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Since the WHO declared the COVID-19 pandemic in March 2020, the disease has 
spread rapidly leading to overload of the health system and many of the patients 
infected with SARS-CoV-2 needed to be admitted to the intensive care unit (ICU). 
Around 10% of patients with the severe manifestation of COVID-19 need noninvasive 
or invasive mechanical ventilation, which represent a risk factor for Acinetobacter 
baumannii superinfection. The 64 A. baumannii isolates were recovered from 
COVID-19 patients admitted to ICU at General Hospital “Dr Laza K. Lazarević” 
Šabac, Serbia, during the period from December 2020 to February 2021. All patients 
required mechanical ventilation and mortality rate was 100%. The goal of this study 
was to evaluate antibiotic resistance profiles and virulence potential of A. baumannii 
isolates recovered from patients with severe form of COVID-19 who had a need 
for mechanical ventilation. All tested A. baumannii isolates (n = 64) were sensitive 
to colistin, while resistant to meropenem, imipenem, gentamicin, tobramycin, and 
levofloxacin according to the broth microdilution method and MDR phenotype 
was confirmed. In all tested isolates, representatives of international clone 2 (IC2) 
classified by multiplex PCR for clonal lineage identification, blaAmpC, blaOXA-51, and 
blaOXA-23 genes were present, as well as ISAba1 insertion sequence upstream of 
blaOXA-23. Clonal distribution of one dominant strain was found, but individual strains 
showed phenotypic differences in the level of antibiotic resistance, biofilm formation, 
and binding to mucin and motility. According to PFGE, four isolates were sequenced 
and antibiotic resistance genes as well as virulence factors genes were analyzed 
in these genomes. The results of this study represent the first report on virulence 
potential of MDR A. baumannii from hospital in Serbia.
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1. Introduction

The outbreak of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to human health worldwide and 
created a perfect storm for antibiotic resistant infections in clinical settings. From the beginning of 
the COVID-19 pandemic, intensive care units (ICUs) have been overflowed with patients suffering 
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severe clinical presentation of COVID-19 and acute respiratory failure, 
of which over 10% needed noninvasive and invasive mechanical 
ventilation (Zhou et al., 2020; Rouzé et al., 2021). Although mechanical 
ventilation is a life-saving method, it can lead to ventilator-associated 
pneumonia (VAP) with a high mortality rate, especially in the presence 
of multidrug-resistant (MDR) bacteria (e.g., Acinetobacter baumannii; 
which rapidly acquire multidrug-, extensive drug-, and even pandrug-
resistance phenotypes; Harding et al., 2018; Lima et al., 2020; Sharifipour 
et al., 2020).

It has been confirmed that A. baumannii has prolonged survival and 
transfer in the hospital environment, such as attaching to various biotic 
and abiotic surfaces, including surfaces at ICUs so bacterial 
superinfections caused by A. baumannii may lead to hardly treatable 
conditions in COVID-19 patients (Weinberg et al., 2020).

Nowadays, the development of antibiotic resistance among 
A. baumannii strains is considered as one of the major public health 
concerns in hospital settings (Vázquez-López et  al., 2020; Ibrahim 
et al., 2021).

Numerous studies indicated that A. baumannii isolates often exhibit 
a high level of resistance to almost all clinically relevant antibiotics with 
special emphasis on carbapenem resistance mediated by different 
mechanisms, such as the production of metallo-β-lactamase and 
oxacillinase enzymes (Runnegar et al., 2010; Rosales-Reyes et al., 2017; 
Amin et al., 2019).

The antibiotic resistance has increased with the use of empiric 
broad-spectrum antibiotic therapy to treat COVID-19 bacterial 
superinfections (Contou et al., 2020; Lima et al., 2020; Lukovic et al., 
2020; Despotovic et al., 2021). Finally, treatment with drugs targeting 
IL-1 and IL-6 cytokines, as well as the use of corticosteroid therapy, 
might increase the risk of superinfections in COVID-19 patients (Pettit 
et al., 2021). Acinetobacter baumannii evolution during the past five 
decades was mainly driven by two globally disseminated clones, GC1 
and GC2 (also called IC1 and IC2, IC standing for “international clone”; 
Holt et al., 2016).

Although many reports consider different clones or lineages of 
A. baumannii species to be associated with particular parts or regions of 
the world, the dramatically fast distribution of SARS-CoV-2 in 2020 has 
demonstrated that our knowledge regarding the spread of different 
pathogens is still limited (Cerezales et al., 2019; Hamidian and Nigro, 
2019; Nodari et al., 2020; Shelenkov et al., 2021).

The aim of our study was to evaluate antibiotic resistance profiles 
and virulence potential of A. baumannii isolates from COVID-19 
patients on mechanical ventilation (MV) admitted to ICU at the General 
Hospital “Dr Laza K. Lazarević” Šabac, Serbia. To the best of our 
knowledge, this is the first study on the virulence potential of 
A. baumannii isolates from COVID-19 patients admitted to 
Serbian hospitals.

2. Materials and methods

2.1. Patients

Sixty-four patients admitted to the ICU of secondary referral 
hospital “Dr Laza K. Lazarević” Šabac, Serbia, due to severe 
coronavirus disease 2019 (COVID-19) were included in this study. 
Patients were hospitalized during the study period from December 
2020 to February 2021, and COVID-19 was confirmed by real-time 
PCR. All patients (n = 64, male:female ratio 1:1) required mechanical 

ventilation (MV). Besides, Acinetobacter spp. infection was 
confirmed based on bacteriological analyses of different samples 
recovered from COVID-19 patients on MV (Supplementary Table 1). 
The criteria to include patient in study protocol were (a) severe form 
of the COVID-19, (b) need for MV, and (c) confirmed Acinetobacter 
spp. infection. Information on patients (gender, age, and 
comorbidities) are presented in Supplementary Table  1. Patients 
admitted to ICU during the same period, without confirmed 
Acinetobacter spp. infection (n = 48), were not included in the study. 
Surveillance program through rectal swabs, was not carried out 
within ICU, so there is no available data if patients excluded from 
this study were also colonized by A. baumannii but did not develop 
the infection. The study protocol was approved by the Ethical 
Committee of the General hospital “Dr Laza K. Lazarević” Šabac 
(Approval No. 08-1/2).

2.2. Bacterial isolates and species 
identification

Bacterial isolates (one bacterial isolate per patient), belonging 
to Acinetobacter spp. (n = 64) were collected from blood (n = 28), tip 
of the central venous catheter (CVC; n = 22), tracheal aspirate (TBA; 
n = 10), tip of the aspirator (n = 3), and sputum (n = 1; 
Supplementary Table 1). Identification of the isolates was performed 
using standard microbiological procedures (cultivation, staining, 
and microscopy), followed by sequencing of 16S rRNA gene 
amplicons (Macrogen DNA sequencing service, Netherlands; Jovcic 
et al., 2009). 16S rRNA gene sequences were deposited to NCBI 
database (accession numbers ON705785–ON705830). Identification 
by 16S rRNA sequence was assessed using Basic Local Alignment 
Search Tool (BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi) for 
searches against GenBank database. The strains labels were assigned 
randomly to preserve the anonymity of the patients 
(Supplementary Table 1).

2.3. Molecular typing

Genetic relatedness among analyzed Acinetobacter spp. was 
determined by PFGE of ApaI digested (3 h at 30°C) genomic DNA as 
previously described (Vukotic et al., 2020). Electrophoresis was run 
at LKB hexagonal electrode array (2015 Pulsafor unit, LKB 
Instruments, Bromma, Sweden) for 18 h at 300 V in 0.5 × Tris-Borate-
EDTA at 9°C with pulse times of 8 s for 8 h and 18 s for 10 h during 
electrophoresis. Gels (1.2% agarose) were stained with ethidium 
bromide (SERVA Electrophoresis GmbH) and gel images were 
captured under UV light. Cluster analysis, using Pearson correlation 
coefficient with a 1.0% optimization and a hierarchic UPGMA 
algorithm, was used to generate a dendrogram describing the 
relationship among A. baumannii pulsotypes.

The clonal lineages determination of tested A. baumannii isolates 
was performed by multiplex PCR as previously described (Turton et al., 
2007). Identification of an isolate as a member of sequence type Group 1 
(international clone 2, IC2) and Group 2 (international clone 1, IC1) 
required amplification of all three fragments in the corresponding 
multiplex PCR. As positive PCR controls, A. baumannii strains 6077/12 
and 4,031 were used for Group 1 (IC2) and Group 2 (IC1), respectively, 
(Novovic et al., 2015).
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Multilocus sequence typing of four strains selected according to 
PFGE were determined using MLST 2.0 resource of Center for Genomic 
Epidemiology.1

2.4. Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed using the broth 
microdilution method according to the European Committee on 
Antimicrobial Susceptibility Testing breakpoints (EUCAST, Version 
11.0, 2021, https://eucast.org/). Minimum inhibitory concentrations 
(MICs) were determined for meropenem (1–8 μg/ml), imipenem 
(1–8 μg/ml), colistin (1–8 μg/ml), gentamicin (1–8 μg/ml), tobramycin 
(1–8 μg/ml), and levofloxacin (0.25–2 μg/ml). Experiments were done 
in triplicate. After 24 h incubation at 37°C, cell density was monitored 
by OD570 measurements using Multiscan FC Microplate Photometer 
(Thermo Scientific, United States) and MIC values were determinate as 
the lowest concentration of antibiotic that inhibited bacterial growth. 
Acinetobacter baumannii strain ATCC19606 was used as a control strain.

2.5. Molecular detection of resistance genes 
and virulence factor genes

The presence of the genes encoding for different oxacillinases 
(blaOXA-23, blaOXA-24, blaOXA-51, and blaOXA-58), cephalosporinase (blaAmpC), 
and metallo-β-lactamase (blaNDM-1) in genomes of analyzed isolates 
(n = 64) was monitored by PCR amplification method as previously 
described (Woodford et al., 2006; Beceiro et al., 2009; Teo et al., 2012). 
Using the same method were amplified carO and omp33-36 genes 
(Mussi et al., 2011; Novovic et al., 2015). Localization of the insertion 
sequence ISAba1 upstream of oxacillinase genes was performed by 
combining a reverse primer from the pairs used for detection of each 
oxacillinase gene with ISAba1-F primer (Beceiro et al., 2009). Genomic 
DNA of four A. baumannii isolates was sequenced using Illumina HiSeq 
(MicrobesNG, IMI-School of Biosciences, University of Birmingham, 
Birmingham, United Kingdom). The Invitrogen Collibri Library Prep 
kits for Illumina HiSeq was used for the library preparation. The quality 
of each sequenced genome was checked using FastQC (Andrews, 2010). 
Genetic determinants of antibiotic resistance of four strains selected 
according to PFGE were determined using ResFinder 3.1. and threshold 
of ID  =  98.00% was selected. In addition, genes determinants of 
virulence factors were screened in four sequenced genomes using 
VFDB: Virulence factors database2 (Chen et al., 2005). The threshold for 
VFDB was set at 70%. In order to analyze sugars presented in capsule, 
Kaptive 2.0, a tool for rapidly identifying and typing capsule (K) and 
outer LPS (O) loci from whole genome sequence data was used (Lam 
et al., 2022).

Pan-genome analysis approach was used in order to compare 
genomes of four sequenced A. baumannii isolates. Genome sequences 
were firstly annotated using Prokka (version 1.13) and obtained 
annotated GFF files were further clustered by Roary (version 3.13.0) into 
core genes (selection threshold for hard core genes was presence in 
>99% of the isolates and for soft core genes threshold was presence in 

1 www.genomicepidemiology.org

2 http://www.mgc.ac.cn/VFs/

95–99% of isolates) and accessory genes (further subdivided into shell 
genes—present in 15–95% of isolates; and cloud genes—present in less 
than 15%). Phylogenetic tree was created by Roary and visualized 
by Phandango.

2.6. Biofilm formation

Collected A. baumannii isolates (n = 64) were tested for the ability 
to form biofilm following the protocol described previously (Stepanović 
et  al., 2007) with slight modifications. Aliquots (20 μl) of overnight 
cultures adjusted to the 0.5 McFarland units, were transferred into 
96-well microtiter plates containing 180 μl of Tryptone Soya Broth 
(TSB). Microtiter plates were incubated aerobically for 48 h at 35°C and 
after incubation were washed three times with phosphate-buffer saline 
(PBS, pH 7.2). Remaining bacteria were fixed to the surface of microtiter 
wells by drying plates at 65°C for 30 min. Visualization of the biofilm 
formation was performed by staining with 0.1% crystal violet 30 min at 
room temperature (RT). The excess dye was removed by washing three 
times with 1 × PBS. Quantification of biofilm formation was done by 
resolubilisation of remaining dye in mixed solution of 96% ethanol and 
acetone (4:1) and determination of absorbance at 570 nm using 
Multiscan FC Microplate Photometer (Thermo Scientific, United States). 
Interpretation of obtained results was performed according to 
recommendations of Stepanović et al. (2007) and based on previously 
calculated OD values for each strain. All isolates were tested in triplicate. 
Sterile medium tested in triplicate was used as a negative control, while 
Pseudomonas aeruginosa PAO1 strain was used as a positive control. The 
cut-off value (ODc) was established as three SDs above the mean OD of 
the negative control: ODc = average OD of negative control + (3 × SD of 
negative control) (Stepanović et al., 2007). ODc is calculated for each 
microtiter plate separately. Final OD of each tested strain was calculated 
as OD average of the strain minus ODc. According to calculated values, 
isolates were divided into four groups: no (N) biofilm producer 
(OD ≤ ODc), weak (W) biofilm producer (ODc < OD ≤ 2 × ODc), 
moderate (M) biofilm producer (2 × ODc < OD ≤ 4 × ODc), and strong 
(S) biofilm producer (4 × ODc < OD).

2.7. Mucin adhesion ability

Mucus consists primarily of water (~95%), and the major non-aqueous 
component is mucin, while proteoglycans, lipids, proteins, and DNA are 
also present in smaller quantities (Ohar et  al., 2019). The binding of 
A. baumannii isolates to mucin was tested as described previously (Muñoz-
Provencio et al., 2009), with the following modifications. Briefly, the wells 
of microtiter plates were coated with 200 μl of porcine stomach mucin type 
II (Sigma, Germany) resuspended in 50 mM carbonate buffer (30 mg/ml, 
pH 9.6). The same volume of carbonate buffer (without mucin) was added 
to the control wells. Plates were stored at 4°C for 48 h. Wells were washed 
three times with 1 × PBS, uncoated binding places were saturated with PBS 
containing 1% Tween 20, incubated 1 h at RT, and washed once more with 
1 × PBS. Suspensions of overnight bacterial cultures were prepared in 
1 × PBS and adjusted to 0.5 McFarland. Subsequently, 200 μl of each 
bacterial suspension was added in both coated and uncoated control wells 
(test was done in triplicate). After 2 h incubation at 35°C, nonadherent cells 
were removed using 1 × PBS with 0.05% Tween 20 and fixation of mucin-
bound bacterial cells was performed by drying plate at 65°C for 1 h. 200 μl 
of 0.1% crystal violet (HiMedia Labs Pvt. Ltd., India) was added to the 
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wells, plates were incubated at RT for 45 min and unbound stain was 
removed by three washes in 1 × PBS. Finally, citrate buffer (50 mM, pH 4) 
was added to dissolve the stain bound to the bacterial cells and the 
absorbance was measured at 570 nm using Multiscan FC Microplate 
Photometer (Thermo Scientific, United States).

2.8. Motility and gelatinase assays

All 64 A. baumannii isolates were tested for two types of motility: 
swarming and twitching. Freshly grown cultures were stabbed with 
sterile toothpick on the surface of modified Luria Bertani (LB) agar 
(tryptone—10 g/L; NaCl—5 g/L; yeast extract—5 g/L) with 0.4% agar for 
swarming motility and 0.8% agar for twitching motility, as described 
previously (Clemmer et al., 2011). Acinetobacter baumannii ATCC19606 
strain was used as negative control as it is non-motile strain. In, addition, 
modified LB broth was used as a base medium for all motility assays, 
and plates were used on the same day that they were prepared. All 
isolates were tested for swarming and twitching motility under the same 
condition (light, temperature etc.) as it was reported that motility can 
be  decreased in the presence of light (Mussi et  al., 2010). After 
inoculation, the plates were incubated at 37°C for 48 h. In the case of 
swarming motility test, motile positive isolates were defined if the zone 
around the point of inoculation was greater than 10 mm, and for 
twitching motility isolates were characterized as non-motile 
(zone < 5 mm), intermediary-motile (zone 5–20 mm), or highly motile 
(zone ˃ 20 mm; Vijayakumar et al., 2016).

The phenotypic assay of gelatinase activity was performed as 
described previously (Su et al., 1991). A drop of overnight bacterial 
culture (10 μl) was transferred on a Gelatin agar plate containing 
peptone 5 g/L, yeast extract 3 g/L, gelatin 30 g/L, and agar 15 g/L (pH 7). 
Plates were incubated at 35°C for 48 h and after incubation flooded with 
a saturated solution of ammonium sulfate (550 g/L). Gelatinase activity 
was assessed as positive if transparent halo appeared around bacterial 
cells growth.

2.9. Statistical analyses

For comparing a difference in biofilm formation and mucin-
adhesion ability among A. baumannii isolates obtained from different 
patient groups (males and females) Mann–Whitney test was used. 
Analyses were performed in Prism 9 version 9.3.1 and results were 
visualized as scatter and whicker plots. Dendrogram for analyses of the 
PFGE patterns was created in SPSS 28.0 for Windows.

Virulence potential data of tested isolates were summarized and 
visualized by a heat map created using Rx64 3.5.1 software. The results 
were approximated on the relative scale ranging from blue as the lowest 
values, progressing to white, then to red as the highest value.

3. Results

3.1. Patient’s characterization of 
Acinetobacter spp. isolates and disinfection 
measures in hospital

Duration of patient hospitalization, time points of specimen 
collection, and origin of bacterial isolates are presented in Figure 1. All 

64 isolates analyzed in this study were confirmed as A. baumannii 
according to 16S rRNA gene sequencing. According to Blast results of 
selected isolates the percentage of similarity of 16S rRNA genes were in 
the range 97.82–99.02%. The incidence of A. baumannii infection in 
COVID-19 patients was 57.14% during the study period.

Ethyl alcohol (70%) was used as disinfectant for surfaces and items 
which may be in contact with the patient, while chlorine-based agents 
were used for disinfection of floors. Healthcare workers had disposable, 
single use protective gloves, masks, and gowns to protect patients at ICU 
from possible further infection. The use of closed aspiration systems was 
implemented in order to prevent nosocomial infections.

The average duration of hospitalization for all patients was 
16.86 days, and male COVID-19 patients were hospitalized 16.22 days 
on average, while female patients spent 17.5 days in the hospital. 
Mortality rate was 100%.

3.2. Genotyping analysis By PFGE and 
multiplex PCR

The multiplex PCR performed for identification of international 
clone belonging revealed that all tested A. baumannii isolates (n = 64) 
belong to international clone 2, IC2 (sequence type Group 1).

According to the obtained PFGE ApaI fingerprint, a dendrogram 
was constructed for all isolates and shown in Figure 2. Additionally, 
PFGE profiles of tested isolates obtained by ApaI digestion are presented 
in Supplementary Figure 2.

Of the 64 isolates, 60 (93.75%) possessed an identical ApaI profile 
of DNA fragments indicating the dominant presence of one pulsotype 
among the isolates, while only four (6.25%) isolates were different. 
Although these four isolates (isolates 1, 39, 54, and, 55) had a very 
similar ApaI profile to the dominant strain, they differed in at least one 
ApaI fragment; isolate 1 lacks an ApaI fragment of 242 kb, while a 
unique fragment of 228 kb is present; isolate 39 has an extra ApaI 
fragment of 250 kb that could be a plasmid, while isolates 54 and 55 have 
the same profile, differing from others in that they lack a fragment of 
300 kb, and have a new unique fragment of 250 kb 
(Supplementary Figure 2). The obtained results strongly indicate the 
clonal distribution of the dominant strain in the hospital. Considering 
the slightly different genomic pattern of four isolates (differ in only one 
ApaI fragment), it can be assumed that they also originated from the 
dominant strain during propagation in different patients.

According to PFGE four isolates were sequenced: isolate 1, isolate 2 
(as representative of all other strains), isolate 39, and, isolate 54 (as it has 
the same PFGE pattern as isolate 55). Sequences were deposited to NCBI 
databank: JAPCYJ01.1 (A. baumannii 1), JAPCYK01.1 (A. baumannii 
2), JAPCYL01.1 (A. baumannii 39), and JAPCYM01.1 (A. baumannii 54).

MLST analyses revealed that all isolates were identified as ST195 
(ST1816) according to Oxford nomenclature, and ST2 according to 
Pasteur nomenclature.

3.3. Resistance profiles and virulence factors 
of sequenced Acinetobacter baumannii 
isolates

All tested A. baumannii isolates (n = 64) were sensitive to colistin, 
while resistant to meropenem, imipenem, gentamicin, tobramycin, and, 
levofloxacin according to the broth microdilution method. According 
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to the available data, resistance to different classes of antibiotics 
(carbapenem antibiotics, aminoglycosides, and, fluoroquinolone) 
confirmed multidrug resistance (MDR) phenotype in tested isolates 
(Magiorakos et al., 2012). Susceptibility of A. baumannii isolates was not 
tested to novel antibiotics, such as ceftazidime/avibactam, ceftolozane/
tazobactam, and cefiderocol due to unavailability of these antibiotics. 
Obtained MIC values are presented in Supplementary Table 2.

Overview of antimicrobial resistance genes detected in genomes of 
four representative Acinetobacter baumannii isolates (1, 2, 39, and, 54) 
using ResFinder is presented in Supplementary Table 3. Screening of 
virulence factors genes in sequenced genomes was performed using 
VFDB database and results are presented in Supplementary Table 4. 
VFDB revealed that isolate A. baumannii one had slightly higher 
virulence potential comparing to other sequenced isolates 
(Supplementary Table 4). Analyses of sugar presented in capsule were 
performed using Kaptive 2.0 program. Obtained results revealed that 
there is no differences in K locus neither in O locus among sequenced 
genomes (Supplementary Figures 3A,B).

Pan-genome reflects the total number of genes that are present in a 
given dataset and the main goal of pan-genome analysis is genomic 
comparison of different isolates of the same species (Muzzi et al., 2007). 
Pan-genome analysis revealed a total of 4,096 gene clusters, which were 
separated into the core genome, comprised of 3,597 genes (3,597 hard 
core and 0 soft core genes) and accessory genome containing 499 genes 
in the shell and 0 genes in the cloud. The core genome of four A. baumannii 
isolates revealed that the analyzed genomes are phylogenetically related, 
as they share a high number of common genes (Supplementary Figure 4).

3.4. Molecular basis of carbapenem 
resistance

Typically for A. baumannii, intrinsic genes encoding for oxacillinase 
OXA-51 and cephalosporinase AmpC were detected in all tested isolates 

by PCR method. Additionally, all isolates gave a positive PCR signal for 
the blaOXA-23 gene as well as ISAba1 insertion sequence upstream of this 
gene. The gene encoding for OXA-24 oxacillinase was identified in 18 
isolates (28.12%), while the blaOXA-58 gene was found in four isolates 
(6.25%; Supplementary Table 1). ISAba1 insertion sequence was not 
detected upstream of blaOXA-24, blaOXA-51, and, blaOXA-58 genes in analyzed 
isolates. The blaNDM-1 gene was not present in genomes of tested isolates. 
The analysis of the carO nucleotide sequences from tested A. baumannii 
isolates revealed that all isolates had the carO gene identical to 
corresponding gene of A. baumannii MS14413 (CP054302.1). Further, 
the gene encoding for another porin included in carbapenem resistance 
in A. baumannii, Omp33-36, of all isolates was almost identical to the 
omp33-36 gene of A. baumannii MS14413 with only one nucleotide 
substitution at position 113 resulting in amino acid substitution Lys38Thr.

3.5. Biofilm formation

Under the tested conditions only one isolate (1/64; 1.56%) was 
classified as weak (W) biofilm producer. Fifteen isolates (23.44%) were 
moderate (M) biofilm producers; of those 53.33% (8/15) were recovered 
from male and 46.67% (7/15) from female patients 
(Supplementary Table 5). Most of the tested isolates (75%; 48/64) were 
strong (S) biofilm producers recovered from female (52.08%; 25/48) and 
male (47.92%; 23/48). According to the Mann–Whitney test, there is no 
statistically significant difference in biofilm formation ability between 
female and male isolates. OD values of the biofilm producers by sample 
type (blood, tip of the aspirator, tracheal aspirate, tip of the CVC, and 
sputum) are presented in Figure 3.

Mucin-adhesion ability expressed relatively to control (non-coated 
wells in the microtiter plate) of 64 A. baumannii isolates is shown in 
Figure 4. The isolates recovered from female patients showed lower 
binding affinity to mucin compared to isolates from male patients 
(p < 0.05) according to the Mann–Whitney test.

FIGURE 1

Schematic description of COVID-19 patient’s hospitalization at intensive care unit (ICU) and timepoints of Acinetobacter baumannii recovery. Arrows 
indicate the sequenced isolates.
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3.6. Motility and gelatinase activity of tested 
isolates

All A. baumannii isolates were tested for twitching and 
swarming type of motility under the same temperature and light. 
According to twitching phenotype isolates were divided into three 
groups (based on the zone diameter around the inoculation point). 
Only 9.38% (6/64) isolates were characterized as non-motile, while 
the highest number of tested isolates (82.81%; 53/64) were 
intermediary motile. The 7.81% (5/64) isolates were highly motile, 

with a zone diameter up to 45 mm. Relative to the type of the 
sample, the number of motile strains were higher for isolates from 
blood (hemoculture and tip of the CVC) compared to motile isolates 
originated from the respiratory tract (tracheal aspirate, tip of the 
aspirator, and sputum, respectively) and the data are presented in 
Supplementary Figure 1.

Examination of swarming-like motility revealed that only 
17.19% (11/64) of tested isolates were classified as a motile category. 
It is interesting that all isolates with the proven swarming ability, had 
also the ability of twitching motility, and all were originated 
from blood.

None of the isolates showed gelatinase activity.

FIGURE 2

Dendrogram derived from ApaI PFGE patterns showing the relatedness 
of Acinetobacter baumannii isolated from COVID-19 patients in Serbia.

FIGURE 3

Distribution of Acinetobacter baumannii biofilm producers recovered 
from different samples (blood, tip of the aspirator, tracheal aspirate, tip 
of the CVC, and sputum) from COVID-19 patients.

FIGURE 4

Mucin binding ability of Acinetobacter baumannii isolates originated 
from female and male COVID-19 patients; # denotes statistical 
significance.
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3.7. Comparison of Acinetobacter baumannii 
isolates virulence potential

In order to summarize the overall virulence potential, phenotypic 
characteristics and antibiotic resistance of 64 A. baumannii isolates 
from COVID-19 patients on MV, heat map was constructed 
(Figure  5). All tested isolates, according to the heat map, can 
be divided into three distinct clusters. Cluster three comprised the 
strains considered as the most virulent, including six isolates 
recovered from male patients (strains 5, 6, 14,15, 22, and 35) and one 
isolate recovered from female patient (strain 13; Figure 5). In addition, 
heatmap displaying the results of hierarchical clustering among 64 
A. baumannii isolates was constructed and presented in 
Supplementary Figure 5.

4. Discussion

Epidemiology, virulence traits, and antibiotic resistance profiles of 
64 A. baumannii isolates (32 originated from male and 32 from female 
patients) recovered from clinical samples of COVID-19 patients 
admitted to ICU who required MV were analyzed in this study.

Considering that the mortality rate of all patients was 100%, this 
study revealed that the duration of hospitalization of male patients 
(average 16.22 days) was shorter than females (average 17.5 days) what 
is in accordance with data that males are at higher risk of severe form of 
the COVID-19 and ICU admission (Peckham et al., 2020).

The genetic analysis of 64 isolates revealed an important clonal 
distribution of A. baumannii at ICU designated to COVID-19 patients. 
Clonal spread of A. baumannii highlights the importance of adopting 
good practices for equipment disinfection, surfaces and management of 
COVID-19 patients (Durán-Manuel et al., 2021).

Clonal distribution A. baumannii dominant hospital strain in Šabac 
hospital was confirmed by PFGE fingerprint analysis. Only a small 
number (four of 64 isolates 6.25% show low diversity in only one ApaI 
fragment) indicating that they may be  derivatives of the dominant 
strain. According to PFGE pattern four isolates were sequenced and 
deposited to NCBI database. These isolates (A. baumannii 1, 2, 39, and 
54) were analyzed for the presence of antibiotic resistance genes and 
genes encoding virulence factors. Genome analyses of four isolates using 
Virulence factors database (VFDB) revealed that isolate A. baumannii 
one has slightly higher virulence potential comparing to other sequenced 
isolates. MLST analyses revealed that all isolates obtained from Šabac 
hospital were identified as ST2 according to Pasteur nomenclature. The 
previous epidemiology studies in Serbia revealed that ST2 circulates in 
Serbian hospitals, as well as other ST types which were not detected in 
Šabac hospital (Novovic et al., 2015; Lukovic et al., 2020; Gajic et al., 
2021; Ušjak et al., 2022).

According to Bacterial Virulence Factors Database, A. baumannii 
1 had the highest number of genes encoding virulence factors comparing 
to A. baumannii 2, 39, and, 54. In contrast, phenotype analyses of 
virulence factors showed less virulence potential of A. baumannii 1 
indicating that not all virulence genes are expressed.

Based on a more extensive study of A. baumannii isolates from 
various hospitals in Serbia (Novovic et al., 2015; Lukovic et al., 2020) 
have been shown to have much greater diversity of pathogenic strains 
compared to those detected in COVID-19 patients. These results alert 
us to the need for the best possible disinfection of instruments, especially 
mechanical ventilation devices.

Besides, the importance of adopting high standards of hygiene at 
ICU is the capability of А. baumannii to survive for long periods on 
biotic and abiotic surfaces by the formation of biofilms (Roca et al., 
2012), and its ability to resist disinfectants and desiccation (Peleg et al., 
2008). The ability to adhere and biofilm formation is assumed to be the 
two most important virulence factors contributing to pathogenicity of 
А. baumannii (McConnell et al., 2013).

The biofilm formation rate in A. baumannii is 80–91% which is 
higher than other species (5–24%) and represent the important 
virulence factor of A. baumannii (Amala Reena et al., 2017). Among 
analyzed A. baumannii isolates in this study even 98.44% of isolates 
exhibited moderate or strong ability to form biofilm with no observed 
statistically significant difference in biofilm formation between male and 
female isolates.

FIGURE 5

Heat map demonstrating summarized virulence potential and antibiotic 
resistance of tested Acinetobacter baumannii isolates. Results were 
approximated on the relative scale ranging from 0 (blue) as the lowest 
values, progressing to white, then to 100 (red) as the highest values.
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Data presented in this study reveal the local epidemiology of 
A. baumannii isolates characterized by a high prevalence of MDR 
phenotype. Several factors including high number of patients in the 
ICU, shortage of medical staff, challenges implementing infection 
prevention and control measures could be considered as risk factors 
for spread of MDR strains during the COVID-19 outbreak (Monnet 
and Harbarth, 2020; Falcone et  al., 2021). High prevalence of 
carbapenem-resistant A. baumannii isolates in COVID-19 patients 
reported in this study is in accordance with previous studies that 
describe increased risk of carbapenem-resistant infection in 
hospitalized COVID-19 patients (Perez et al., 2020; Shinohara et al., 
2021). Further, data from ICUs indicate an additional increase in 
prevalence of superinfections of COVID-19 patients with 
carbapenem-resistant A. baumannii (Zhang et  al., 2020). As in 
previous studies, analyzed carbapenem-resistant A. baumannii 
isolates recovered from COVID-19 patients belonged to IC2 and 
harbored acquired blaOXA-23 gene alone or in combination with 
blaOXA-24 (Abdollahi et al., 2021; Gottesman et al., 2021). For the first 
time, blaOXA-58 gene, as well as ISAba1 upstream from blaOXA-23, were 
detected in A. baumannii isolated from COVID-19 patients. The 
detection of different oxacillinases in analyzed strains, as well as the 
presence of ISAba1 upstream from blaOXA-23 as a potential promoter 
of its expression, is of particular importance, since in that way was 
provided higher carbapenem resistance relative to presence of single 
oxacillinase (Poirel and Nordmann, 2006).

Mucus is an integral part of respiratory physiology, and it 
protects the respiratory tract by acting as a physical barrier against 
microbes. Excessive inflammation and cytokine storm can result in 
mucus hypersecretion in COVID-19 (Khan et al., 2021). Patients 
with ventilator-associated pneumonia commonly experience hyper-
secretion of mucus in the respiratory tract, which normally acts as 
a barrier against pathogens; however, overproduction of mucus in 
the respiratory tract can cause patients to become more susceptible 
to infection with opportunistic pathogens (Dennesen et al., 2003). 
According to previous studies, A. baumannii recognizes mucin as 
an environmental signal, which triggers a response cascade that 
allows this pathogen to acquire critical nutrients and promotes host-
pathogen interactions that play a role in the pathogenesis of 
bacterial infections (Ohneck et  al., 2018). Within this study, 
A. baumannii isolates recovered from male patients showed 
statistically higher mucin adhesion ability compared to isolates 
originated from females. As mucin induces the expression of genes 
associated with bacterial virulence it may indicate that isolates 
recovered from male patients have higher virulence potential 
compared to isolates recovered from females in this study.

Two different types of motilities (twitching and swarming) were 
tested for all 64 A. baumannii isolates. Analyses showed that higher 
number of isolates exhibited twitching motility (90.62%) compared to 
the swarming-like motility identified in 17.10% of all isolates. We found 
that in the category of blood originated isolates (from hemoculture and 
CVC) some bacterial strains showed more proficient motility with the 
greater zone range, up to 45 mm, which contributes to their pathogenic 
profile. These highly-motile isolates were not detected in any respiratory 
originated samples (tracheal aspirate, tip of the aspirator, and sputum). 
Blood related isolates, compared to respiratory ones, stood out also by 
showing swarming-like motility. Motility is enabled by the presence of 
type IV pili, so we  could hypothesize that correlation rises due to 
overexpression of type IV pili-related genes in isolates from blood 

samples compared to isolates from respiratory samples (Vijayakumar 
et al., 2016).

Comparison of virulence potential revealed that seven isolates (six 
from male and one from female) stood out from the rest in terms of 
analyzed phenotypes (Cluster III, Figure 5). The isolates belonging to 
Cluster III were strong biofilm producers and exhibited high swarming 
and twitching as well as mucin adhesion ability. These results might 
be due to the fact that men with COVID-19 are more at risk for worse 
outcomes and death, independent of age (Jin et al., 2020; Doerre and 
Doblhammer, 2022).

5. Conclusion

In conclusion, we reported the first study from a Serbian hospital 
about MDR profile and virulence potential of A. baumannii isolates 
from COVID-19 patients admitted to ICU. Our data highlight the risk 
to develop MDR A. baumannii infection during COVID-19, especially 
in patients on mechanical ventilation. That means that antimicrobial 
stewardship programs are mandatory in this population. We  can 
emphasize that in this analysis of isolates from COVID-19 patients, 
clonal distribution of one strain was found, which was confirmed by 
PFGE analysis. Despite the presence of one dominant pulsotype, 
individual strains showed phenotypic differences in the level of 
antibiotic resistance, biofilm formation, binding to mucin and motility, 
which may be due to horizontal gene transfer (changes that are not 
detectable by PFGE), mutations or physiological adaptations. The 
answer to this question can be obtained by a complete analysis of the 
genomes, transcriptomes, and metabolomes of strains of the same 
pulsotype that showed different phenotypes. Considering that the 
mortality rate of all patients was 100%, potentially higher virulence of 
isolates recovered from male patients may be the reason for the shorter 
duration of hospitalization of male patients (average 16.22 days) 
comparing to females (average 17.5 days).
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