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Spain has an aging population; 19.93% of the Spanish population is over 65. Aging 
is accompanied by several health issues, including mental health disorders and 
changes in the gut microbiota. The gut-brain axis is a bidirectional network linking 
the central nervous system with gastrointestinal tract functions, and therefore, 
the gut microbiota can influence an individual’s mental health. Furthermore, 
aging-related physiological changes affect the gut microbiota, with differences 
in taxa and their associated metabolic functions between younger and older 
people. Here, we took a case–control approach to study the interplay between 
gut microbiota and mental health of elderly people. Fecal and saliva samples 
from 101 healthy volunteers over 65 were collected, of which 28 (EE|MH group) 
reported using antidepressants or medication for anxiety or insomnia at the 
time of sampling. The rest of the volunteers (EE|NOMH group) were the control 
group. 16S rRNA gene sequencing and metagenomic sequencing were applied 
to determine the differences between intestinal and oral microbiota. Significant 
differences in genera were found, specifically eight in the gut microbiota, and five 
in the oral microbiota. Functional analysis of fecal samples showed differences 
in five orthologous genes related to tryptophan metabolism, the precursor of 
serotonin and melatonin, and in six categories related to serine metabolism, 
a precursor of tryptophan. Moreover, we  found 29 metabolic pathways with 
significant inter-group differences, including pathways regulating longevity, the 
dopaminergic synapse, the serotoninergic synapse, and two amino acids.
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1. Introduction

Spain has an aging population. In 2000, according to data from 
INE, the Spanish national statistics office (Instituto Nacional de 
Estadistica, 2021a)1, the population over 65 years of age was 16.53% 
and in 2022 that percentage will rise to 20.22%. In fact, demographic 
projections made by INE suggest that this trend is accelerating, and 
by 2,068 people, over 65 years of age could represent 29.4% of the 
population (García et al., 2021). The increase in elderly population 
over recent years, and the aging rate (i.e., ratio of people over 65 vs. 
those under 16) is currently 129.11% in Spain and the Comunidad 
Valenciana (Instituto Nacional de Estadistica, 2021b). This 
circumstance is a clear indicator of the improvement in the quality of 
life in post-industrial countries, but we cannot ignore the fact that the 
quantity of life alone is not a sufficient indicator of quality of life.

According to the World Health Organization, over 20% of adults 
aged 60 and over suffer from a mental or neurological disorder. Mental 
disorders are defined as “health conditions characterized by alterations 
in thinking, mood, or behavior (or a combination thereof) associated 
with distress and impaired functioning.” Mental health disorders affect 
mood, thinking, and behavior. These also include depression, anxiety, 
insomnia, eating disorders, and addictive behaviors. In the 
Comunidad Valenciana (Spain), there is a 24.6% risk of mental health 
disorders in adulthood, which can rise to 50% in people over 84 years 
old (Conselleria de Sanitat Universal i Salut Pública, 2020). Geriatric 
depression often remains undiagnosed and untreated and its 
symptoms are commonly attributed to normal aging; however, the 
lack of treatment has important consequences for both the patients’ 
quality of life and the primary care system (Park and Unützer, 2011).

The elderly may experience life stressors common to all people, 
but also other stressors that are more common in later life, like a 
significant ongoing loss in capacities and a decline in functional 
ability. For example, older adults may experience reduced mobility, 
chronic pain, frailty, or other health problems, for which they require 
some form of long-term care (Chen et al., 2020). In addition, older 
people are more likely to experience events such as bereavement, or a 
decline in socioeconomic status with retirement (Venkatapuram et al., 
2017). All of these stressors can result in isolation, loneliness, or 
psychological distress in the elderly, for which they may require long-
term care (Harman, 2006).

There is growing evidence that the gut-brain axis, a bidirectional 
communication network that links the emotional and cognitive 
centers of the brain with peripheral intestinal functions, plays a role 
in promoting mental health or disorders (Richards et al., 2021). It 
regulates, for instance, appetite and feeding, glucose and metabolite 
homeostasis, and gut motility (Cryan and O’Mahony, 2011). Several 
factors can influence the bidirectional interplay between the gut and 
the brain, including: (i) neurological diseases like Parkinson, autism 
spectrum disorder or Alzheimer; (ii) psychological disorders, 
including depression, anxiety and insomnia; and (iii) gastrointestinal 
(GI) disorders such as irritable bowel syndrome and obesity (Liang 
et al., 2018; Suganya and Koo, 2020; Richards et al., 2021).

The transmission of sensory information from the gut to the brain 
is mediated by hormonal and neural circuits (Suganya and Koo, 2020). 

1 https://www.ine.es/

After a stimulus such as ingestion, the passage of nutrients from the 
duodenum and jejunum produces chemical and mechanical stimuli 
that are detected by enteroendocrine cells (EECs). These cells will then 
secrete signaling peptides detected by sensory cells from the enteric 
nervous system (ENS) or the central nervous system (CNS) (Liang 
et al., 2018). There are intestinal microorganisms with the ability to 
produce metabolites, such as serotonin and Gamma-aminobutyric 
acid (GABA), which are active neurotransmitters in the human 
nervous system (Mazzoli and Pessione, 2016). These metabolites, once 
secreted by the microbiota, induce intestinal epithelial cells to release 
neural modulating molecules that signal the ENS, which, in turn, 
signals the brain function and therefore influences the hosts’ 
demeanor. GABA is the most abundant inhibitory neurotransmitter 
in the mammalian CNS. It is produced by microorganisms, plants, 
and animals and plays an important role in regulating blood pressure, 
sleep, cognition, and obesity, among other physiological functions. 
Therefore, it has been used as an antidepressant, hypotensive, insulin 
secretagogue, and as insomnia medication (Kalueff and Nutt, 2007).

It is also interesting to mention the functional role of essential 
amino acids produced by gut microbes, in particular tryptophan. The 
majority of tryptophan in the human body circulates in the blood 
attached to albumin, while only 10–20% can be found circulating 
freely (Gao et al., 2020). Studies have shown that changes in the gut 
microbiota affect the gut-brain axis by modulating the tryptophan 
metabolism and that metabolic products of tryptophan metabolism 
can interact with the gut-brain axis and the CNS. These metabolites 
include 5-hydroxytryptamine (5-HT or serotonin), indolic 
compounds, and kynurenines (KYN) (Gao et al., 2020). Only 1–2% of 
available ingested tryptophan goes through the 5-HT pathway. This 
has important implications as 5-HT is the neurotransmitter mainly 
responsible for regulating mood and anxiety.

Low serotonin levels in the CNS contribute to significantly 
increased depression and anxiety (Lindseth et al., 2015). The 5-HT 
pathway is involved in modulating emotions, food intake, sleep, sexual 
behavior, and pain management. Indeed, 8.95% of serotonin is 
synthesized in the GI tract by enterochromaffin cells (EC), which are 
the most common type of EECs, and help regulate intestine 
permeability, motility, secretion, epithelial development, mucosal 
inflammation, and the development and neurogenesis of the enteric 
nervous system (Liu et  al., 2021). It is estimated that 95% of the 
produced serotonin is found in the GI tract (Richard et al., 2009).

The biosynthesis of 5-HT is entirely dependent on the enzyme 
tryptophan hydroxylase (TPH), which converts tryptophan into 
5-hydroxytryptophan (5-HTP) (Gao et  al., 2020). TPH is a rate-
limiting enzyme that exists in TPH1 and TPH2. TPH1 is expressed in 
the EC cells in the GI tract and the pineal gland while TPH2 is mainly 
expressed in the myenteric plexus of the ENS and the serotonergic 
neurons of the brainstem (Pelosi et al., 2015). Dysregulation in TPH 
expression is believed to play a role in psychiatric disorders such as 
anxiety and GI diseases such as irritable bowel syndrome (Gao 
et al., 2020).

More than 90% of tryptophan is metabolized through the 
kynurenine pathway (KP). Indolamine 2, 3-dioxygenase (IDO), 
expressed in various organs such as the brain, the GI tract, and the 
liver, and tryptophan 2, 3-dioxygenase (TDO), mainly expressed in 
the liver, are the enzymes that catalyze the first step of tryptophan 
metabolism on KP (Gao et  al., 2020). These enzymes transform 
tryptophan into N-formylkynurenine, which is subsequently 
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metabolized into KYN. Of these enzymes, TDO mediates the 
metabolism of KP at a basal level, while IDO is activated in an 
immune-activated environment (Chen et  al., 2021). After KYN 
biosynthesis, it will continue to form other KYN such as kynurenic 
acid (KYNA) and quinolinic acid (QUIN). These compounds can 
cross the Blood–Brain Barrier (BBB) and reach the CNS, where they 
can act as neuromodulators and exert either neuroprotective or 
neurotoxic effects (Gao et al., 2020).

Ruiz-Ruiz et al. (2020) identified a link between aging and the 
microbial pathway associated with tryptophan and indole (tryptophan 
degradation product) production and metabolism by the commensal 
microbiota. The key proteins involved in tryptophan-to-indole 
metabolism, tryptophanase (TnaA), and tryptophan synthase (TrpB) 
are more abundant and expressed at higher levels in the gut microbiota 
of infants, whereas they are expressed at significantly lower levels in 
adults and even lower levels or below the detection limit in the elderly. 
From the age of 11 years, the human gut microbiota may exhibit a 
decreased capacity to produce these metabolites, and from the age of 
34 years, this capacity may drop by over 90% compared to childhood 
(Ruiz-Ruiz et al., 2020). Tryptophan deficiency from a certain age 
could be  associated with a high risk of mental health disorders 
in adulthood.

Oral health is also influenced by aging, with an increased 
prevalence of periodontal disease (Clark et al., 2021). There are studies 
that have shown that the composition and diversity of the oral 
microbiota are related to the general health state and frailty in aging 
(Ogawa et al., 2018; Singh et al., 2019). Furthermore, there is strong 
evidence that elderly people who have a relatively high number of 
missing teeth are more likely to develop dementia and mild cognitive 
impairment (Batty et  al., 2013). Also, it has been suggested that 
transition of bacteria from the oral mucosa to the gut is more frequent 
in the elderly than in adults (Iwauchi et al., 2019), which increases 
when volunteers suffer from inflammatory oral or intestinal diseases 
(Kitamoto et al., 2020). Another studies demonstrated the significance 
of the oral microbiome in the development or progression of a number 
of systemic disorders, including type 2 diabetes (Arimatsu et al., 2014) 
and colorectal cancer Komiya et  al., 2019, which might suggest a 
possible effect of the oral microbiota over other disorders including 
mental health disorders.

In the present study, we  carried out 16S rRNA gene and 
metagenomic sequencing to determine differences in the taxa, 
functions, and metabolic pathways of intestinal and oral microbiota 
in a cohort of over 65-year-olds in the Comunidad Valenciana (Spain). 
The study included individuals treated with medication for anxiety, 
depression, and/or insomnia and those who were not diagnosed with 
any mental health disorders.

2. Materials and methods

2.1. Study participants

A case–control study was performed. Fecal and saliva samples 
from 101 volunteers over 65 were collected (EE cohort). All 
participants were residents of the Comunidad Valenciana (Spain) and 
filled out a questionnaire about their diet, general health, habits, 
weight and height (with which the body mass index (BMI) has been 
calculated), employment situation, medical history, and vaccinations. 

Some of this information is collected in Supplementary Table 1. The 
EE cohort was composed of 37 males and 63 females (average age 
71.29 ± 5.83), 28 of whom (27.72%) reported being treated with 
antidepressants, anxiety, or insomnia medication (EE|MH group). Of 
these, 24 were women corresponding to 85.7% of the group (23.8% of 
the complete EE cohort), and 4 were men corresponding to 14.3% of 
the group (4% of the complete EE cohort). The remaining 73 were 
controls (EE|NOMH group). All procedures were reviewed and 
approved by the Ethics Committee (Reference: 20210305/07) of 
Fundación para el Fomento de la Investigación Sanitaria y Biomédica 
de la Comunitat Valenciana (FISABIO). All the volunteers provided 
written informed consent before their participation.

2.2. Sample preparation

Fecal samples were collected from each volunteer in sterile tubes, 
containing 10 mL of RNAlater Solution (Ambion) to stabilize and 
preserve the integrity of nucleic acids prior analysis. Samples were 
homogenized by adding 10 mL phosphate-buffered saline (PBS) 
(containing, per liter, 8 g of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4, and 
0.24 g of KH2PO4 [pH 7.2]) and then centrifuged to eliminate solid 
waste. The obtained fecal microbial suspension was aliquoted and 
stored at −80°C until further processing. With respect to saliva 
samples, 3 mL was collected from each volunteer in sterile containers, 
aliquoted, and stored at −80°C until further processing.

2.3. DNA extraction of fecal samples

A total of 500 μL of fecal suspension was pelleted and weighted 
and the total genomic DNA was extracted using the QIAamp DNA 
mini stool kit (Qiagen). The fecal suspension pellet was resuspended 
in 1 mL of inhibitEX Buffer from the extraction kit and then 20 μL 
of lysozyme (10 mg/mL) was added for cellular lysis, followed by 
30 min incubation at 37°C. The lysate was subjected to mechanical 
treatment with 200 μL of 150–212 μm diameter Glass Beads (Sigma) 
and heated to 95°C for 5 min. The samples were then centrifuged 
and 600 μL of the supernatant was treated with 45 μL of proteinase 
K. The following steps were carried out according to the 
manufacturers’ recommendations.

2.4. DNA extraction of saliva samples

A total of 250 μL of saliva was pelleted at 4°C, weighted, and total 
genomic DNA was extracted using the QIAamp DNA mini kit 
(Qiagen) with a few preliminary steps. The pellet was resuspended in 
the leftover supernatant and incubated for 45 s in a 37°C ultrasonic 
cleaner (Raypa). Then, 130 μL of AL Buffer from the extraction kit was 
added to each sample and then 10 μL of “enzyme mix” containing 
2.5 μL of lysozyme (100 mg/mL), 2.5 μL of lysostaphin (5 mg/mL), 
2.5 μL of mutanolysin, and 2.5 μL of nuclease-free water was also 
added and incubated for one-hour at 37°C. Subsequently, 20 μL of 
proteinase K from the extraction kit was added to the lysate and the 
samples were incubated for 10 min at 56°C, followed by 10 min at 
70°C, and 3 min at 95°C incubation. The lysate was then mixed with 
200 μL of 100% ethanol and placed on the kit mini-column. Finally, 

https://doi.org/10.3389/fmicb.2023.1094071
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Pesantes et al. 10.3389/fmicb.2023.1094071

Frontiers in Microbiology 04 frontiersin.org

the washing steps were performed according to the manufacturers’ 
recommendations.

2.5. 16S rRNA gene amplification, library, 
and sequencing

For fecal and saliva samples, V3-V4 hypervariable regions of the 
16S rRNA gene were amplified by PCR using primers: 
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACG 
GGNGGCWGCAG-3′ (forward); and 5′-GTCTCGTGGGCTCGGA 
GATG TGTATAAGAGACAGGACTACHVGGTATCTAATCC-3′ 
(reverse). Amplicons were purified using NucleoMag NGS Clean-up 
and Size Select magnetic beads (Macherey-Nagel) and then Illumina 
sequencing adapters using the Nextera XT Index Kit (Illumina) were 
attached. Quantification of DNA was performed with a Qubit 3.0 
fluorometer using the Qubit dsDNA HS assay kit (Thermo Fisher 
Scientific). Amplicon libraries were pooled in equimolar ratios for 
sequencing on a MiSeq platform of Illumina (2 × 300 bp paired-end 
reads) following the manufacturers’ recommendations.

2.6. Metagenome library and sequencing

For fecal samples, whole-genome sequencing was also performed 
from total DNA. Metagenome libraries were obtained with Illumina’s 
Nextera XT DNA Library Preparation Kit. Short fragments were 
eliminated using NucleoMag NGS Clean-up and Size Select magnetic 
beads (Macherey-Nagel) and the obtained purified libraries were 
sequenced in a MiSeq platform of Illumina (2 × 150 bp paired-end 
reads) following the manufacturers’ recommendations.

2.7. Bioinformatics and statistical analysis

In-house bioinformatic analysis pipelines were applied. For 16S 
rDNA gene analysis, we  obtained the amplicon sequence variant 
(ASV) data with the DADA2 pipeline (Callahan et al., 2016), which 
removed the forward and reverse primers, filtered low-quality reads, 
and trimmed reads by length. Paired reads were merged to obtain the 
full denoised sequences, combined and abundance matrices were 
obtained. Chimeric ASVs as well as host (human) ASVs were 
removed. Finally, taxonomy was assigned to each variant by comparing 
them against the SILVA database (Quast et al., 2012) (naive Bayesian 
classifier to assign up to genus level and 97% blast matching for 
species level).

For metagenomic analysis, once the raw sequencing data were 
obtained, the sequencing adaptors were removed by Cutadapt 
software. Low-quality reads were eliminated using PRINSEQ, as well 
as short reads, and reads with a high percentage of ambiguous bases, 
in addition to low entropy reads. To join overlapping pairs to obtain 
longer sequences, the FLASH software was used. Non-overlapping 
forward pairs were also taken into account while non-overlapping 
reverse pairs were discarded. The host (human) genome and the 
non-coding ribosomal RNA sequences were filtered out using Bowtie2 
with the SILVA database. The reads were then assembled into contigs 
using Megahit and mapped against the contigs using Blast. Open 

reading frames (ORF) were predicted using the Prodigal software and 
abundance tables were created. Functional annotation was performed 
by mapping each ORF against protein family database using the 
program HMMER and the KEGG Orthology database. Finally, Kaiju 
was used for taxonomical annotation of metagenome data. Once the 
functional compositional matrix was obtained, the results were 
grouped into functional categories and metabolic pathways.

Each matrix, including the ASV, phylum, genus, and functional 
compositional matrices were then analyzed. The R statistics software 
was applied to obtain alpha (Shannon and Chao1 indexes) and beta 
diversity (Canonical Correspondence Analysis (CCA), Permanova 
test, and Wilcoxon non-parametric test). Correlation analysis between 
the saliva and fecal samples was obtained using the sPCA mixomics 
approach for a single omic (Kim-Anh et al., 2016).

2.8. Robustness analysis: attenuation and 
buffering

Functional capacities of microbiomes are dependent on the 
taxonomic structure of the microbial community, because each taxon 
is associated to putatively different functions and abundances. The 
functional metagenome could be inferred considering the taxonomic 
composition of the microbial community. Changes in the composition 
and/or abundance of one or more taxa can cause changes in functional 
capacities. This has recently been described as taxa-function 
relationships ( Vieira-Silva et al., 2016; Eng and Borenstein, 2018).

Two main systemic parameters can be estimated to determine the 
functional robustness of microbial communities: attenuation and 
buffering. The determination was done using the microbial 
community taxa-function robustness estimation pipeline developed 
by Eng and Borenstein (2018).2 To calculate changes in functional 
capacities or, more formally, to quantify the changes in gene 
composition induced by changes in taxonomical structure, the 
abovementioned work describes an approach to evaluate the taxa-
function robustness and quantify the two abovementioned parameters. 
Attenuation measures how rapidly the functional shift increases as 
perturbation magnitude increases and buffering is defined as how 
large a taxonomic perturbation must be before noticeable functional 
shifts occur. These two parameters can be measured globally and for 
particular superpathways or pathways, thereby detecting the weakest 
points in the global microbiota metabolism when a stochastic change 
in the microbial community occurs, generating deviations in the 
functional profile.

We have implemented some modifications in the original pipeline 
in order to improve sensitivity and accuracy. First, we used PICRUSt2 
(Douglas et al., 2020) to derive a 16S copy number table, a genomic 
content annotation table, and a phylogenetic tree. Second, those files 
were used to replace the ones provided by the original pipeline. 
Manipulation of data and its graphical representation, as well as and 
statistical tests, was done using R scripts using libraries dplyr, ggplot, 
and ggpubr. Attenuation and Buffering measurements, graphical 

2 https://github.com/borenstein-lab/robustness
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representation, and statistical tests were done using R scripts and 
libraries dplyr (Wickham et al., 2022) and ggplot2 (Wickham, 2016).

2.9. Data availability statement

The curated sequences from 16S rRNA gene and metagenomes 
were deposited in the EBI Short Read Archive under the study 
accession number PRJEB56919, with accession numbers 
ERS13596619- ERS13596719 and ERS13596821-ERS13596921 for 
the16S rRNA gene from fecal and saliva samples, respectively, and 
ERS13596720-ERS13596820 for metagenomes.

3. Results

3.1. Clinical and biochemical characteristics

We obtained samples from a cohort of 101 volunteers over 65 years 
old (EE cohort) from the Comunidad Valenciana (Spain), 28 of whom 
were treated with medication for anxiety, depression, and/or insomnia 
(EE|NOMH group) and 73 not treated for any mental health disorders 
(EE|NOMH group). The medication of the EE|MH group included 
modulators of GABA receptors, modulators of serotonin availability, 
or sleep regulators (Table 1). Some participants combined more than 
one type of medication at the same time. In addition, some of them 
suffer common age-related diseases (hypercholesterolemia, 
hypertension, diabetes, and coronary diseases) and take medication 
for its treatment. Both groups had a similar representation of these 
most common diseases.

3.2. 16S taxonomy from fecal samples

A total 7,050,645 reads were sequenced from fecal samples, 
18.23% of which were removed after quality check and host filtering, 
obtaining an average of 57,086 reads per sample (maximum 
length = 109,272, minimum length = 12,168, total number 
reads = 5,822,728). Taxonomic annotation showed two phyla with 
main representation in the EE cohort: Firmicutes (48.92%) and 
Bacteroidota (40.76%). Other phyla with lower representation 
included: Proteobacteria (4.25%), Actinobacteriota (2.82%), 
Verrucomicrobiota (1.31%), Desulfobacterota (0.70%), Cyanobacteria 
(0.15%), and Synergistota (0.12%).

Alpha diversity analyses at genus and ASV levels showed that 
Shannon and Chao indexes were not statistically significant between 
EE|MH and EE|NOMH groups (Figures 1A,B). However, regarding 
beta diversity, the distribution of genera and ASV in the two groups 
was statistically significant (Adonis test, value of p = 0.003 and 0.038, 
respectively; Figure 1C). Because the EE/NOMH group has a clearly 
higher number of individuals than the EE/NOMH group (73 versus 
28 volunteers), the analysis was repeated three times, each time 
choosing a group of 30 EE/NOMH individuals at random, in order to 
avoid bias due to the difference in the members of each group. In the 
three comparisons, the result was statistically significant with value of 
ps of 0.04, 0.021, and 0.002, respectively. The Wilcoxon non-parametric 
test also showed statistically significant differences (value of p < 0.05) 
between the two groups in the following eight genera (Figure 2A): 

Bilophila, Bacteroides, Colidextribacter, Flavonifractor, Parabacteroides, 
Oscillibacter, Alistipes, and Coprococcus and in five ASVs (Figure 2B), 
which correspond to the species Flavonifractor plautii, Bilophila 
wadsworthia, Lachnospira pectinoschiza, and two with 
Faecalibacterium prausnitzii. Of these, the genus Coprococcus and the 
ASVs corresponding to the species Flavonifractor plautii and Bilophila 
wadsworthia were more abundant in the EE|NOMH group.

3.3. 16S taxonomy from saliva samples

A total of 9,050,887 reads were sequenced from saliva samples, 
24.47% of which were removed after quality check and host filtering, 
obtaining an average of 68,358.57 reads per sample (maximum 
length = 488,613, minimum length = 28,571, total number of 
reads = 6,835,857). Taxonomic annotation showed that the most 

TABLE 1 Volunteers over 65 years from the Valencian Community which 
were treated with medication for anxiety, depression, and insomnia 
(EE|MH).

Identification 
number

Age Gender Group

EE13 67 Female 1

EE24 68 Female 1

EE25 68 Female 2

EE26 65 Male 2

EE27 68 Female 4

EE34 70 Female 3

EE37 75 Female 1

EE38 83 Female 1

EE40 69 Female 2

EE42 65 Female 1

EE50 65 Female 2

EE54 73 Female 1

EE62 66 Female 3

EE64 81 Male 1

EE71 82 Female 2

EE72 68 Female 2

EE74 88 Female 1

EE75 74 Female 3

EE79 68 Female 3

EE83 74 Female 3

EE89 71 Female 1

EE90 90 Male 1

EE91 89 Female 1

EE95 66 Female 4

EE102 65 Female 3

EE107 65 Female 1

EE108 71 Male 1

EE113 66 Female 1

Groups: 1: Modulators of GABA receptors; 2: Modulators of serotonin availability; 3: 
Combination of groups 1 and 2; 4: Sleep regulators.
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represented phyla were Firmicutes (30.22%), Bacteroidota (28.91%), 
and Proteobacteria (20.48%), and other phyla with lower 
representation that included Fusobacteriota (8.15%), Actinobacteriota 
(5.82%), Patescibacteria (2.97%), Campilobacterota (2.21%), and 
Spirochaetota (0.83%). Similar results to those obtained with fecal 
samples were detected for the alpha diversity at the genus and ASV 
levels of saliva samples. Shannon and Chao indexes were not 
significantly different with p values >0.05 between EE|MH and 
EE|NOMH (Figures  3A,B). However, significant differences were 
found in the beta diversity between groups (Adonis test value of 
p = 0.02) (Figure 3C). We identified statistically significant differences 
(Wilcoxon test) for five genera (Figure  4A): Veillonella, Neisseria, 
Porphyromonas, Lactobacillus, and Treponema, and five ASV 

(Figure  4B), which corresponded to the species Oribacterium 
asaccharolyticum, Stomatobaculum longum, Fusobacterium 
periodonticum, Veillonella rogosae, and Porphyromonas pasteri. Only 
the genus Veillonella and the ASV corresponding to Oribacterium 
asaccharolyticum and Stomatobaculum longum were more abundant 
in EE|MH, while the rest were more abundant in EE|NOMH.

3.4. Correlation analysis between gut and 
saliva microbiota

Correlation analysis between the gut and the saliva microbiota at 
genus level was performed using the Mixomics single omic approach. 

A

C

B

FIGURE 1

16S alpha and beta diversity of fecal samples. (A) Shannon diversity index and (B) richness estimator Chao1 analysis between EE|MH and EE|NOMH 
groups. (C) Canonical Correspondence Analysis (CCA) of EE|MH (blue) and EE|NOMH (red) groups at genus level.
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The correlation analyses showed differences between both groups. In 
the EE|MH group the genus Lachnospira (gut) with the genera 
Megasphaera and Atopobium (saliva) and the genus Subdoligranulum 
(gut) with the genus Lachnoanaerobaculum (saliva) showed significant 
negative correlations, while the genus Odoribacter (gut) with the 
genera Alloprevotella and Haemophilus (saliva) and the genera 
Lachnoclostridium, and Colidextribacter (gut) with the genus 
Megasphaera (saliva) showed positive correlation (Figure  5A). By 
contrast, the genus Alistipes (gut) had significant negative correlation 
with the genera Veillonella and Prevotella (saliva) in the EE|NOMH 
group (Figure 5B).

3.5. Functional orthologs analysis from 
metagenome data of fecal samples

A total 554,768,576 reads were sequenced, 19.09% of which 
were removed after quality check and host filtering, obtaining an 
average of 4,444,094.52 reads per sample (maximum 
length = 15,434,500, minimum length = 924,728, number of total 
reads = 448,853,547); of these 270,608,848 were correctly assigned 
to KEGG Orthology (KO) categories (maximum number of reads 
assigned per sample = 10,033,384; minimum number of reads 
assigned per sample = 330,178).

No significant differences were found in the CCA analysis 
between EE|MH and EE|NOMH for KO categories (Adonis test value 
of p = 0.24; Supplementary Figure  1). However, the Wilcoxon test 
identified 382 KO categories that showed significant differences (value 
of p < 0.05). It is worth mentioning that five are involved in tryptophan 
metabolism (K00382, K03781, K01692, K00658, and K01667) (see 
Supplementary Figure  2) and six in serine metabolism (K00382, 
K02437, K01079, K00281, K00605, and K18348/K12235). Serine is 
used by bacteria to convert indole into tryptophan- (see 
Supplementary Figure  3), which were higher in EE|MH than in 
EE|NOMH (Figure 6). Furthermore, 19 KO categories involved in the 
synthesis of metabolic products related to GABA production was 

higher in the EE|MH group (K13746, K03474, K00294, K00175, 
K01425, K03473, K09758, K05275, K00174, K17865, K05597, K01580, 
K00262, K01640, K00634, K01692, K13051, K01470, and K09472). 
Three of these KO categories correspond to the arginine and proline 
metabolism pathway (K00294, K01470, and, K09472), five to the 
alanine aspartate and glutamate metabolism (K00262, K00294, 
K01425, K01580, and K05597), seven to the butanoate metabolism 
(K00174, K00175, K00634, K01580, K01640, K01692, and K17865), 
and three to the vitamin B6 metabolism (K03473, K03474, and 
K05275) which, as a co-factor, is also involved in the biosynthesis and 
catabolism of amino acids and neurotransmitters like GABA (Table 2). 
Finally, two more KO categories were shared by the arginine and 
proline metabolism and the alanine, aspartate, and glutamate 
metabolism pathways (K00294) and by the alanine, aspartate, and 
glutamate metabolism, and the butanoate metabolism pathways 
(K01580). The genus contribution to these KOs was obtained using 
taxonomy information from metagenomic data through Kaiju. The 
genera Bacteroides and Alistipes were the most representative in most 
of the KOs analyzed. It is noteworthy that the percentage of the 
Bacteroides contribution was higher in the EE|MH group in all but one 
KO and that the genus Alistipes had a higher contribution in most of 
the KOs in the EE|NOMH group (Table 2).

3.6. Analysis of KEGG metabolic pathways

CCA analysis carried out between EE|MH and EE|NOMH 
showed no statistically significant differences in KEGG pathways 
(Adonis test p − value = 0.25; see Supplementary Figure 4). However, 
29 KEGG pathways showed significant differences in the Wilcoxon 
test. Interestingly, considering that both groups consisted of 
individuals over the age of 65, the pathway regulating longevity was 
significantly higher in EE|MH than in EE|NOMH (path 04211, value 
of p = 0.02; Figure  7A). In addition, two amino acid metabolism 
pathways also showed higher abundance in the EE|MH group: valine, 
leucine, and isoleucine degradation (path 00280, value of p = 0.0084) 

A B

FIGURE 2

Volcano plots showing the differential abundance of (A) genera and (B) ASVs between EE|MH (right) and EE|NOMH (left) groups in fecal samples.
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and phenylalanine metabolism (path: 00360, value of p = 0.0088; 
Figure 7B). Finally, the other two significant KEGG pathways related 
to the CNS and tryptophan metabolism were higher in the EE|MH 
group, the dopaminergic synapse (path: 04728 value of p = 0.015) and 
serotoninergic synapse (path 04726, value of p = 0.019; Figure 7C).

3.7. Robustness analysis of samples

EE|MH and EE|NOMH groups showed no differences in either 
attenuation (Mann–Whitney test value of p = 0.072) or buffering 
(Mann–Whitney test p value = 0.15) in fecal samples. Attenuation and 

buffering for each individual are shown in Supplementary Table 2. In 
addition, values of attenuation and buffering for each individual 
within each group (Supplementary Figure 5A) are not correlated after 
applying Pearson’s correlation coefficient. In some cases, individual 
pathways start from a common precursor, or produce a common 
product, but they can also have other relationships. Superpathways 
can have individual reactions due to their components in addition to 
other pathways. Moreover, distribution curves of attenuation and 
buffering (Supplementary Figures 5B,C, respectively) were similar for 
both groups, controls and treated individuals. Similar results to those 
observed in fecal samples were observed for saliva. Attenuation and 
buffering for each individual saliva sample are shown in 

A

C

B

FIGURE 3

16S alpha and beta diversity of saliva samples. (A) Shannon diversity index and (B) richness estimator Chao1 analysis between EE|MH and EE|NOMH 
groups. (C) Canonical Correspondence Analysis (CCA) of EE|MH (blue) and EE|NOMH (red) groups at genus level.
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Supplementary Table  3. Attenuation (Mann–Whitney test, p 
value = 0.41) and buffering (Mann–Whitney test, p value = 0.95 for 
Buffering) were not significant between groups. Moreover, values of 
attenuation and buffering for each individual within each group 
(Supplementary Figure 6A) did not correlate after applying Pearson’s 
correlation coefficient. Furthermore, distribution curves of attenuation 
and buffering (Supplementary Figures 6B,C, respectively) were also 
similar for both groups, controls and treated.

Of the 20 main superpathways, most will have an additional 
parent class within the pathway ontology to define their biological 

role. Statistical differences for attenuation were found for 
fecal and saliva samples in superpathways for both groups 
(Supplementary Figures 7A,B, respectively). In fecal samples only in 
superpathway cell motility (lower attenuation in treated group, value 
of p in Kruskal–Wallis test 0.0428) while in saliva samples, we found 
differences in attenuation for four superpathways (higher for treated 
group in superpathways for lipid metabolism and translation and 
lower in metabolism of terpenoids and polyketides, and cell growth 
and death). In case of buffering, no differences were found in fecal 
samples (Supplementary Figure 7C), while differences were recorded 

A B

FIGURE 4

Volcano plots showing the differential abundance of (A) genera and (B) ASVs between EE|MH (right) and EE|NOMH (left) in saliva samples.

A B

FIGURE 5

Heatmaps charts showing the correlations between gut and saliva microbiota in (A) EE|MH and (B) EE|NOMH groups.
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in only four superpathways in saliva samples: lipid metabolism, 
metabolism of other amino acids and folding, sorting and degradation 
(lower for treated group) and, finally, metabolism of terpenoids and 
polyketides (higher in treated group; Supplementary Figure 7D).

4. Discussion

Tryptophan is an essential amino acid for protein synthesis, and 
the least abundant amino acid in proteins and cells (Gao et al., 2020). 
Certain bacterial products of tryptophan metabolism, including 
serotonin, indolic compounds, and kynurenines, can interact with the 
gut-brain axis and the CNS of the host, thereby modulating physiology 
(Agus et al., 2018). Changes affecting the gut-brain axis are thought to 
be  connected to a number of neurological disorders, such as 
Parkinson’s disease, Autism spectrum disorder, and Alzheimer’s 
disease, as well as some gastrointestinal (GI) disorders, such as 
irritable bowel syndrome and obesity, and even some psychological 
disorders, such as depression, anxiety, and insomnia (Liang et al., 
2018; Richards et al., 2021). Other authors have focused on the role of 
the microbiota in the development of mental health-related 

conditions, discussing that conditions characterized by acute or 
chronic inflammation, depression, decreased quality of life or 
cognitive impairment are related to the metabolic alteration of amino 
acid precursors of neurotransmitters, such as tryptophan and 
phenylalanine among others Strasser et al., 2017.

Around 90–95% of available tryptophan goes through the KP, 
1–2% of it forms 5-HT and melatonin through the serotonin pathway, 
and 4–6% is metabolized into indole and other indolic derivates by 
bacteria (Gao et al., 2018), that can be transferred across the blood–
brain barrier to reduce neuroinflammation Cox and Weiner, 2018. The 
microbiota plays an important role, for instance, it is crucial for the 
gut’s amino acid metabolism, which has an impact on 
neuroinflammatory illnesses. The ability of the microbiota to access 
gut-brain signaling pathways and modify the host’s behavior depends 
on bidirectional communication along the gut-brain axis. TPH2 is the 
protein that catalyzes the first step in serotonin biosynthesis from 
tryptophan in the brain. An imbalance in serotonin levels has been 
widely associated with neuropsychiatric disorders such as depression 
and anxiety (Pelosi et al., 2015). Shishkina et al. showed that TPH2 
expression increases in the midbrain in animal models of depression 
treated with antidepressants (Shishkina et al., 2007). In our study, the 

FIGURE 6

Significant differences in KEGG categories, in bold those related to tryptophan and serine metabolism between EE|NOMH (right) and EE|MH (left) 
groups.
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TABLE 2 Significantly different KO categories and the genera with the highest contribution to them in both groups.

KO p-value Pathway Most abundant Genera with the 
highest contribution 

in EE|MH

Genera with the 
highest contribution 

in EE|NOMH

K03781 0.016 Tryptophan metabolism EE|MH Bacteroides (45.5%)

Alistipes (21.6%)

Bacteroides (36%)

Alistipes (24%)

K00658 0.041 Tryptophan metabolism EE|MH Bacteroides (57.4%) Bacteroides (52.3%)

K01667 0.042 Tryptophan metabolism EE|MH Bacteroides (29%)

Alistipes (23.1%)

Bacteroides (22.6%)

Alistipes (23.3%)

K02437 0.007 Glycine, serine and 

threonine metabolism

EE|MH Bacteroides (31.5%)

Alistipes (9.9%)

Bacteroides (27.1%)

Alistipes (11.5%)

K01079 0.01 Glycine, serine and 

threonine metabolism

EE|MH Bacteroides (36.8%)

Alistipes (9.3%)

Bacteroides (34.5%)

Alistipes (12.4%)

K00281 0.011 Glycine, serine and 

threonine metabolism

EE|MH Bacteroides (43%)

Alistipes (12.3%)

Bacteroides (39.7%)

Alistipes (12.4%)

K00605 0.018 Glycine, serine and 

threonine metabolism

EE|MH Bacteroides (46.7%)

Alistipes (14.3%)

Prevotella (6.2%)

Bacteroides (38.1%)

Alistipes (13.1%)

Prevotella (9.4%)

K18348

K12235

0.046 Glycine, serine and 

threonine metabolism

EE|MH Bacteroides (16.1%)

ParaBacteroides (6.2%)

Faecalibacterium (6.2%)

Bacteroides (14.1%)

ParaBacteroides (8.7%)

K13746 0.001 Arginine and proline 

metabolism

EE|MH Bacteroides (60%) Bacteroides (40%)

Roseburia (20%)

K01470 0.042 Arginine and proline 

metabolism

EE|MH Bacteroides (36.6%) Bacteroides (34.8%)

K09472 0.049 Arginine and proline 

metabolism

EE|MH Bilophila (16.7%)

Enterobacter (16.7%)

Escherichia (16.7%)

not assigned

K01425 0.009 Alanine, aspartate and 

glutamate metabolism

EE|MH Bacteroides (41.6%)

Alistipes (8.1%)

Bacteroides (31.6%)

Alistipes (9.6%)

K09758 0.013 Alanine, aspartate and 

glutamate metabolism

EE|MH Bacteroides (47.5%) Bacteroides (43.7%)

K05597 0.017 Alanine, aspartate and 

glutamate metabolism

EE|MH Bacteroides (62%)

Sutterella (11%)

Phascolarctobacterium (5.8%)

Bacteroides (59.8%)

Sutterella (5%)

Phascolarctobacterium (6.3%)

K00262 0.033 Alanine, aspartate and 

glutamate metabolism

EE|MH Bacteroides (23.1%)

Faecalibacterium (6.1%)

Alistipes (4.3%)

Bacteroides (16.9%)

Faecalibacterium (6.1%)

Alistipes (4.8%)

K13051 0.04 Alanine, aspartate and 

glutamate metabolism

EE|MH Bacteroides (68.4%)

Bifidobacterium (5.3%)

Bacteroides (64.4%)

Bifidobacterium (4.4%)

K00175 0.009 Butanoate metabolism EE|MH Bacteroides (34.6%)

Alistipes (8.4%)

Prevotella (7.5%)

Bacteroides (28.7%)

Alistipes (8.4%)

Prevotella (8.9%)

K00174 0.015 Butanoate metabolism EE|MH Bacteroides (38%)

Alistipes (9.8%)

Prevotella (6.3%)

Bacteroides (33.6%)

Alistipes (11%)

Prevotella (8%)

K17865 0.016 Butanoate metabolism EE|MH Bacteroides (33.3%)

Alistipes (55.6%)

Bacteroides (5.9%)

Alistipes (52.9%)

K01640 0.036 Butanoate metabolism EE|MH Faecalibacterium (46.7%)

Phascolarctobacterium (26.7%)

Faecalibacterium (9.1%)

Phascolarctobacterium (45.5%)

Cloacibacillus (9.1%)

(Continued)
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volunteers with depression were also taking antidepressant 
medication, which might increase the abundance of genera strongly 
correlated with TPH2, such as Bilophila (Liu G. et al., 2020). In fact, 
the genus Bilophila proved significantly higher in the EE|MH group. 
These bacteria are reported to be significantly increased in anhedonia 
(loss of pleasure) in mouse models. Anhedonia is one of the two core 
symptoms of depression (Yang et al., 2019) and was also found to 
be increased in a mouse model of depression, subjected to chronic 
unpredictable mild stress (Zhang M. et al., 2021). Bilophila has also 
been described as positively correlated with tryptophan hydroxylase 
2 (TPH2) gene expression (Liu G. et al., 2020).

Over 90% of the whole tryptophan is metabolized through the 
KP. IDO and tryptophan 2, 3-dioxygenase (TDO) are the enzymes 
that catalyze the first step of tryptophan metabolism in this pathway 
(Maes et al., 2011). On the one hand, TDO activation is normally 

stable and is regulated by tryptophan availability (Gao et al., 2020). On 
the other hand, IDO is induced by interferon-gamma (IFN-γ) and 
tumor necrosis factor-alpha (TNF-α) among other pro-inflammatory 
cytokines, and its activation is correlated with the intensity of 
depressive symptoms (Höglund et al., 2019; Gao et al., 2020; Chen 
et al., 2021). IDO activation by inflammation caused by bacteria such 
as Flavonifractor and Alistipes and promoting KYN formation through 
KP can decrease tryptophan availability, negatively impacting 
serotonin synthesis and neurotransmission. Flavonifractor and 
Alistipes were significantly higher in the mental-health treatment 
group (EE|MH). Flavonifractor has previously been reported as higher 
in individuals with major depressive disorder (Jiang et  al., 2015; 
Valles-Colomer et al., 2019), generalized anxiety disorder (Jiang et al., 
2015), affective disorders (Coello et al., 2019), and bipolar disorder 
(Lindseth et al., 2015; Wang et al., 2021). Flavonifractor has also been 

TABLE 2 (Continued)

KO p-value Pathway Most abundant Genera with the 
highest contribution 

in EE|MH

Genera with the 
highest contribution 

in EE|NOMH

K00634 0.037 Butanoate metabolism EE|MH Bacteroides (32.3%)

Alistipes (11.1%)

Prevotella (5.5%)

Bacteroides (26.5%)

Alistipes (9.4%)

Prevotella (8.7%)

K00170 0.042 Butanoate metabolism EE|NOMH Clostridium (29.2%)

Roseburia (12.5%)

Sutterella (12.5%)

Clostridium (62.7%)

Sutterella (7.2%)

K03474 0.003 Butanoate metabolism EE|MH Bacteroides (46.2%)

Alistipes (8.8%)

Bacteroides (38.3%)

Alistipes (10.4%)

Prevotella (10.4%)

K03473 0.013 Butanoate metabolism EE|MH Bacteroides (31.8%)

Alistipes (11.5%)

Prevotella (6.5%)

Bacteroides (55.6%)

Alistipes (10.6%)

Prevotella (8.4%)

K05275 0.014 Butanoate metabolism EE|MH Bacteroides (36%) Bacteroides (31.6%)

Prevotella (5.8%)

K08681 0.039 Butanoate metabolism EE|NOMH Roseburia (15.9%)

Butyrivibrio (7.9%)

Eubacterium (7.9%)

Prevotella (25.6%)

Butyrivibrio (6.6%)

K00382 0.0026 Tryptophan metabolism 

Glycine, serine and 

threonine metabolism

EE|MH Bacteroides (56.6%)

Alistipes (6.5%)

Bacteroides (49.1%)

Alistipes (8%)

K01692 0.038 Tryptophan metabolism 

Butanoate metabolism

EE|MH Clostridium (14.3%)

Oscillibacter (14.3%)

Sutterella (14.3%)

Clostridium (7.1%)

Coprococcus (7.1%)

Oscillibacter (7.1%)

Faecalibacterium (7.1%)

Phascolarctobacterium (7.1%)

Sutterella (7.1%)

Klebsiella (7.1%)

K00294 0.007 Arginine and proline 

metabolism Alanine, 

aspartate and glutamate 

metabolism

EE|MH ParaBacteroides (20%)

Coprococcus (6.7%)

Butyricimonas (6.7%)

ParaBacteroides (20%)

Coprococcus (8%)

Odoribacter (8%)

K01580 0.032 Alanine, aspartate and 

glutamate metabolism 

Butanoate metabolism

EE|MH Bacteroides (41.5%)

Alistipes (16.7%)

Bacteroides (34.7%)

Alistipes (17.5%)
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described as a pro-inflammatory genus and studies show a negative 
association between this genus and quality of life scores (Jiang et al., 
2018). Parker et  al. (2020) and Jiang et  al. (2015) also described 
Alistipes to be higher in patients with depression (Jiang et al., 2018; 
Parker et al., 2020). This genus is believed to be associated with stress, 
fatigue syndrome, and depressive disorders through inflammatory 
pathways (Naseribafrouei et al., 2014).

Bacteroides were also significantly higher in the EE/MH mental-
health treatment group. The role of Bacteroides in mental health is 
highly controversial, with some authors observing the genus to 
be lower in patients suffering from mental health disorders (Jiang 
et al., 2015), while others find it to be higher in this group (Yang et al., 
2019). This genus has previously been studied for its ability to produce 
cytokines and its role in inflammation, as gut inflammation has a clear 
association with depression (Schiepers et al., 2005; Dantzer, 2009). By 
contrast, Flavonifractor is reported to be  higher in patients with 
remitted geriatric depression (Lee et al., 2022), which might explain 
why it is higher in the EE|MH group, where elderly subjects are 
medicated for mental health. In this case, the medication might 
be responsible for remission.

During aging, elderly individuals suffer from systematic 
inflammation and, as stated above, mental illness is generally 
associated with an inflammatory state of the patient. Oral health 
is also influenced by aging and inflammation, with an increased 
prevalence of periodontal disease (Clark et  al., 2021). Several 
studies suggest that some psychiatric diseases, such as Alzheimer’s 
or bipolar disorder, are related to leakage of pro-inflammatory 
oral bacteria triggering neuroinflammation (Leira et al., 2017). 
Furthermore, mental health issues such as anxiety and depression 
are related to a decrease in oral hygiene and dental check-ups 
(Anttila et al., 2006; Okoro et al., 2012; Simpson et al., 2020). 
Periodontal diseases (mainly periodontitis and gingivitis) are 
caused by bacterial-induced inflammation. Porphyromonas is a 
well-known periodontal pathogen whose virulence factors cause 
deregulation in inflammatory and immune responses of the host 
(Mysak et  al., 2014; Leira et  al., 2017). Studies of Alzheimer’s 
disease show inflammatory cytokines such as TNF-α, IL-1, IL-6, 
and IL-8 are released from the host cells that have been infected 
with Porphyromonas (Mei et  al., 2020). Similarly, Treponema 
denticola is known to cause gingivitis in cases of oral dysbiosis, 

despite being a normal component of human oral microbiota 
(Simpson et al., 2020).

Porphyromonas and Treponema were both higher in our 
EE|NOMH group saliva. Both bacteria can form synergistic biofilms 
and are positively associated with chronic periodontitis and severe 
periodontal disease (Ng et al., 2019). The genus Veillonella, which was 
found to be higher in the EE|MH group, was previously correlated 
with anti-inflammatory mediators and maintains oral pH by 
metabolizing lactate into weaker acids (Rosier et al., 2018). In the case 
of oral microbiota, we also observed the influence of mental health 
medicine in restoring elderly participants to a healthier state, as the 
medicated EE|MH group had significantly lower abundances of these 
pro-inflammatory genera.

Correlation analysis of both oral and intestinal microbiota, 
showed similar results. In the EE|NOMH group, the genus Alistipes 
from the gut was negatively correlated with the oral genera Veillonella 
and Prevotella. As stated above, Alistipes is a pro-inflammatory genus 
that has previously been correlated with mental health problems while 
oral Veillonella and Prevotella were negatively correlated with 
pro-inflammatory markers, Prevotella has been even negatively 
associated with distress (Kohn et al., 2020). Meanwhile, in the EE|MH 
group the gut genus Lachnospira showed a negative correlation with 
the oral genera Megasphaera and Atopobium. Previous studies report 
Lachnospira to be lower in animal models of depression and stress 
(Flux and Lowry, 2020), and in a cohort of patients suffering major 
depressive disorder (Rosier et al., 2018). By contrast, Megasphaera and 
Atopobium are found to be  higher in cohorts with mental health 
disorders (McGuinness et  al., 2022). Similarly, the oral genus 
Lachnoanaerobaculum and the intestinal genus Subdoligranulum 
showed significant negative correlations in the EE|MH group. Liu 
R. T. et al. (2020) reported that the abundance of Subdoligranulum was 
reduced in subjects who had more severe symptoms of depression 
(Liu R. T. et al., 2020), while Wang et al. described an augmented 
abundance of Lachnoanaerobaculum in depression and anxiety (Wang 
et al., 2022).

On the other hand, Odoribacter in gut microbiota with the oral 
genera Alloprevotella and Haemophilus had a positive correlation in 
the EE|MH group, all three of these genera are related with bad health. 
Odoribacter is one of the gut microbes associated with mental health 
issues, including major depressive disorder (Zhang M. et al., 2021). 

A B C

FIGURE 7

(A) Differences in the longevity regulating pathway between EE|NOMH (red) and EE|MH (blue). (B) Significant differences in the metabolism of amino 
acids between EE|NOMH (right) and EE|MH (left). (C) Significant differences in neuronal synapses between EE|NOMH (right) and EE|MH (left) groups.
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Oral Alloprevotella is described to be involved in periodontal disease 
(Sun et al., 2020) and Haemophilus is a well-known oral pathogen 
(Nørskov-Lauritsen, 2014). A similar positive correlation was obtained 
in the EE|MH group between Lachnoclostridium, and Colidextribacter 
from the intestinal microbiota with the oral genus Megasphaera that, 
as stated above, is elevated in mental health disorders. 
Lachnoclostridium has been associated with higher depressive 
symptoms in an induced animal model of depression (Zhang Y. et al., 
2021), while Colidextribacter was associated with a positive response 
to antidepressant treatment in a mouse model of depression (Duan 
et al., 2021). Together these results again indicate that the mental-
health treatment the EE|MH group may be restoring the microbiota 
to a healthier state, even though some genera related with mental 
health disorders are still present.

Parabacteroides, another genus involved in tryptophan 
metabolism, was significantly higher in the EE|MH group. Deng et al. 
(2021) showed that the genus plays an important role in tryptophan 
metabolism, where it has a strong correlation between the KP and 
depressive-like behavioral changes in a rat model of chronic restraint 
stress (Wu et al., 2014; Deng et al., 2021). Moreover, Li et al. (2016) 
described that a decrease in the abundance of Parabacteroides 
correlated with an improvement in the mood of adults.

Functional analysis of metagenome data showed five KEGG 
Orthology categories that are significantly higher in the EE|MH group 
and are related to tryptophan metabolism. Interestingly, tryptophanase 
(K01667) was markedly higher in the EE|MH group. This enzyme 
carries out the first step in the indolic pathway, transforming 
tryptophan into indole (Agus et  al., 2018). Indole is a signaling 
molecule that can control bacteria antibiotic resistance, sporulation, 
and biofilm formation. It can also inhibit quorum sensing and 
modulate virulence factors (Agus et al., 2018). Indolic compounds are 
AhR ligands; AhR activation influences immune homeostasis via 
receptor anti-inflammatory effect by regulating intraepithelial 
lymphocytes and innate lymphoid cells (Li et al., 2011; Qiu et al., 2012; 
Jin et al., 2014). They are known to extend the health-span of several 
models of aging, such as C. elegans, D. melanogaster, and mouse 
(Sonowal et al., 2017).

Ruiz-Ruiz et  al. (2020) showed the loss of the tryptophanase 
enzyme during aging and describe how the microbiota diminishes its 
ability to produce indole and tryptophan in old age, compromising the 
health status of the elderly (Ruiz-Ruiz et al., 2020). Our EE|NOMH 
group, comprising over 65-year-olds who are not taking mental-health 
medication, had a significantly lower abundance of tryptophanase. 
This would indicate that medication, such as antidepressants and anti-
anxiolytic drugs, restore these individuals to a healthier state, which 
might also explain the significant difference in the longevity regulating 
pathway between the EE|MH and EE|NOMH groups.

GABA is the principal inhibitory neurotransmitter in the brain. It 
affects the control of homeostasis during stress and has been associated 
with mental health disorders such as anxiety and depression (Geuze 
et al., 2008). GABA and several other GABA analogs have been shown 
to have anxiolytic and hypnotic effects. Positive modulators to GABA 
receptors have been used to treat anxiety disorders and insomnia 
(Kalueff and Nutt, 2007). Classic mental-health treatments include 
benzodiazepines, these are positive allosteric modulators of GABA 
receptors (Sigel and Ernst, 2018).

Oscillibacter, which we found to be enriched in the EE|MH group, 
has valeric acid as its main metabolic product; this metabolite mimics 

GABA. Valeric acid can bind with the GABAa receptor, which explains 
the association between valeric acid-producing bacteria and 
depression (Naseribafrouei et al., 2014). Rong et al. (2019) reported 
similar results, finding an increase of this genus in treated patients 
suffering from major depressive disorder or bipolar disorder (Rong 
et al., 2019). Similarly, the GABA producing genus Bacteroides (Otaru 
et al., 2021) was also higher in the EE|MH group. The contribution of 
genera to the analyzed KOs showed that Bacteroides and Alistipes were 
the ones contributing most to the production of these KOs in the 
EE|MH group. It is noteworthy that these genera were also significantly 
higher in the EE|MH group.

The dopaminergic synapse, which includes alcoholism, the 
amphetamine addiction, and the cocaine addiction pathways, was higher 
in our EE|MH group. Dopamine is a neurotransmitter responsible for 
several functions in the body, including learning, memory, reward, and 
motor control. It has been implicated in psychiatric and psychological 
disorders (Ko and Strafella, 2012). Dopamine availability is higher in 
cocaine and amphetamine users, and the reward system in the brain was 
active in animal models of addiction (Di Chiara et al., 2004). The use of 
benzodiazepines as mental-health medication in the EE|MH group also 
explains the difference in synaptic pathways between both groups. 
Benzodiazepines are positive allosteric modulators of GABA receptors, 
and it has been suggested that the activation of GABA receptors enhances 
dopamine release (Kramer et al., 2020).

The results show that treatment-related changes in taxonomic 
composition of microbiota modifies robustness parameters, in other 
words, eventual changes in taxonomic composition modify functional 
capacity of the bacterial community, at least in some superpathway 
functions. However, it is important remark that this functional 
capacity is based only on the content of all genes of prokaryotic 
organisms living in microbiota, without considering the expression 
levels of every gene.

In the fecal microbiota, there are differences in taxonomic 
abundances in treated and not treated subjects, with a relevant impact 
on functional capacity and robustness for at least for some 
superpathways. For attenuation, differences were observed only in 
superpathway cell motility, while in buffering, no differences were 
found. Particularly interesting are the results for saliva samples, which 
show some differences in buffering. These were lower for at least three 
superpathways related with metabolism, which can induce variations 
in the metabolite landscape if alterations occur. These corresponded 
to the superpathway of lipid metabolism, superpathway of metabolism 
of terpenoids and polyketides and superpathway of metabolism of 
other amino acids. Also changes in attenuation were found (higher for 
superpathway of lipid metabolism and lower for superpathway of 
metabolism of terpenoids and polyketides). For the remaining 
superpathways not directly related with metabolism the differences 
observed could induce variations in cell division and growth of 
prokaryotic cells, without obvious consequences in community 
taxonomic composition dynamics, which could finally modify the 
values of those parameters of robustness.

Therefore, at least in oral microbiota, in-depth studies should 
address the relationship between changes induced in functional 
capacity by alteration or disturbances of the microbial community, 
and the medication to treat pathologies. In this respect, there are 
numerous references on the role of medication in Xerostomia related 
with salivary gland dysfunction, and oral diseases associated to 
diazepine (De Almeida et al., 2008) and other mental-health drugs 
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(Koller et al., 2000; Arany et al., 2021) or medication commonly used 
by the elderly population (Leal et al., 2010).

Spain has an aging population, with 19.93% of the whole 
population over 65 years of age, in 2021. This age range corresponds 
to a higher risk of suffering mental health issues, reaching around 25% 
in 65-year-olds and up to 55% in 85-year-olds (Conselleria de Sanitat 
Universal i Salut Pública, 2020). It is important to identify the reasons 
underlying this increase in mental health issues in a population that 
registered 1,281 suicides in people over 65 in 2020 in Spain (Instituto 
Nacional de Estadistica, 2020). Here, we have demonstrated that there 
are significant differences in the microbiome composition and 
function of older people in the Comunidad Valenciana being 
medicated for mental health issues. Our results also indicated that the 
medication might help to recover the microbiome to a healthier state 
and aid patient remission by remodeling the gut microbiota and 
bacterial tryptophan metabolism.
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