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Porcine epidemic diarrhea virus (PEDV) is a threat to the health of newborn piglets 
and has a significant impact on the swine industry. Short-chain fatty acids (SCFAs) 
are gut microbial metabolites that regulate intestinal function through different 
mechanisms to enhance the intestinal barrier and immune function. In this study, 
we aimed to determine whether butyrate displayed a better effect than other SCFAs 
on limiting PEDV replication in porcine intestinal epithelial cells. Mechanistically, 
butyrate treatment activated the interferon (IFN) response and interferon-stimulated 
gene (ISG) expression. Further experiments showed that inhibition of GPR43 (free 
fatty acid receptor 2) in intestinal epithelial cells increased virus infection and reduced 
antiviral effects through IFN λ response. Our findings revealed that butyrate exerts its 
antiviral effects by inducing GPR43-mediated IFN production in intestinal epithelial 
cells.
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1. Introduction

Porcine epidemic diarrhea virus (PEDV) is a member of the family Coronaviridae, and is a 
single-stranded, enveloped, positive-sense RNA virus. PEDV can infect pigs at variously ages with 
no seasonal differences. PEDV infection has been responsible for watery diarrhea with 80–100% 
mortality in neonatal suckling piglets (Sun et al., 2012; Thomas et al., 2015). Since 2010, PED has 
led to severe economic losses to the swine industry worldwide (Turlewicz-Podbielska and 
Pomorska-Mól, 2021), especially in Asian countries, such as China and South Korea, and in North 
America (Sekhon et al., 2016). PEDV is mainly transmitted via the fecal-oral route, although eating 
contaminated feed causes transmission to piglets, and nasal-oral transmission has also been reported 
(Dee et al., 2014; Li et al., 2018). Vaccines are an efficient approach to protect pigs from infection. 
However, vaccine protection against emerging highly virulent strains is unsatisfactory due to the 
high rate of PEDV genome mutation (Lin et al., 2019). PEDV has developed various strategies to 
escape innate immunity, including suppression of type I interferon and type III interferon production 
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via PEDV structural and nonstructural proteins (Ding et al., 2014; Wang 
et al., 2016; Zhang et al., 2018). Therefore, developing economical and 
efficient treatments to reduce PEDV infection is desirable.

The gut microbiota plays a key role in host physiology and 
pathology. Recent evidence has highlighted the impact of the gut 
microbiota on enterovirus infection, including effects on tissues and 
organs beyond the gastrointestinal tract during viral infection, providing 
protection that activates the innate immune system required for antiviral 
immunity (Abt et al., 2012; Pfeiffer and Virgin, 2016). Short-chain fatty 
acids (SCFAs) are a class of synthesized bacterial metabolites derived 
from indigestible carbohydrates in the gut, which include acetate, 
propionate, and butyrate among the essential metabolites. Different 
dietary patterns can affect the gut microbiota composition and the 
concentration of SCFAs, and feeding mice a high fiber diet to protect 
against Influenza caused lung tissue failure and vascular leakage 
(Trompette et al., 2018). While, another study revealed that high-fiber 
feed protects mice against Respiratory syncytial virus (RSV) infection. 
Analysis of the fecal microbiota composition discovered that phylum 
Firmicutes, related to the production of SCFAs, was markedly increased 
(Antunes et al., 2019). Butyrate promotes the antiviral effect of IFN 
when the encephalomyocarditis (EMC) virus infects MSV cells, while, 
butyrate protects against more severe disease caused by viral infection 
in vivo (Pouillart et al., 1992). SARS-CoV-2 is an enveloped, single-
stranded positive-sense RNA which is member of coronavirus family. 
Clinical characteristics of COVID-19 shown as fever, dry cough, 
dyspnea, septic shock, coagulation dysfunction and multiple organ 
dysfunction or failure (Wang et al., 2020). Jardou and Lawson (2021) 
was pointed that butyrate supplementation for preventing the cytokine 
storm facilitate excessive activation of immune system and further 
development of disease. Butyrate contributes to resistance against viral 
in the lung that increased resistance against respiratory viral infection 
with lower respiratory tract infection (LRTI) (Haak et  al., 2018). 
Butyrate affects viral infection by affecting the expression of certain 
genes. For instance, butyrate upregulates expression of the coxsackievirus 
and adenovirus receptor (CAR), which is the receptor for coxsackievirus 
B3 (Küster et al., 2010).

Accumulating evidence indicates that SCFAs are associated with a 
variety of diseases, including Inflammatory bowel diseases (IBD) 
(Parada Venegas et al., 2019), chronic kidney disease (Magliocca et al., 
2022), colorectal cancer (CRC) (Hou et al., 2022), obesity (Alsharairi, 
2021), and diabetes (Puddu et  al., 2014). SCFAs can regulate fluid 
absorption in the colon and improve the efficacy of oral rehydration 
solution (ORS) to treat acute diarrhea (Ramakrishna et al., 2000). In 
addition, to enhance colonic fluid production, SCFAs can strengthen the 
mucosal barrier and improve the immune response after bacterial 
infection (Ranjbar et al., 2021). Poelaert et al. (2019) described that 
SCFAs could reduce Equine herpesvirus 1 transfer and infection via 
downregulation of endothelial cell adhesion molecules. SCFAs regulate 
the host immune system and stress by activating G protein-coupled 
receptors (GPCRs), which affect host metabolic pathways, and inhibit 
histone deacetylases (Martin-Gallausiaux et al., 2021). GPR41 (free fatty 
acid receptor 3 (FFAR3)), GPR43 (FFAR2), and GPR109a (G-protein 
coupled receptor 109A) are the major host receptors for SCFAs, all of 
which are expressed in various cell types, including intestinal cells and 
immune cells. A series of studies demonstrated that GPR43 plays an 
important role in the ‘gut-lung axis’, which can improve the respiratory 
tract’s protection by ligand acetate treatment when infected by 
microorganisms (Galvão et al., 2018; Antunes et al., 2019). GPR109a, 
also known as hydroxycarboxylic acid receptor 2 (HCA2), is not a 

receptor for nicotinate (niacin) but can be  activated by high 
concentrations (half maximal effective concentration (EC50) 
approximately 1.6 mM) of sodium butyrate (Thangaraju et al., 2009).

PEDV infection reduced the abundance of some beneficial bacteria 
such as Ruminococcaceae and Butyricimonas (SCFA-producing bacteria 
species in the gut) and increased the abundance of Firmicutes and 
Proteobacteria (Huang et al., 2019). Several experiments demonstrated 
that adding medium-chain fatty acids (MCFAs) into feed effectively 
reduces PEDV infection (Jackman et al., 2020). However, the effect of 
gut microbiota metabolites on PEDV-infected intestine epithelial cells 
and antiviral responses has not been evaluated. In the present study, 
we  aimed to determine the antiviral role of sodium butyrate on 
PEDV. The results showed that sodium butyrate, via the activation of 
GPR43, modulated the interferon response in intestine epithelial cells, 
thus protecting against PEDV infection.

2. Materials and methods

2.1. Cell lines and virus

African green monkey (Vero) cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) (Gibco™, Grand Island, NY, United 
Sttaes; 119,955) supplemented with 5% fetal bovine serum (FBS) 
(Gibco™; 10,099). Porcine intestinal epithelial (IPEC-J2) cells were 
cultured in Roswell Park Memorial Institute (RPMI) Medium 1,640 
(Gibco™; 118,755) supplemented with 10% FBS. PEDV strain GD/
HZ/2016 (GenBank Accession: OP191700.1) was preserved in 
our laboratory.

2.2. Biochemical reagents and antibodies

The GPR43 inhibitor GLPG0974 (SML2443), acetate (S2889), 
propionate (P5436), and butyrate (V900464) were purchased from 
Sigma-Aldrich (St. Louis, MO, United States). The GPR109a inhibitor 
Mepenzolate bromide (MPN) (HY-17585) and the nuclear factor kappa 
B (NF-κB) pathway inhibitor BAY 11–7,082 (HY-13453) were obtained 
from MedChemExpress (Monmouth Junction, NJ, USA). The primary 
antibodies for western blotting were mouse monoclonal antibodies 
against PEDV N (Medgene Labs, Brookings, SD, USA; 1,403,113) and 
glyceraldehyde-3-phospahte dehydrogenase (GAPDH) (ABclonal, 
Wuhan, China; AC002). The secondary antibodies used for western 
blotting were horseradish peroxidase (HRP)-Goat Anti Mouse IgG 
(H + L) (EARTH OX, Millbrae, CA, United States; E030110). The Alexa 
Fluor 488-conjugated goat anti-rabbit IgG (H + L) was purchase from 
Thermo Fisher Scientific (Waltham, MA, United States; A-11001).

2.3. Cytotoxicity assays

Cell viability was assessed using Cell Counting Kit-8 (Beyotime, 
Jiangsu, China; C0038) following the manufacturer’s instructions. 
IPEC-J2 cells in medium were seeded in 96-well plates at a density of 
5,000 cells/well. Overnight incubation, the cells were treated with 
butyrate concentrations for 48 h. Thereafter, 10 μl of the CCK-8 reagent 
was added to each well, and the cells were further incubated at 37°C for 
2 h. The absorbance was measured at 450 nm using a microplate reader 
(Thermo Fisher Scientific).
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2.4. RNA interference

A GPR43-specific shRNA (GGCTGTGGTGACACTCCTTAACT 
CGAGTTAA-GGAGTGTCACCACAGCC) and negative control 
shRNA (shNC) designed by Cyagen (Santa Clara, CA, United States) 
were used to knock down GPR43. IPEC-J2 cells were transfected using 
Lipo8000™ Transfection Reagent (Beyotime; C0533) as outlined in the 
manufacturer’s protocol. In brief, IPEC-J2 cells were seeded in 12-well 
plates at a density of 5 × 105 cells per well. When cells had grown to 
70–80% confluence, 500 ng shRNA plasmids were transfected into 
the cells.

2.5. RNA isolation and quantitative real-time 
reverse transcription PCR

Cells were washed twice with phosphate-buffered saline (PBS), and 
total RNA was extracted using the TRIzol reagent (Invitrogen, Waltham, 
MA, United  States; 15,596,018) according to the manufacturer’s 
instructions. cDNA was synthesized from 200 ng of total RNA using a 
PrimeScript™ RT reagent Kit with gDNA Eraser (Takara, Dalian, 
China; RR047A), according to the manufacturer’s protocol. The 
synthesized cDNA was subjected to quantitative real-time PCR (qPCR) 
using TB Green® Premix Ex Taq™ (Tli RNaseH Plus) (Takara; 
RR420A). All primers are listed in Table 1. The reaction conditions were 
as follows: denaturation at 95°C for 30 s; followed by 45 cycles of 95°C 
for 10 s and 60°C for 30 s; and then melt curve analysis. The sequences 
were obtained from the National Center for Biotechnology Information 
(NCBI), and Primer-Blast online software was used to design the related 
primers. The ACTB gene (encoding β-actin) was used as an internal 
control for each experiment. Dissociation curve analysis was performed 
after each assay to ensure specific detection. Target genes’ threshold 
cycle (CT) values and the differences in their CT values (ΔCT) were 
determined. Relative transcription levels of target genes were presented 
as fold changes relative to the respective controls using the 2-ΔΔCT 
threshold method (Livak and Schmittgen, 2001).

2.6. Western blotting analysis

Cells were lysed at the indicated times in Cell lysis buffer for Western 
blotting (Beyotime; P0013) supplemented with 1 mM 
phenylmethanesulfonyl fluoride on ice for 20 min. The cell lysates were 
then sonicated and centrifuged at 4°C at 12,000 × g for 5 min to remove 
insoluble components. Proteins were resolved using sodium dodecyl 
sulfate polyacrylamide gel electrophoresis and transferred onto a 

transfer membrane (Millipore, Billerica, MA, United  States; 
IPVH00010). The membranes were blocked with 5% nonfat dry milk in 
Tris-buffered saline-Tween for 2 h and then incubated with the primary 
antibodies at 4°C overnight. The membranes were then incubated with 
HRP-conjugated secondary antibodies for 1 h at 37°C. The 
immunoreactive proteins were visualized using an ECL substrate 
solution (NCM Biotech, Newport, RI, USA; P10200), and the protein 
bands were quantified using ImageJ software (National Institutes of 
Health, Bethesda, MD, USA).

2.7. Immunofluorescence assay

IPEC-J2 cells were infected with PEDV and treated with butyrate, 
as described above. The culture supernatant was collected at 24 h and 
stored at –80°C. The titer of PEDV was measured by limiting dilution 
on monolayered Vero cells and expressed as the median tissue culture 
infectious dose (TCID50/ml). Infected cells were washed with PBS, fixed 
with 4% paraformaldehyde fix solution (Beyotime; P0099) for 20 min at 
room temperature, and then washed three times with PBS. Fixed cells 
were incubated with PBS containing 0.1% Triton X-100 at room 
temperature in the dark. Next, the cells were rinsed with PBS and 
blocked with 1% bovine serum albumin in PBS for 30 min at 37°C and 
then incubated with anti-N polyclonal antibodies diluted in PBS 
overnight at 4°C. After three washes with PBS, the Alexa Fluor 
488-conjugated goat anti-rabbit IgG (H + L) was used as the secondary 
antibody, which was incubated with the cells at 37°C for 1 h. After 
washing with PBS, the fluorescence was examined using fluorescent 
microscopy (Leica, Wetzlar, Germany) at a magnification of 40 × .

2.8. Statistical analyses

Data are represented as the mean ± standard deviation (SD) when 
indicated, and Student’s t-test was used for all statistical analyses, which 
were completed using GraphPad Prism 5.0 software (GraphPad Inc., La 
Jolla, CA, United States). Differences between groups were considered 
significant when the p-value was less than 0.05. Unless indicated 
otherwise, the experiments were performed in triplicate (n = 3).

3. Results

3.1. The inhibitory effect of SCFA on PEDV 
infection

SCFAs, mainly acetate, propionate, and butyrate, affect viral 
infection (Alwin and Karst, 2021). To investigate the effect of SCFAs on 
IPEC-J2 cells, we initially performed CCK-8 assays to determine the 
highest noncytotoxic concentration of SCFAs (Figure 1A). Acetate, 
propionate, and butyrate did not significantly reduce the viability of 
IPEC-J2 cells at concentrations up to 1 mM. IPEC-J2 cells grown in 
12-well plates were not treated or pre-treated with acetate, propionate, 
and butyrate with 500 μM for 24 h in RPMI Medium 1,640 containing 
10% FBS. The culture was kept in an incubator with 5% CO2 at 
37°C. Cells were harvested 24 h after infection with PEDV at 
multiplicity of infection (MOI) of 0.1. The results revealed that butyrate 
decreased the PEDV RNA level to a greater extent than acetate and 
propionate (Figure 1B). Further experiments showed that PEDV RNA 

TABLE 1 qPCR primer sets for cytokine genes used in this study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

PEDV N GCAAAGACTGAACCCACTAAT GCCTCTGTTGTTACTTGGAG

IFNB TAGGCGACACTGTTCGTGTTG CAAGCAAGTTGTAGCTCATG

IFNL1 ATGGCTACAGCTTGGATCGT TGTGGTGGGCTTGAAAGTGG

IFNL3 CCAGTTCAAGTCTCTGTCC AGTTCCAGTCCTCCAAGA

OAS1 GGTTGTCTTCCTCAGTCCTC GCCTGGACCTCAAACTTC

ISG15 GCACAGCAATCATGAGTGAG GGCCTGTATGTTGCACATCG

ACTB GGACTTCGAGCAGGAGATGG AGGAAGGAGGGCTGGAAGAG
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levels were inhibited by butyrate in a concentration-dependent manner 
(Figure 1C). Western blotting showed that the level of the PEDV N 
protein decreased significantly under different concentrations of 
butyrate (Figure 1D). Similarly, reduction of the viral titer was observed 
when IPEC-J2 cells were treated with butyrate (Figure 1E). Time point 
experiments indicated that PEDV N protein levels decreased at 4 hpi, 
8 hpi, 12 hpi, 24 hpi, 36 hpi, 48 hpi (Figure 1F). These results revealed 
the significant antiviral activity of butyrate against PEDV replication.

3.2. Butyrate treatment facilitates IFN and 
downstream ISG expression during PEDV 
infection

Interferon production reduced the replication of PEDV in epithelial 
cells, decreasing the amount of enterovirus infection and mortality in 
piglets (Deng et al., 2019). It was also reported that butyrate can activate 
interferon signaling, ultimately affecting viral infection (Wirusanti et al., 
2022). Based on our results showing that butyrate inhibits PEDV, 
we  investigated whether the induction of interferon modulated this 
phenomenon. We  tested the mRNA levels of IFNB (encoding IFNβ), 
IFNL1 (encoding IFNλ1), and IFNL3 (encoding IFNλ3) in IPEC-J2 cells 
infected with the virus. Interestingly, the results showed that butyrate 
treatment markedly induced the expression of the type I and type III 
interferons in IPEC-J2 cells (Figures 2A–C). Recently, several studies have 
indicated that virus infection, especially PEDV infection, in epithelial cells 
stimulates the secretion of IFN, which triggered high levels of interferon-
stimulated genes (ISGs), mainly OAS1 (encoding 2′-5’-Oligoadenylate 
Synthetase 1) and ISG15 (encoding interferon-stimulated gene 15) (Palma-
Ocampo et al., 2015; Li et al., 2017, 2021). Consequently, we further verified 
the expression levels of ISGs downstream of IFN. IPEC-J2 cells were 
pretreated with 1 mM butyrate for 24 h and infected with PEDV for 24 h. 
ISG expression at 24 h post-butyrate treatment was assessed using 

qPCR. As shown in Figures 2D,E, butyrate treatment significantly increased 
the expression of OAS1 and ISG15.

3.3. Butyrate inhibits PEDV replication via 
GPR43 and NF-κB In IPEC-J2 cells

It was reported that SCFAs could activate G-protein coupled 
receptors and downstream NF-κB against virus infection, such as 
GPR41, GPR43, and GPR109a (Feng et al., 2018; Trompette et al., 2018; 
Antunes et al., 2019). The NF-κB signaling pathway has been proven to 
play a key role during PEDV infection and can lead to interferon 
activation (Zhang et al., 2018). To investigate the potential mechanism, 
we investigated the role of NF-κB in butyrate-mediated inhibitory effects 
on PEDV infection. The cytotoxicity of MPN, GLPG0974, and BAY 
11–7,085  in IPEC-J2 cells was first evaluated using CCK-8 assays 
(Figure 3A). IPEC-J2 cells were pre-treated with the NF-κB pathway 
inhibitor BAY 11–7,085 and infected with PEDV for 24 h. We found that 
BAY 11–7,085 abolished the protective effect of butyrate on IPEC-J2 
cells against PEDV infection (Figure 3B).

GPR109a was identified as a butyrate receptor (Thangaraju et  al., 
2009). To further determine whether GPR109a is involved in regulating 
IFN production, IPEC-J2 cells infected with PEDV were pretreated with 
MPN, a GPR109a blocker. The results showed that MPN did not 
significantly recover PEDV infection in butyrate-treated cells (Figure 3C). 
As an antagonist, GLPG0974 was discovered to inhibit GPR43 effectively 
(Pizzonero et  al., 2014). We  found that GLPG0974 recovered PEDV 
replication in butyrate pretreated IPEC-J2 cells (Figure 3D). We transfected 
with FFAR2 (GPR43) shRNA plasmids to knockdown FFAR2 expression 
in IPEC-J2 cells (Figure 3E) and then pretreated the cells with butyrate. 
Silencing FFAR2 abolished the viral inhibition effect of butyrate in PEDV-
infected IPEC-J2 cells (Figure 3F), which confirmed the specific activation 
of GPR43 by butyrate treatment. We investigated whether butyrate 

A B C

D E F

FIGURE 1

Butyrate pre-treatment protects IPEC-J2 against PEDV infection. (A) Effect of acetate, propionate, and butyrate on IPEC-J2 cells. Compounds at 
concentrations of 0 μM, 10 μM, 100 μM, and 1 mM were added to IPEC-J2 cells and cultured for 48 h. (B) IPEC-J2 cells were pretreated with acetate, 
propionate, and butyrate at 500 μM for 24 h and then infected with PEDV. (C,D) Butyrate inhibits PEDV infection. IPEC-J2 cells were pretreated with different 
concentrations of butyrate (10 μM, 100 μM, and 1 mM) for 24 h and then infected with PEDV (0.1 MOI) for 24 h in the presence of butyrate. (C) PEDV viral load 
detected using qPCR. (D) PEDV N protein levels detected using western blotting. (E) Viral titers determined using a TCID50 assay. (F) PEDV N protein levels 
detected by western blotting at different time points.
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mediated NF-κB activation, and we that butyrate treatment activated the 
phosphorylation of IκBα in IPEC-J2 cells infected with PEDV (Figure 3G). 
IPEC-J2 cells were only treated with butyrate and has little effect on FFAR2 
expression (Figure 3H). Overall, these results indicated that GPR43, but 
not GPR109a, was related to the effect of butyrate on PEDV infection, i.e., 
butyrate activated GPR43 to enhance the expression of IFN in IPEC-J2 cells.

3.4. Inhibition of GPR43 and NF-κB reduces 
the expression of IFN and ISG in 
butyrate-treated IPEC-J2 cells

We further examined the expression of IFNs in GLPG0974-
pretreated cells during virus infection. The IFN levels were reduced 

A B C D E

FIGURE 2

Butyrate treatment mediates an IFN response and ISG expression in PEDV-infected IPEC-J2 cells. (A) IFNB expression in butyrate-treated and PEDV-
infected IPEC-J2 cells after 24 h. (B) IFNL1 expression in butyrate-treated and PEDV-infected IPEC-J2 cells after 24 h. (C) IFNL3 expression in butyrate-
treated and PEDV-infected IPEC-J2 cells after 24 h. (D) OAS1expression in butyrate-treated and PEDV-infected IPEC-J2 cells after 24 h. (E) ISG15 expression 
in butyrate-treated and PEDV-infected IPEC-J2 cells after 24 h.

A B C D

E F G H

FIGURE 3

Butyrate inhibits PEDV replication via GPR43 and NF-κB in IPEC-J2 cells. (A) The effect of MPN, GLPG0974, and BAY 11–7,085 on IPEC-J2 cell. Compounds 
at concentrations of 0 nM, 10 nM, 100 nM, and 1 μM were added to IPEC-J2 cells and cultured for 48 h. Cell viability was evaluated using the CCK-8 assay. 
(B) IPEC-J2 cells were treated with 1 mM butyrate and 500 nM BAY 11–7,085 for 24 h and then infected with PEDV. PEDV RNA levels were detected using 
qPCR. (C) IPEC-J2 cells were treated with 1 mM butyrate and 1 μM MPN for 24 h and then infected with PEDV. PEDV RNA levels were detected using qPCR 
(D) IPEC-J2 cells were treated with 1 mM butyrate and 500 nM GLPG0974 for 24 h and then infected with PEDV. PEDV RNA levels were detected using qPCR. 
(E) IPEC-J2 cells were transfected with FFAR2 shRNA plasmids for 24 h. FFAR2 mRNA expression levels were detected using qPCR. shNC, control shRNA; 
shFFAR2, shRNA against FFAR2. (F) IPEC-J2 cells were transfected with FFAR2 shRNA plasmids and pretreated with butyrate for 24 h. PEDV RNA levels were 
detected using qPCR. (G) IPEC-J2 cells were treated with 1 mM butyrate and 500 nM BAY 11–7,085 for 24 h and then infected with PEDV. Effects of BAY 11–
7,082 on virus-induced phosphorylation of IκBα. Protein levels detected by western blotting. (H) IPEC-J2 cells were treated with 1 mM butyrate for 24 h. 
FFAR2 mRNA expression levels were detected using qPCR.
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when GLPG0974 pretreated IPEC-J2 were infected with PEDV 
(Figure  4A). Identically, knockdown of FFAR2 in IPEC-J2 cells 
significantly reduced the level of IFNL1 (Figure 4B). In addition, the 
induction of OAS1 in IPEC-J2 cells depended on GPR43 activation 
(Figure 4C). These results indicated that GPR43 controls IFNL1 and 
OAS1 production, which protects the host against viral infection.

4. Discussion

PED remains a serious health problem and a key economic issue in pig 
farming. Vaccines for PEDV provide limited protection; therefore, it is 
necessary to explore new antiviral strategies. SCFAs, as metabolic 
byproducts, contribute to host physiology and pathology (van der Hee and 
Wells, 2021). In the present study, we explored the role of the free fatty acid 
GPR receptor, GPR43, in PEDV infection using its agonist butyrate to 
evaluate the potential of this receptor as a target for treatment during PEDV 
infection in intestinal epithelial cells. We identified that butyrate through 
activation of GPR43 and NF-κB, leading interferon responses and induction 
of downstream antiviral genes inhibition of PEDV replication (Figure 5).

A study indicated decreased diarrhea incidence in weaned piglets 
fed with butyrate (Huang et al., 2015). SCFAs positively protect the host 
from viral infection and reduce the damage to the host after viral 
infection (Sumbria et al., 2020). For this reason, we investigate the role 
of an SCFA, butyrate, in the process of PEDV infection. Butyrate at 
concentrations of 0.01–1 mM promoted IPEC-J2 viability. Chemudupati 
et al. (2020) demonstrated that butyrate at a high concentration (5 mM) 
promoted Influenza A virus, reovirus, and HIV-1 infection and 
replication. By contrast, in the present study, concentrations beyond 
1 mM affected cell viability. Our work provides in vitro evidence that 
PEDV replication was inhibited when IPEC-J2 cells were pretreated with 
sodium butyrate at different concentrations, and PEDV N levels were 
reduced in a butyrate dose-dependent manner. These data indicated that 
butyrate negatively affects PEDV.

In the early phase of virus infection, interferon exerts antiviral 
activities by mediating the innate immune response. At the same time, 
hundreds of ISGs are activated, which provide antiviral status to the host 
(Chen and Ling, 2019). Type I and type III interferons induced similar 
immune responses regarding cell type and signaling kinetics. The type 
III interferon response shows low efficacy, slow speed, and long-term 

immunity. In vitro, the two types of interferon work in essentially the 
same way. However, in vivo, in response to respiratory and 
gastrointestinal viral infection, the effects of type III interferon mainly 
act on epithelial cells (Ingle et al., 2018; Lazear et al., 2019). During 
PEDV infection of intestinal epithelial cells, IFN λ plays a key role in 
antiviral activity (Li et al., 2019). It was reported that oral delivery of 
acetate protected mice from RSV infection by activating IFN-β responses 
and increasing ISG expression (Antunes et al., 2019). Thus, type I and 
type III IFNs can effectively protect against viral infections, and several 
studies revealed that IFNs inhibit PEDV infection (Li et al., 2017; Dong 
et al., 2022; Xu et al., 2022). The gut microbiota can stimulate type III 
interferon receptors of intestinal epithelial cells to activate IFN λ1, which 
can protect the host from viral infection by inducing ISGs (Van Winkle 
et al., 2022). Comparative transcriptomic and proteomic analyses clearly 
showed that IFN λ1 is an effective ISG inducer, which upregulated OAS1 
expression, a validated antiviral ISG (Zhao et al., 2020). Our study found 
that butyrate modulated the type III interferon response to a greater 
extent than the type I interferon response. In addition, we showed that 
butyrate treatment induced the transcription of the antiviral ISG, OAS1, 
in intestinal epithelial cells. OAS1 was shown to decrease PEDV 
replication, a mechanism that might explain the effects of butyrate 
(Deng et al., 2019).

The transcription factor NF-κB has an important role in innate 
immune responses by inducing the expression of interferon and 
pro-inflammatory cytokines (Xu et al., 2021). PEDV evades host innate 
immunity to achieve replication in vivo, which might be an evolutionary 
strategy for viral proliferation. Previous studies have demonstrated the 
following mechanisms of viral disruption of the NF-κB pathway: (a) 
Nuclear translocation of NF-κB p65 was prevented by inhibiting IκB 
degradation and phosphorylation (Zhang et al., 2017); and (b) cleavage 
of NF-κB essential modulator (NEMO) (Wang et  al., 2016). Type 
I interferon and type III interferon require the same transcription factor 
activation; however, the NF-κB pathway is more important for the 
production of type III interferon than type I  interferon. NF-κB 
participates in IFN λ1 production (Thomson et al., 2009). In this work, 
butyrate treatment caused type III interferon production. Based on this 
result, we investigated whether butyrate mediated NF-κB activation, 
and the results indicated that pre-treatment with an NF-κB pathway 
inhibitor decreased IFN λ1 expression in IPEC-J2 cells infected 
with PEDV.

A B C

FIGURE 4

Butyrate inhibits IFN and ISG via GPR43 in IPEC-J2 cells. (A) IPEC-J2 cells were treated with 1 mM butyrate and 500 nM GLPG0974 for 24 h and then infected 
with PEDV. IFNL1 levels in butyrate-treated and PEDV-infected IPEC-J2 cells were assessed after 24 h. (B) IPEC-J2 cells were transfected with FFAR2 shRNA 
plasmids and pretreated with butyrate for 24 h. IFNL1 levels in butyrate-treated and PEDV-infected IPEC-J2 cells were assessed after 24 h. (C) OAS1 gene 
expression in IPEC-J2 cells treated with 1 mM butyrate and 500 nM GLPG0974 and then infected with PEDV for 24 h.
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It has been reported that butyrate can alleviate diarrhea in weaned 
piglets by regulating the expression of intestinal tight junction protein 
via activating GPR109a (Feng et al., 2018). Zhao et al. (2020) proposed 
that butyrate alleviates rotavirus-induced epithelial cell apoptosis 
through GPR109a. However, we examined the expression of GPR109a 
in cells pretreated with a GPR109a inhibitor, and found that GPR109a 
had no significant effect on PEDV infection. Moreover, we demonstrated 
that GPR43 signaling regulated PEDV infection and pretreatment with 
butyrate resulted in IFN λ1 activation. Butyrate can participate in the 
barrier function of intestinal epithelial cells. On the one hand, it is 
beneficial to maintain hypoxia inducing factor (HIF), which is a 
transcription factor coordinating barrier protection (Kelly and Colgan, 
2016). On the other hand, intestinal epithelial cells can produce 
antimicrobial peptides (AMPs) to regulate intestinal homeostasis, and 
butyrate can activate GPR43 to promote the production of AMPs (Zhao 
et  al., 2018). We  demonstrated that blockade of GPR43 using its 
antagonist GLPG0974 eliminated the protective effect of butyrate, 
suggesting that GPR43 mediates the antivirus function of butyrate.

In conclusion, our data suggested that butyrate provides protection 
from PEDV infection in intestinal epithelial cells. This mechanism 
involves activation of the innate immune response by GPR43. Our 
results suggest a strategy involving the inhibitory effect of G protein-
coupled receptors on PEDV infection.
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