessing plant growth is 
provided by soil (AN, AP, AK), organic matter, pH, and EC, which 
also respond to soil fertility and health. The experiment’s 
fundamental hypothesis was that the soil’s physicochemical 
characteristics would vary depending on the ginsenoside 
concentration used. This hypothesis was supported by the results, 
which showed that the soil pH values in the SP_2 and SP_3 groups 
were considerably lower than those in the CK group (p < 0.05). This 
is consistent with earlier research showing that soil degradation is 
significantly influenced by the decline in soil pH (You et al., 2015; 
Gibbons, 2017; Zhang et al., 2020). It has been reported that soil pH 

affects the content of AN in soil (Curtin et al., 1998), also supported 
by our research (Table 1). Variations in soil pH following exogenous 
application of various ginsenoside concentrations may result in 
changes in soil N content, influencing the concentration of NH4, 
NO3

−, and causing soil “Nitrogen” production in the soil–plant 
system (Klein and Logtestijn, 1994). Organic nitrogen mineralization 
contributes to changing soil pH by initially consuming and releasing 
H+ through nitrification during ammonification (Xu et al., 2006). 
The decrease in soil pH leads to changes in AN content. Phosphorus 
has a significant positive correlation with ginseng root weight and 
root diameter and is a key soil factor affecting ginseng yield and 
quality (Fang et al., 2019), and AP content decreased significantly 
with increasing ginsenoside concentration in this study. These 
results suggest that different concentrations of ginsenosides are one 
of the important factors in regulating soil physicochemical 
properties. Soil enzyme activities also differed compared to the 
changes in soil physicochemical properties in the three treatment 
groups. Soil sucrase, phosphatase, urease, and catalase activities were 
significantly reduced in all three treatment groups compared to CK 
(Table 2). The lowest activity of the four soil enzymes was reached 
in the SP_3 treatment group. It has been reported that higher soil 
urease activity accelerates the rate of alkaline nitrogen production 
and increases the content of fast-acting nitrogen (Meng et al., 2012). 
The decrease in urease activity in this study was speculated to 
be probably due to the high concentration of exogenously added 
ginsenoside in the SP_3 treatment group, which led to a decrease in 
enzyme activity due to the decrease in soil nutrient content.

FIGURE 3

The difference in microbial community composition and relative abundance at phylum level. (A) Community composition at the level of bacterial 
family; (B) community composition at the level of fungi genera; (C) difference in relative abundance at the level of bacterial phylum; (D) difference in 
relative abundance at the level of fungal phylum (*0.01 < p ≤ 0.05, **0.001 < p ≤ 0.01, ***p ≤ 0.001).
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4.2. Effect of different concentrations of 
exogenous ginsenosides on soil microbial 
community

There is growing evidence that plants can alter soil microbial 
communities by secreting bioactive substances into the inter-
rhizosphere. Here we found that exogenous application of different 
concentrations of ginsenosides may lead to changes in soil 
microbial communities. Further findings suggest that ginsenosides 

can enrich or inhibit fungal and bacterial communities. The 
application of different concentrations of ginsenosides reduced the 
abundance and diversity of bacterial communities in the soil. In 
addition, bacterial populations also decreased gradually with 
increasing ginsenosides.

concentration. This indicates that ginsenosides changed the 
structure and composition of the soil microbial community, resulting 
in the proliferation of certain microbial taxa as dominant species in 
the soil environment, but at the same time, the metabolic types of the 

FIGURE 4

Relative abundance of pathogenic fungi under different concentrations. (A) Fusarium (B) Gibberella (C) Ilyonectria (D) Neocosmospora (relative 
abundance error bar represents the standard error of the average value of four repetitions). The letters indicate significant difference at p< 0.05 
according to one-way analysis of variance (ANOVA) among treatments.

TABLE 4 Relative abundance of primary metabolic functions of soil bacterial communities under different concentrations of ginsenosides.

Pathway level 1 Untreated control (CK) SP_1 SP_2 SP_3

Cellular processes 0.0356 a 0.0371 b 0.0365 ab 0.0362 ab

Environmental information processing 0.1779 b 0.1821 c 0.1798 bc 0.1624 a

Genetic information processing 0.1050 a 0.1058 a 0.1037 a 0.1112 b

Human diseases 0.0156 a 0.0159 a 0.0156 a 0.0172 b

Metabolism 0.6540 b 0.6475 a 0.6525 b 0.6610 c

Organismal systems 0.0103 b 0.0102 a 0.0103 b 0.0105 c

Different lowercase letters indicate significant differences under different concentrations of ginsenoside treatment (p < 0.05), data are mean values.
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bacterial community tended to be homogeneous Loss of microbial 
diversity and abundance in soils can compromise a range of system 
services (Shi et al., 2018). For example, the application of different 
concentrations of ginsenosides decreased the levels of Acidobacteria 
and Actinobacteria phyla in the soil. Acidobacteria is an important 
group of soil microorganism, mostly acidophilic, suitable for 
proliferation in acidic environments, but with slow growth rate (Shi 
et  al., 2018). It was found that the maximum abundance of 
Acidobacteria was found in undisturbed forest soils, and when the soil 
nutrient structure, changed faster-growing microorganisms would 
replace Acidobacteria, resulting in a decrease in their abundance 
(Ward et al., 2009). This may also be the reason for the decrease in the 
number of Acidobacteria in the SP_3 treated group, i.e. highest 
ginsenosides treatment. This was confirmed by successive decline in 
the relative abundance of Actinobacteria after treatment with 
increasing concentrations of ginsenosides. Actinobacteria are 
oligotrophic bacteria and a decrease in relative abundance in the three 
treatment groups may be due to a decrease in soil fast-acting nutrients 
after ginsenosides application.

Exogenous application of different concentrations of ginsenosides, 
increased soil acidity gradually, leading to an increase in abundance 
of acidic bacteria. However, Xanthomonadaceae is a group of 
organisms suitable for growth under weakly acidic conditions, and the 

number of Xanthomonadaceae was significantly reduced following 
ginsenosides treatment. Xanthomonadaceae consume soil nutrients 
and infest the xylem of plants as nitrate nitrogen gradually decreases 
during the growth of ginseng (Matula, 2010). Dong L.-L. et al. (2017) 
and Dong L. et  al. (2017) showed that the Xanthomonadaceae 
population increased by 160% during three consecutive years of 
western ginseng cultivation. The increase in Xanthomonadaceae 
population may have led to an increase in various plant diseases 
(Mwangi et al., 2007). It is therefore suggested that the increase in the 
number of Xanthomonadaceae may have been due to the exogenous 
application of different concentrations of ginsenosides. Therefore, it is 
speculated that ginsenosides may have promoted the growth of 
root microorganisms.

A study conducted by Canadian scholars on Panax quiquefolium 
L. found that root exudate containing ginsenosides significantly 
promoted the growth of the soil-borne pathogens Phytophthora 
cactorum and Pythiumirregulare; while Trichodermahamatum showed 
a slight inhibition under the same conditions (Nicol et al., 2003). This 
suggests that ginsenosides can significantly affect the growth and 
reproduction of pathogenic microorganisms and the dynamic changes 
in the rhizosphere microbial community. Changes in the composition 
of fungal communities depend mainly on changes in the microbial 
community in the soil, with most microorganisms producing 
symbiotic or commensal associations that play a role in nutrient 
uptake and growth promotion, but inter-rhizosphere ginsenosides can 
lead to poor defence and growth of secondary soil-borne pathogens 
(Bednarek et al., 2010; Pascale et al., 2020). Previous studies have 
shown that ginsenosides stimulate the growth of soil-borne pathogens 
of Panax quiquefolium L. and Panax notoginseng, destroying for 
example Cylindrocarpon destructans, Fusarium solani, Phytophthora 
cactorum, and Pythium irregulare (Nicol et al., 2002, 2003). In this 
study, the increase in ginsenosides concentration significantly altered 

FIGURE 5

Prediction distribution of Tax4Fun gene function.

TABLE 5 VIF of environmental factors.

Fungus/ 
Bacteria

Treatment

EC OM AK S-SC S-SL

VIF 1.19 1.20 1.35 1.00 1.00

VIF: variance expansion factor; EC: electrical conductivity; OM: soil organic matter; AK: 
acting potassium; S-SC: Sucrase; S-SL: Laccase.
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the core fungal group and, at the same time, the top 20 most abundant 
core fungal families.

Results further show that Fusarium, Gibberella, Ilyonectria, and 
Neocosmospora fungal families were significantly enriched in soil 
treated with ginsenosides. As pathogenic fungi, an increase in these 
organisms contributes to the increased chance of ginseng disease 
(Dong L.-L. et al., 2017; Dong L. et al., 2017). The interaction between 
Fusarium and the secondary metabolite cinnamic acid may exacerbate 
soil diseases (Ye et  al., 2004). The increased concentration of 
ginsenosides promoted the growth of Fusarium, contributing to an 
increased in relative abundance. Numerous studies have shown that 
Fusarium dominates root rot causative bacteria and is the main 
causative agent of ginseng root rot (Ye et al., 2004). With the growth 
of pathogenic fungi and weak invasion causing the ginseng defence 
response to be stimulated, the fungal population increases, and the 
secondary metabolites exacerbate the occurrence of soil diseases and, 
the presence of the highly invasive Ilyonectria fungus disrupts the 
plant defence barrier (Wu et al., 2020). The reason for this occurrence 
could be the high production of hydrolytic enzymes, oxidation of 
phenolic compounds and sequestration of iron, Fe, by Ilyonectria 
during invasion (Rahman and Punja, 2005), and these studies are 
highly consistent with results of the present study. When Ilyonectria 
species are not dominant, they may also promote the growth and weak 
infestation of by other fungi such as Chaetomidium, Candida, 
Scopulariopsis, Sclerotinia, and Penicillium, thus aggravating soil 
diseases (Zhou et al., 2017). Therefore, we speculate that when the 
saponin concentration reaches a certain level it may be enriched with 
potentially pathogenic fungi.

4.3. Coupling environmental factors to soil 
microbial community structure

Soil physicochemical properties, enzyme activity, and 
microbial community, as important factors interact with each 

other to maintain the microecological environment of plant roots 
(Xu et  al., 2021). In this study, we  found that different 
concentrations of ginsenosides had a significant effect on the 
microbial diversity of ginseng rhizosphere soil, which also led to 
significant changes in soil physicochemical indicators and enzyme 
activities, in agreement with the results of previous studies (Shukla 
et al., 2011).

With an increase in ginsenosides concentration, soil 
physicochemical properties had a significant effect on the soil 
microbial community (Shukla et al., 2011) and EC indicating that the 
application of exogenous ginsenosides led to increased salinization of 
the soil. Increased salinization is one of the important features 
associated with soil quality degradation (Cambou et al., 2022). The 
organic matter content was significantly reduced and the sucrase 
activity, which is a response to the rate and content of soil organic 
matter conversion, was also gradually reduced. At the same time, the 
microorganisms that use organic matter as a carbon source to 
reproduce decreased, but the bacterial communities that are 
detrimental to ginseng growth such as Xanthobacteraceae, which were 
a negatively aorrelated with organic matter subsequently increased 
(Mwangi et  al., 2007), leading to an increased chance of ginseng 
diseases. So, the decrease in organic matter content has a direct impact 
on changes in microbial community structure, and its composition is 
crucial for ginseng growth.

The correlation between microbial community and soil 
physicochemical indicators and enzyme activities of following 
application of different concentrations of ginsenosides showed 
that it is not only a single factor such as soil physicochemical 
properties, enzyme activities, or microorganisms that lead to 
serious soil-borne diseases of ginseng, but the result of the joint 
(inter) action. The increase in ginsenosides concentration 
directly or indirectly modulates the effect of community 
characteristics on soil enzyme activity, while the composition and 
other physicochemical properties of photosynthetic bacteria in 
the soil also mediate microbial growth, community structure, 

FIGURE 6

Correlation heat map of Spearman coefficient: (A) Heat map of Spearman correlation coefficient between soil nutrient factors, enzyme activities and 
rich bacterial families; (B): Heat map of Spearman correlation coefficient between soil nutrient factors, enzyme activities and abundant fungal genera. 
(*0.01 < p ≤ 0.05, **0.001 < p ≤ 0.01, ***p ≤ 0.001).
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abundance, and diversity, and indirectly drive enzyme activity 
(Wang et al., 2022).

Secondary metabolites are considered to be one of the more 
important factors affecting soil microorganisms and driving 
microbial community changes at different stages of plant growth. 
Ginsenosides as secondary metabolites have a promoting effect 
on microbial communities in the soil at certain concentrations, 
but affect fungal communities differently when the concentration 
either exceeds or decreases below some critical point, but this 
conclusion still lacks the most direct evidence. Therefore, 
studying the mechanisms of secondary metabolite-microbial 
interactions and exploring the changes in secondary metabolite 
concentrations are the directions we will focus on in the future. 
Meanwhile, further follow-up analyses are needed to understand 
the changes in environmental factors affecting microbial 
community structure.

5. Conclusion

The interaction between plants and soil microorganisms 
mediated by the root secretion is a complex process. Soil 
chemistry, soil microbial community and enzyme activity showed 
different responses to the application of ginsenosides at 
increasing concentrations. This study demonstrated that 
alterations in ginsenosides concentrations affected soil microbial 
communities to some extent. Bacterial diversity in the soil 
decreased whereas fungal diversity increased. In addition, the 
community composition of soil bacteria and fungi changed, with 
a significant increase in the relative abundance of the pathogenic 
fungi Fusarium, Erysipelas, Neospora, and Illinois. Therefore, 
ginsenosides as secondary metabolites, may be one of the main 
causes of ginseng soil sickness, which provides a new research 
direction for the subsequent suppression of ginseng soil sickness.
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