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Gene differential co-expression 
analysis of male infertility patients 
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Male infertility has always been one of the important factors affecting the infertility 
of couples of gestational age. The reasons that affect male infertility includes living 
habits, hereditary factors, etc. Identifying the genetic causes of male infertility can 
help us understand the biology of male infertility, as well as the diagnosis of genetic 
testing and the determination of clinical treatment options. While current research 
has made significant progress in the genes that cause sperm defects in men, genetic 
studies of sperm content defects are still lacking. This article is based on a dataset 
of gene expression data on the X chromosome in patients with azoospermia, mild 
and severe oligospermia. Due to the difference in the degree of disease between 
patients and the possible difference in genetic causes, common classical clustering 
methods such as k-means, hierarchical clustering, etc. cannot effectively identify 
samples (realize simultaneous clustering of samples and features). In this paper, 
we  use machine learning and various statistical methods such as hypergeometric 
distribution, Gibbs sampling, Fisher test, etc. and genes the interaction network 
for cluster analysis of gene expression data of male infertility patients has certain 
advantages compared with existing methods. The cluster results were identified by 
differential co-expression analysis of gene expression data in male infertility patients, 
and the model recognition clusters were analyzed by multiple gene enrichment 
methods, showing different degrees of enrichment in various enzyme activities, 
cancer, virus-related, ATP and ADP production, and other pathways. At the same 
time, as this paper is an unsupervised analysis of genetic factors of male infertility 
patients, we constructed a simulated data set, in which the clustering results have 
been determined, which can be used to measure the effect of discriminant model 
recognition. Through comparison, it finds that the proposed model has a better 
identification effect.
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1. Introduction

For a long time, infertility has been a difficult problem for many couples of gestational age. With 
the increase of life pressure, infertility is increasing every year. About 15% of gestational age couples 
suffer from infertility symptoms of varying degrees, of which about 50% are caused by male infertility 
(Dada et al., 2003). About 7% of men in the general population suffer from different degrees of 
infertility. The causes of male infertility are related to many influencing factors, including different 
diseases, genetics, living habits and other factors that may cause or interact to cause male infertility. 
Although men with this disorder cannot pass on their genetic information naturally, genetic factors 

TYPE Original Research
PUBLISHED 27 January 2023
DOI 10.3389/fmicb.2023.1092143

OPEN ACCESS

EDITED BY

Lihong Peng,  
Hunan University of Technology, China

REVIEWED BY

Guohua Huang,  
Shaoyang University,  
China
Zhen Tang,  
Shanghai Jiao Tong University,  
China

*CORRESPONDENCE

ZhiXiang Yin  
 zxyin66@163.com

SPECIALTY SECTION

This article was submitted to  
Systems Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 07 November 2022
ACCEPTED 11 January 2023
PUBLISHED 27 January 2023

CITATION

Jia X, Yin Z and Peng Y (2023) Gene differential 
co-expression analysis of male infertility 
patients based on statistical and machine 
learning methods.
Front. Microbiol. 14:1092143.
doi: 10.3389/fmicb.2023.1092143

COPYRIGHT

© 2023 Jia, Yin and Peng. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in 
other forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1092143%EF%BB%BF&domain=pdf&date_stamp=2023-01-27
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1092143/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1092143/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1092143/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1092143/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1092143
mailto:zxyin66@163.com
https://doi.org/10.3389/fmicb.2023.1092143
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Jia et al. 10.3389/fmicb.2023.1092143

Frontiers in Microbiology 02 frontiersin.org

can still contribute to male infertility. In approximately 15% of infertile 
men a genetic defect is most likely the underlying cause of the pathology 
(Tournaye et al., 2017; Krausz and Riera-Escamilla, 2018). For example, 
autosomal recessive or X-linked male infertility mutations transmitted 
by normal parents can cause infertility (Chillón et al., 1995; Yatsenko 
et al., 2015). Genetic causes have also been found to have an important 
role in severe male infertility, such as severe oligospermia (<5 million 
sperm cells per milliliter) or azoospermia (azoospermia in ejaculation; 
Lopes et al., 2013; Krausz and Riera-Escamilla, 2018). Identifying the 
genes responsible for male infertility is important for increasing our 
understanding of the biology of the disease and for genetic testing for 
diagnosis and clinical treatment. Genes such as NLRP3, BRD7 and 
others have been shown to affect male fertility (Aquila et al., 2004; Wang 
et al., 2016; Antonuccio et al., 2021). At the same time, with the rapid 
development of genetics, more than 3,000 genetic diseases have been 
discovered, of which about 250 are only found in men, and women have 
no or little disease. Because women have two X chromosomes, the 
pathogenic gene on one X chromosome can often be masked by the 
normal gene on the other X chromosome, so they do not show 
symptoms. Men, on the other hand, have only one X chromosome. If 
there is a disease-causing gene on it, there is no corresponding normal 
gene to cover up, resulting in the disease. In recent years, with the 
deepening of research, there are about 521 genes that cause male 
infertility in different forms (Xavier et al., 2021), many of which are 
related to the X chromosome, such as mouse androgen receptor gene 
mutation, through chain reaction mapping The X chromosome leads to 
infertility in mice (Lyon et  al., 1970), and there is one more X 
chromosome in males, that is, the sex chromosome is XXY (Jacobs and 
Strong, 1959) and so on.

Many scholars have carried out various experimental methods to 
study the genetic causes of male infertility. Through RNA interference 
or knockout experiments, the gene cannot be expressed normally, and 
whether the target abnormality occurs in cells or individuals is observed, 
and whether the gene is related to the cause of the disease is detected. 
However, experimental methods are generally time-consuming, labor-
intensive, and expensive, and experimental methods are generally 
designed in a targeted manner on the premise that the experimenter 
obtains genes that may have basic interference. Technological advances 
and methodological developments in genomics are critical for 
identifying genetic factors in male infertility.

In this paper, we use a data set covering all gene expression levels of 
the male X chromosome in the GEO database, the Gene Expression 
Omnibus (GEO), a public database that contains 659,203 gene sample 
data from 9,528 different platforms (Ron et al., 2002). And based on a 
variety of statistical methods and machine learning analysis of gene 
expression data of male infertility patients, to identify groups of 
interacting gene clusters that may contribute to male infertility of 
various phenotypes in various ways. Common hierarchical clustering, 
k-means and other clustering algorithms are clustering under the 
assumption that all samples have certain characteristics, and the cluster 
data of the identified clusters have the same characteristics in all samples. 
However, the expression of gene data is affected by different sampling 
individuals, different tissues of the same individual, etc., resulting in 
different expression of measured gene data in different samples, and 
common clustering algorithms cannot meet the identification of 
differential gene expression modules (implementation basis Partial 
samples of gene expression data to partition gene sample data). For the 
identification of differentially co-expressed modules, a biclustering 
algorithm can be  used to screen functionally related genes, genes 

involved in the same pathway, and genes affected by the same drug or a 
pathological condition. The biclustering algorithm was first proposed in 
Hartigan (1972), is a two-dimensional data mining technique that allows 
simultaneous clustering of rows (representing genes) and columns 
(representing samples/conditions) in a gene expression matrix. 
Developments continued in the following decades, with (Cheng and 
Church, 2000; Lazzeroni and Owen, 2000; Bergmann et al., 2003; Kluger 
et al., 2003; Chiu et al., 2004; Prelić et al., 2006; Dhollander et al., 2007; 
Gu and Liu, 2008; Li et al., 2009; Hochreiter et al., 2010; Madeira et al., 
2010; Medina et al., 2010; Chen et al., 2011; De Smet and Marchal, 2011; 
Zhao et  al., 2011; Zhou et  al., 2012; Goncalves and Madeira, 2014; 
Henriques and Madeira, 2016a,b; Alzahrani et al., 2017; Guo et al., 2021) 
being articles on different clustering algorithms. Among them, BCPlaid 
(Lazzeroni and Owen, 2000), QUBIC (Li et al., 2009), C&C (Cheng and 
Church, 2000), FABIA (Hochreiter et al., 2010) are the more popular 
biclustering algorithms. Genomics data analysis clustering using 
machine learning, deep learning, etc., for identifying cell subpopulations, 
genomic analysis, etc.(Jiang et al., 2020; Lazareva et al., 2020; Peng et al., 
2020; Gerniers et al., 2021; Peng et al., 2021; Yi et al., 2021; Peng et al., 
2022; Zhai et al., 2022). Analysis of bronchoalveolar immune cells in 
COVID-19 patients based on genetic data (Liao et  al., 2020). By 
processing the GSE37948 data set (Krausz et al., 2012), which contains 
expression levels of gene data on the X chromosome in testicular tissue 
from patients with varying degrees of infertility, we identified 19 distinct 
double clusters, indicating the existence of multiple double clusters 
identified in this paper there are multiple enriched pathways and there 
are functional and organizational correlations between the enriched 
pathways. And the performance of the method is verified using a data 
set similar to the real gene expression level.

2. Materials and methods

2.1. Methods

Rank-rank hyper geometric overlap (RRHO; Plaisier et al., 2010) 
uses unsupervised learning to sort the gene expression profile data of 
two samples of different categories, and uses hyper geometric 
distribution to iteratively calculate the p-values of all combinations to 
find the optimal overlap gene combination. In this paper, the sample 
expression data of two different genes is brought into the RRHO method 
to find the optimal overlapping sample set, and the SNR value of the 
signal-to-noise ratio of the sample gene set is calculated to determine 
whether the clusters have differential expression. For a single gene in the 
sample set, the SNR value is defined as:

 
SNR P

g P g P

P P
g,

g g
¢( ) =

-

+

¢ ¢

¢ ¢

m m

s s
, ,

, ,

mg P, ¢ , mg P, ¢  are the mean in the delimited sample set ¢P  and the 
mean in the data outside the sample set, respectively.sg, ¢P , sg, ¢P
represent the standard deviation of the data in the corresponding set. 
The overall signal-to-noise ratio of the cluster is the average of the 
signal-to-noise ratios of individual genes in the sample set.

If the signal-to-noise ratio value of the identified sample and gene set 
is greater than the specified threshold, the set will be retained, and the 
corresponding genome is considered to have a relationship with the gene 
data. If one gene cannot form a relationship with other genes in the data, 
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it will be discarded in the subsequent processing, so as to realize the 
dimensionality reduction processing of the gene data. However, since the 
genes known to be associated with disease from Ghiassian et al. (2015) 
form a compact but not tightly connected subgraph on the PPI, this 
paper does not loop through all the genes in the data set, but adds a gene 
interaction network to the data processing. Using the String database, 
there is known and predicted gene-protein interaction networks in the 
database. In this paper, the genes involved in the data set are searched for 
the interaction network, and the isolated gene points are discarded. The 
genes existing in the gene network are combined in pairs, and the 
hierarchical clustering method is used for preliminary clustering to assist 
in determining the default set signal-to-noise ratio threshold. The set of 
gene samples constructed by preliminary clustering is calculated as the 
average of the signal-to-noise ratio values in all sets, and 1/2 of this mean 
is used as the threshold. When the signal-to-noise ratio of the gene 
sample set constructed by the RRHO method is used. If the ratio is 
greater than this threshold, the gene is retained and a new set of double 
clusters is obtained. Otherwise, in the gene network, the connected edges 
are discarded. Due to the large number of genes, a partial gene network 
is shown in Figure 1. Figure 2 briefly depicts the model’s approach. The 
interrelation data of all genes are presented in Supplementary Table 1.

Since only gene pairs and their corresponding sample sets can 
be obtained after using the RRHO method, Gibbs sampling (Sheng et al., 
2003) is used for the data processed in the first step to make assumptions 
about the distribution of gene sample data to merge gene clusters. The 
statistical assumptions for sampling are as following:
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Among them, k is set to the number of clusters retained after the 
calculation and processing of the RRHO method. Finally, the statistical 
part of Gibbs sampling assumes that the data has a certain prior 
distribution involving parameter α and β, but because the genetic data 
lacks the corresponding statistical research foundation, the parameter α 
and β are set as hyperparameters. At the end of data processing, Fisher’s 
exact test is used to process the calculated set data again, and the sample 
data in the two clusters are processed to calculate its value of p. The set 
threshold is used to determine whether there is a significant difference 
between the two sets, and the genes in the two sample sets without 
significant differences are merged, and the sample data of the 
corresponding gene is taken out and brought into the hierarchical 
clustering, and the number of clusters is 2. Since a gene is up-regulated 
in half of the samples, it will be differentially expressed in the remaining 
part, so, we limit samples in clusters to less than 55% of the total number 
of samples in the data set as a difference in the gene set. At the same 
time, in order to limit that the cluster is differentially expressed in the 
whole data, the SNR value of the newly formed cluster is required to 
be greater than the threshold value. Otherwise it will not be merged. All 
the identified clusters are merged cyclically until no new clusters 
are generated.

FIGURE 1

Interaction network of some genes in GDS37948.
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2.2. Datasets

2.2.1. Male infertility gene expression data
First, the corresponding gene expression data were obtained from 

the micro array gene expression database. In this paper, the GSE37948 
(Krausz et al., 2012) gene expression data set was selected. This data set 
contains relevant gene expression data of 96 patients with different 
degrees of infertility, including 74 cases of azoospermia, 6 cases of mild 
oligozoospermia, and 16 cases of severe oligozoospermia. Excluding 
known causes of impairing spermatogenesis in patients, gene expression 
data identification was performed using testicular tissue from 47 men, 
and KNN nearest neighbor algorithm was used to impute missing values 
in gene expression profile data while normalizing data for each gene, to 
remove the effect of different units on the data. The GSE37948 data set 
contains 1855 genes and gene-identified expression data from 200 male 
sperm samples. The genes identified therein to cover the entire X 
chromosome. The related gene network based on the GSE37948 data set 
was extracted from the String database. Specific gene interaction data 
are shown in the Supplementary Table: Interrelation data among genes.

2.2.2. Synthetic datasets
Since the method in this paper belongs to unsupervised learning, 

there are no standard results for the study of male infertility-related 
genes, so we  constructed simulation data similar in structure to 
GSE39748. The GSE37948 data set has a total of 1,855 genes and 200 
samples, but the size of the double-cluster deletion is unknown. To this 
end, simulated data of 20 known differentially expressed modules were 
constructed with gene and sample dimensions of 2,000 and 200, 
respectively. Based on previous research (Prelić et al., 2006; Eren et al., 
2013), we can generate simulation data according to the following rules: 
Genes and sample numbers are sampled from (100, 50, 20, 10, 5) and 
(100, 50, 20, 10) respectively, the data within the cluster is sampled from 
N (2, 1), and the rest of the data are sampled from N (0, 1) and allow the 
intersection of different clusters. Simulated data is used to determine 
hyperparameters and statistics are used to evaluate clustering results. 
Since the gene interaction network graph used in the gene data 
processing corresponds to the gene interaction graph with certain 
connectivity, we  correspondingly construct the connected network 
graph according to the determined clustering data. Studies have shown 

that in the gene interaction network, genes related to disease can form 
compact linker maps (Ghiassian et al., 2015), so we use the method 
proposed in Bollobás et al. (2003) to construct the network diagram, 
which can construct a reasonable gene network connection map 
according to the clustering modules in the expression data.

3. Results

3.1. Experimental results of male 
infertility-related gene expression data

By processing the GSE37948 data set, which contains expression 
levels of gene data on the X chromosome in testicular tissue from 
patients with azoospermia, mild and severe oligozoospermia. 
We identified 19 distinct double clusters. There are multiple enriched 
pathways and there are functional and organizational correlations 
between the enriched pathways. The hypergeometric test involved in the 
RRHO method, in which the significance index is adjusted from the set 
(0.01, 0.05), and the parameter α and β/k involved in the statistical 
hypothesis in Gibbs sampling are adjusted from the set (5.0, 1.0, 0.5, 0.1) 
and (100, 1.0, 0.01), respectively. According to the recognition effect of 
the model on the simulated data set, the final parameters p = 0.01, 
α = 0.5, and β/k = 1.0 were determined. The data processed based on the 
GSE39748 data is brought into the model to identify the gene sample 
module, and the results were analyzed using a variety of biometric 
indicators Includes: Disease (OMIN_DISEASE, UP_KW_DISEASE), 
Functional_Annotations (COG_ONTOLO, UP_KW_BIOLOGICAL_
PROCESS, UP_KW_CELLOULAR_COMPONENT, UP_KW_
MOLECULAR_FUNCTION, UP_KW_PTM, UP_SEQ_FEATURE), 
Protein_Domains (INTERPRO, PIR_SUPERFAMILY, SMART, UP_
KW_DOMAIN), Gene_Ontology (GOTERBP, CC, MF), Interactins 
(UP_KW_LIGAND), Pathways (KEGG_PATHWAY, 
BBID,BIOCARTA), Protein_Domains (INTERPRO, PIR_
SUPERFAMILY, SMART, UP_KW_DOMAIN).

Corresponding to the Enrichment analysis results with the cluster 
id of 1 in Table 1, there were four significantly enriched pathways after 
analysis by GO and KEGG, two of which were associated with proteins 
of the autism spectrum, which includes different phenotypic 
manifestations such as classic autism, Asperger’s syndrome, childhood 

FIGURE 2

Introduction to the model process.
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disintegration Sexual disorder, Rett’s syndrome, and pervasive 
developmental disorder not otherwise specified. Also significantly 
enriched into axons, the site of neurotransmitter storage and release. 
And outside the cytoplasmic membrane, referring to gene products 
attached to the plasma membrane or cell wall.

Corresponding to the Enrichment analysis results with the cluster 
id of 2  in Table  1, enriched in chemical synaptic transmission, cell 
membrane, and plasma membrane pathways. Release of 
neurotransmitter molecules from presynaptic vesicles across chemical 
synapses followed by post synaptic activation of neurotransmitter 
receptors on target cells (neurons, muscles, or secretory cells), and the 
effect of this activation on synapses Post-membrane potential and ionic 
composition of the post synaptic cytoplasm. This process includes 
spontaneous and evoked release of neurotransmitters and all parts of 
synaptic vesicle exocytosis. Evoked transmission begins when the action 
potential reaches the presynaptic.

Corresponding to the Enrichment analysis results with the cluster 
id of 3  in Table  1, by SMART, INTERPRO, UP_KW_DOMAIN 
showed enrichment to the SH3 domain. The SH3 (src homology-3) 
domain is a small protein module containing approximately 50 amino 
acid residues. They are present in a variety of intracellular or 
membrane-associated proteins, for example, in a variety of proteins 
with enzymatic activity, in adaptor proteins such as fodrin and the 
yeast actin-binding protein ABP-1. The SH3 domain has a 
characteristic fold, which consists of five or six β-strands arranged in 
two tightly packed antiparallel β-sheets. The linker region may 
contain short helices. The surface of the SH3 domain bears a flat 
hydrophobic ligand-binding pocket consisting of three shallow 
grooves defined by conserved aromatic residues in which the ligands 
are arranged in an extended left-handed helix. Ligands bind with low 

affinity, but this can be enhanced by multiple interactions. The region 
bound by the SH3 domain is proline-rich in all cases and contains 
PXXP as a core conserved binding motif. The function of SH3 
domains is unclear, but they may mediate many different processes, 
such as increasing the local concentration of proteins, changing their 
subcellular location and mediating the assembly of large 
multiprotein complexes.

Through enrichment analysis, we found that the gene sets of the 
identified clusters were enriched in a variety of enzyme activities, 
ADP and ATP related generation reactions, replication and translation 
of genetic material DNA and RNA, neurotransmitter transmission 
links and other pathways. Multiple clusters were enriched in RNA 
polymerase II forward and transcriptional regulatory pathways, 
protein tyrosine related enzyme pathways, neural synapses, 
neurotransmitter transmission links, ATP, ADP synthesis related 
links. There were two clusters of gene sets enriched to human 
papillomavirus infection pathway. One cluster was significantly 
enriched in calcium ion related pathways. Another cluster was 
significantly enriched in the inositol phosphate metabolism pathway. 
SH3 (src Homology-3) domains, proteoglycan cancer pathway, PDZ 
domain, Hippo signaling pathway, Tight junction pathway, PB1 
domain and other pathways were also enriched in some clusters. Each 
cluster enriched in the above described pathways at the same time 
there are other enrichment pathways with different functions. There 
may be  multiple gene interactions enriched in different pathways 
leading to differences in sperm motility.

In order to determine whether the data is significantly enriched, the 
p-values of the enrichment results are corrected using the Benjamini 
method and the Bonferroni method. The specific identified differentially 
expressed genes and the number of samples is shown in Table 1. Specific 
gene and sample data are included in the Supplementary Table: The 
result of identification. Table 2 is the cluster-related enrichment results, 
Figure  3 visualizes the correlation enrichment results, and the 
enrichment analysis results of all clusters are shown in 
Supplementary Data.

3.2. Simulation data experimental results

Since this paper belongs to unsupervised learning, there is no 
standard answer for the quantitative study of male sperm motility. At the 
same time, in order to better determine the value of hyper-parameters 
in the statistical method used in this paper, simulated data similar to 
gene expression profile datasets are constructed to be  used in the 
method proposed in this paper. The clustering results in the simulated 
data have been determined and can be  used to evaluate the model 
performance. Comparing the identification results of the simulated data 
set with the results of similar methods, and the results show that the 
model proposed in this paper may have higher accuracy in the analysis 
of genetic factors in the quantitative study of male sperm (Table 3).

To identify the differential expression module of the simulated data, 
we used the C&C (Cheng and Church, 2000) and BCPlaid (Lazzeroni 
and Owen, 2000) methods to cluster the data, and calculated the jaccard 
similarity coefficient of the results, which was often used to compare the 
similarity and difference between the limited sample sets, among which 
the jaccard coefficient. The higher the value, the higher the similarity 
between sets. The stable parameters were tuned best in each model. The 
specific results are shown in Supplementary Table  3, and the 
corresponding box plot is in Figure 4.

TABLE 1 Clustering results identified in the statistical method proposed in 
this paper based on the GDS37948 male infertility data set.

ID avgSNR Number of 
samples

Number of 
samples

1 0.700870148 13 56

2 0.816555484 3 110

3 0.775713429 3 88

4 0.745638081 8 101

5 0.743384851 3 72

6 0.743381552 4 71

7 0.730139247 351 20

8 0.718222619 6 110

9 0.716803164 3 91

10 0.70627255 3 101

11 0.703721749 3 68

12 1.15234204 482 12

13 0.678448517 6 95

14 0.678084094 11 103

15 0.67773126 25 110

16 0.674885829 3 38

17 0.671869245 6 92

18 0.668664873 3 84

19 0.667155842 3 49
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4. Conclusion

Based on the analysis of the GSE37948 male infertility-related 
gene detection data set in the GEO database, this paper proposes a 
bicluster analysis method based on hypergeometric distribution, 
Gibbs sampling and machine learning, and establishes simulation 
data similar to the GSE37948 data set. The common bicluster analysis 
methods C&C (Cheng and Church, 2000) and BCPlaid (Lazzeroni 
and Owen, 2000) have compared the experimental results. The results 
show that the method proposed in this paper has a higher accuracy 
in the identification of biclusters on the established simulation 
data set.

Through enrichment analysis, we found that the gene sets of the 
identified clusters were enriched in a variety of enzyme activities, ADP 
and ATP related generation reactions, replication and translation of 
genetic material DNA and RNA, neurotransmitter transmission links 

and other pathways. Multiple clusters were enriched in RNA polymerase 
II forward and transcriptional regulatory pathways, protein tyrosine 
related enzyme pathways, neural synapses, neurotransmitter 
transmission links, ATP, ADP synthesis related links. There were two 
clusters of gene sets enriched to human papillomavirus infection 
pathway. One cluster was significantly enriched in the inositol phosphate 
metabolism pathway. Each cluster enriched in the above described 
pathways at the same time there are other enrichment pathways with 
different functions. There may be multiple gene interactions enriched in 
different pathways leading to differences in sperm motility.

Infertility is a complex pathological condition that presents with a 
wide range of heterogeneous prototypes, and identifying the genes that 
cause male infertility is important to increase our biological 
understanding and clinically relevant treatments. The genetic causes of 
male infertility are chromosomal abnormalities, gene mutations and 
other reasons, which may be  present in autosomes or in sex 

TABLE 2 Enrichment results of genes in a cluster identified by our method in the male infertility data set.

Category Term Genes Bonferroni Benjamini

GOTERM_CC_DIRECT GO:0030424 ~ axon CNTNAP2, CNTN5, 

IL1RAPL1, DMD, SCN1A

0.002330526 0.002333212

GOTERM_CC_DIRECT GO:0009986 ~ cell surface LGALS3, CNTNAP2, 

NLGN4X, IL1RAPL1, DMD

0.021009445 0.010615268

UP_KW_DISEASE KW-1269 ~ Autism CNTNAP2, NLGN4X, 

SCN1A

0.002854718 0.002858289

UP_KW_DISEASE KW-1268 ~ Autism spectrum 

disorder

CNTNAP2, NLGN4X, 

SCN1A

0.014578999 0.007336422

Only the pathways and related parameters that were modified and significantly enriched by Bonferroni and Benjamini are listed in the table. The cluster is the id in Table 1: 1.

FIGURE 3

Enrichment circle plot of genes in clusters identified by our method in the male infertility data set. The cluster is the id in Table 1: 1. (Visualization of the 
relationship between genes and enrichment pathways).
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chromosomes, considering the particularity of male infertility, this 
article only considers the study of related genes on the X chromosome. 
With the development of genetic testing technology, the relevant data 
has increased significantly, and follow-up research can fully explore the 
information contained in the gene expression data of relevant patients 
from more aspects.
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