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Early disease diagnosis is critical for better management and treatment outcome

of patients. Therefore, diagnostic methods should ideally be accurate, consistent,

easy to perform at low cost and preferably non-invasive. In recent years, various

biomarkers have been studied for the detection of cardiovascular diseases,

cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies.

Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence

gene expression after transcription. Previous studies have shown that these types

of miRNAs can potentially be used as biomarkers for cancers of the breast and

colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate

viral and bacterial infections, such as the human immunodeficiency virus (HIV),

tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne

diseases is rather limited. Therefore, this review aims to introduce several miRNAs

derived from exosomal plasma that may potentially serve as a disease biomarker

due to the body’s immune response, with special focus on the early detection of

vector-borne diseases.
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Introduction

Extracellular vesicles (EVs) are a heterogeneous group of membrane vesicles secreted by
nearly all cell types in normal physiology, and the secretion of their content is influenced
by the cells’ current pathophysiological state (Yáñez-Mó et al., 2015). They are classified
based on their generation mechanism, including ectosomes, apoptotic bodies and exosomes
(Martelli et al., 2018). Ectosomes, known as microvesicles, typically range from 200 to
2,000 nm in size and is generated through outward buddings from the plasma membrane
(Wu et al., 2021). Microvesicles mainly contain cytosolic and plasma membrane-associated
proteins, such as tetraspanins. They also carry cytoskeletal proteins, heat-shock proteins,
integrins and post-translationally modified proteins that have undergone glycosylation and
phosphorylation (Doyle and Wang, 2019). The discovery of new proteins in microvesicles
have spurred global interest in fully understanding their contents for diagnostic and
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therapeutic potential. In malaria infection caused by Plasmodium
vivax, a rise in the level of plasma-derived microvesicles has been
observed in the blood of patients, which potentially allows disease
detection at an earlier stage (Campos et al., 2010). Apoptotic
bodies, meanwhile, are vesicles with a size ranging from 500 nm
to 2 µm, and are discharged by dying cells into the extracellular
space. They contain broken down cellular particles, such as intact
organelles, chromatin and small amounts of glycosylated proteins
(Borges et al., 2013). A recent study has demonstrated that these
vesicles may be used as a non-invasive method to track apoptosis in
patients with cerebrovascular and neurodegenerative diseases for
prognostic purposes (Serrano-Heras et al., 2020).

Exosomes are nanometer-sized (50–150 nm) intraluminal
vesicles (ILV) of multivesicular bodies (MVB) secreted by various
cells, including the microglia (Mashouri et al., 2019; Fan et al.,
2022). They have double membrane structure (Saadatpour et al.,
2016) that originates from endocytic compartments and are
matured in the MVB of late endosomes (Statello et al., 2018). MVBs
can fuse with the plasma membrane, leading to the release of ILVs
into the extracellular space as exosomes (Colombo et al., 2014).
Exosomes are surrounded by a lipid bilayer, carrying a variety
of biomolecules, such as glycans, proteins, metabolites, lipids,
DNA, and RNA, including miRNA (Chung et al., 2020). They can
potentially serve as an important medium for cell-to-cell or cell-to-
internal environment communication (Jeppesen et al., 2019), and
the biomolecules may alter physiological responses by mediating
short- and long-distance inter-organ communication (Fatima and
Nawaz, 2017). Exosomes are less immunogenic, non-cytotoxic and
non-mutagenic to their target cells compared with other gene
delivery vehicles (O’Loughlin et al., 2012). Depending on the
molecules they carry, exosomes can perform a variety of roles, such
as encouraging cell proliferation, migration, lowering oxidative
stress and preventing apoptosis, besides mediating immune
responses like cytokine secretion and inhibition or stimulation of
inflammasomes (Noonin and Thongboonkerd, 2021). Emerging
findings have suggested that exosomes may play a key role in
mediating infection and inflammatory processes (Xie et al., 2022).

Infection by a vector-borne disease will trigger the effects of a
host-parasite interaction, which facilitates the parasite’s long-term
survival in the host body (Podolska and Nadolna, 2014). The host-
parasite interaction can also trigger the host immune response
and enhance pathogen diffusion (Cox et al., 2012). As parasites
interact with host cells through excretory-secretory channels, the
exosomes within excretory-secretory products will naturally serve
as a route for successfully mediating the parasite’s contact for host
manipulation. It also makes sense that the host would utilize this
pathway as a defense mechanism (Nawaz et al., 2019).

Recently, exosomes have gained much research attention
in biomarker development as they contain specific proteins,
microRNAs (miRNAs) and signaling molecules that are associated
with disease progression (Hoshino et al., 2015). Exosome miRNA
is highly accessible and stable, thus raising its potential use in
precision medicine (Muinelo-Romay et al., 2018). However, studies
on the role of exosomes in vector-borne diseases are nonetheless
limited by inefficient separation techniques, a lack of distinctive
biomarkers, and challenges in obtaining high-resolution imaging
methods. Exosomes contain identical protein and RNA profiles
to the cells that produce them. However, very few distinct cell-
specific proteins and miRNAs exist (Li et al., 2017). Furthermore,

exosomes from pathogen-infected cells are heterogeneous, and
their concentration exists in a different range than the standard
level (Reyes-Ruiz et al., 2019). In this review, we collated and
updated the role of exosomal plasma miRNA in various diseases,
and then examined the scope of miRNA-derived from plasma
exosomes as a reliable diagnostic tool for vector-borne diseases.

Methodology and delimitation

Article search and data collection were performed on PubMed,
Google Scholar, and World Health Organization (WHO) databases.
It included peer-reviewed articles with original data from 2010
to 2022. Non-peer-reviewed articles, conference abstracts, letters,
articles without full-text were excluded. All articles were collected
and compiled using the Mendeley application to eliminate
duplicates. A PubMed database search using the keywords
“extracellular vesicles and vector bore diseases” resulted in a total of
225 articles. After subsequently applying the keywords “exosomes
and vector-borne disease,” a total of 115 articles were produced.
As the search was narrowed down with the keywords “miRNA
biomarker and vector bore diseases,” the articles were further
reduced to 79. Finally, 31 articles remained when the second
parameter “plasma miRNA and vector-borne diseases” was added.
The articles were manually divided into two groups: “original
articles” and “others” (not related to topic, reviews, reports,
editorials, commentaries, etc.). The original articles addressing
plasma exosome miRNA and vector-borne diseases became the
focus of the study and were used as material in this review.

Plasma-derived exosomes

Exosomes are critical paracrine mediators that may be
detected in bodily fluids, including plasma (Carrozzo et al.,
2021). The content of human plasma exosomes have been
linked to a variety of physiological and pathological conditions
(Yáñez-Mó et al., 2015). Such exosomes may be isolated
using ultracentrifugation, polymer-based precipitation kits, size
exclusion chromatography, immunoaffinity, and ultrafiltration
(Kalra et al., 2013). Ultracentrifugation and polymer-based
precipitation kits are the most popular methods, but the former
has several limitations, including low exosome concentration
and considerable albumin contamination (Baranyai et al., 2015).
These may be resolved by changing the isolation parameters,
such as viscosity, sedimentation distance and temperature, or by
prolonging the ultracentrifugation time to increase yield (Koh
et al., 2018). The presence of exosomes may be characterized
using complex methods, such as nanoparticle tracking analysis,
electrophoretic light scattering, transmission electron microscopy
and EXOCET colorimetric assay, or simple protein quantification
like Western blotting (Martins et al., 2018). In blood samples,
plasma exosomes have a higher concentration of miRNA compared
with serum, and this may serve as a better sample for blood-
based proteomics research of exosomes (Cao et al., 2019). Plasma
cells may be more protected from degradation and this enables
more accurate distribution of target cells, providing a distinctive
perspective into pertinent diseases, or defining novel diagnostic
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and prognostic potential for different disorders (Ludwig et al.,
2017). Hence, plasma-derived exosomes are a clinically valuable
biomarker to assess the immune system of patients because its
molecular profiling and protein monitoring may show the degree of
immunological suppression before and during treatment (Ludwig
et al., 2017).

Plasma-derived exosomal miRNA in
diagnosing diseases

MiRNA are naturally occurring short non-coding RNA
molecules with a length of about 21–25 nucleotides (Ha and Kim,
2014). MiRNA from exosomes may affect the body’s physiological
modulation and disease progression (Liu et al., 2020). Depending
on disease condition, the level of miRNA in bodily fluids will
be up- or down-regulated (Abdellatif, 2012). The miRNA level in
blood, for example, is affected by various factors and will differ
from sample to sample (e.g., plasma, serum, and other fluids)
(Blondal et al., 2013). Hemolysis can influence the expression of
miRNA in serum, but plasma-derived miRNA is unaffected (Foye
et al., 2017). MiRNA in the exosomal plasma are in more stable
form than any other bodily fluids because they are protected from
endogenous RNase degradation (Köberle et al., 2013). This makes
them useful in the diagnosis of infectious diseases, besides diseases
of the central nervous system and respiratory systems, including
malignancy (Alipoor et al., 2016).

During the early stage of human immunodeficiency virus-1
(HIV-1) infection, changes in exosomal miR-155 expression play a
role in the development of an effective antiviral effector response
by CD8 T cells and at the same time increase the number of
regulatory T cells (Lind et al., 2013). Thus, exosomal miRNA
involved in the regulation of immune and inflammatory responses,
and also serve as an excellent companion in the diagnosis of HIV
infection (Hubert et al., 2015). Tuberculosis is another infectious
disease that is currently screened by microscopic examination
and confirmed using genotypic assays (line probe assay, cartridge-
based nucleic acid amplification test, or loop-mediated isothermal
amplification), besides the gold standard culture methods (liquid
culture media) (Chopra and Singh, 2020). Still, there is research
on finding a reproducible, efficient, cost-effective tool with
minimal infrastructure requirements for this infectious disease.
Recently, upregulated miRNA-185-5p expression in exosome
plasma has been identified in tuberculosis (Kaushik et al., 2021).
In hepatitis C (HCV), immunomodulatory miRNA enrichment
exosomes are found to be associated with their inhibitory activity
on innate immune cell function. This may provide valuable
biomarkers to monitor immune response recovery (Santangelo
et al., 2018).

Most recently, reverse-transcription polymerase chain reaction
(RT-PCR) has been mainly used to confirm COVID-19 infection.
However, false-negatives may occur in a small percentage of tests
due to a low viral load in patient samples (Anand et al., 2021).
The use of exosomes as a diagnostic tool for COVID-19 has yet
to be widely studied. Therefore, there is an immediate need to
study and develop an alternative method that is more sensitive,
specific and easy to apply. The study of the exosomal cargo may
provide key information with respect to differential secretion of

miRNA in SARS-CoV 2 infected cells compared with uninfected
cells. Table 1 summarizes the exosomal plasma-derived miRNA
biomarkers for diagnostic applications in various diseases. The
preceding studies support the notion that plasma-derived exosomal
miRNAs play important roles in diseases as a promising biomarker
and provide knowledge for developing a new diagnostic tool for the
diseases.

Plasma-derived exosomal miRNA in
gene regulation

From DNA sequences, miRNAs are translated into precursor
miRNAs (pre-miRNAs), mature miRNAs and primary miRNAs
(pri-miRNAs). MiRNAs regulate protein translation by binding
to the 3’ untranslated regions of mRNA template (MacFarlane
and Murphy, 2010). However, it has been reported that they
can also interact with other regions, including the 5’ UTR
coding sequence and gene promoters (Broughton et al.,
2016). These miRNAs play a crucial role in influencing
molecular and cellular processes in cancer and inflammation
(O’Connell et al., 2012).

Enterotoxigenic Bacteroides Fragilis (ETBF) is an enterotoxin-
producing bacterium that is strongly associated with inflammatory
bowel disease (IBD), colitis-associated colorectal cancer and
colorectal cancer (CRC) as it has been observed to change the
mucosal immune response and induce epithelial cell changes
(Zamani et al., 2020). A recent study on ETBF shows that the
exosomal down- regulated miR-149-3p derived from ETBF-
treated cells facilitated T-helper type 17 cell differentiation
and promoted the PHF5A (Plant homeodomain finger protein
5A) mediated RNA alternative splicing of the KAT2A gene
in CRC cells. Thus, the ETBF/miR-149-3p pathway showed
a potential solution for treatment of patients with intestinal
inflammation and CRC with a high amount of ETBF (Cao
et al., 2021). Plasma-derived exosomal miR-216a-5p may also
inhibit rTp17-induced inflammatory cytokine production and
the TLR4-MYD88 signaling pathway in syphilis infection,
suggesting a possible therapeutic target for inflammation
caused by the sexually transmitted disease (Peng et al.,
2019).

Medulloblastoma (MB) is a malignant brain tumor that
commonly affects children. Exosomal miR-101-3p and miR-423-
5p from plasma of MB patients have been identified to act
as tumor suppressors by directly targeting FOXP4 and EZH2
oncogenes (Xue et al., 2022). This shows that plasma-derived
exosomal miRNA can control the expression of oncogenes, making
them a potential therapeutic agent. An interesting study on long-
term exercise-derived plasma exosome found that miR-342-5p
may prevent ischemic heart disease by suppressing the level
of Caspase 9 and JNK2, thus reducing hypoxia/reoxygenation-
induced cardiomyocyte apoptosis; moreover, it increased survival
signaling (p-Akt) by targeting the phosphatase gene Ppm1f (Hou
et al., 2019). These studies provided the information needed
to understand the role plasma-derived exosomal miRNA as a
therapeutic agent by controlling the expression of genes that cause
various diseases.
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TABLE 1 Plasma-derived exosomal miRNA expression in various diseases.

Disease Exosome
characterization

miRNA profiling miRNA References

Breast cancer Electron microscopy, nanoparticle
tracking analysis and Western blot

Next-generation small RNA
sequencing

miR-21 and miR-1246 Hannafon et al., 2016

Colon cancer Scanning electron microscopy Real-time qRT-PCR miR-125a-3p Wang et al., 2017

Diffuse large B-cell lymphoma Scanning transmission electron
microscopy and scanning electron
microscopy

miRNA expression microarray miR-3960, miR-6089 and
miR-939-5p

Caner et al., 2021

Pancreatic ductal
adenocarcinoma

Transmission electron microscopy Microarray analysis microRNA-451a Takahasi et al., 2018

Papillary thyroid carcinoma Transmission electron microscopy,
Western blot, flowcytometry for
nanoparticle analysis

RNA sequencing miR-16-2-3p, miR-223-5p,
miR-101-3p and miR-34c-5p

Liang et al., 2020

Rheumatoid arthritis Electron microscopy analysis Microarray analysis miRNA-204-5p Wu et al., 2022

Myocardial infraction Transmission electron microscopy Microarray analysis miRNA-183 Zhao et al., 2019

Type 1 diabetes mellitus Nanoparticle tracking analysis and
transmission electron microscopy

Nano-string human v2 miRNA
microarray

miR-631 Garcia-Contreras et al.,
2017

HIV-1 Western blot, electron microscopy
and dynamic light scattering

miR-155 and miR-223 Hubert et al., 2015

Tuberculosis Next-generation small RNA
sequencing

miRNA-185-5p Kaushik et al., 2021

Alzheimer disease Western blot Illumina HiSeq2500 miR-141-3p Lugli et al., 2015

FIGURE 1

Cases of vector-borne diseases worldwide from 2011 to 2020. The prevalence of malaria is rising, but leishmaniasis, Japanese encephalitis and
yellow fever seem to be declining (World Health Organization, 2020a,b, 2021, 2022d).
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Role of exosomes in vector-borne
diseases

Vector-borne diseases are infections caused by pathogens
that are usually transmitted by arthropods, such as mosquitoes,
triatomine bugs, black flies, tsetse flies, sand flies, lice and ticks
(Golding et al., 2015). However, they may also include other carriers
such water snails, which serve as a reservoir for Schistosomiasis.
In the case of insects, they include dengue, Chagas disease,
Japanese encephalitis, leishmaniasis, lymphatic filariasis, malaria,
and yellow fever, which all together threaten more than 80% of
the world’s population. They are inordinately distributed in the
tropics and subtropics (Chala and Hamde, 2021), and the World
Health Organization (WHO) estimated that they account for
more than 700,000 deaths annually (World Health Organization,
2022a). Figure 1 shows the number of vector-borne cases reported
worldwide from 2011 to 2020. Table 2 summarizes the laboratory
method for vector-borne disease detection in the host and its
vectors.

When feeding on their hosts, arthropods release exosomes
into the host blood through their saliva (Figure 2; Oliva Chávez
et al., 2021). In response, the host cells will also release their
own exosomes to inhibit the transmission of pathogens (Alenquer
and Amorim, 2015). This increases exosome concentrations in the
plasma and other body fluids (Opadokun and Rohrbach, 2021). As
a result, exosomes from the host and pathogen will play distinct
roles in the survival and suppression of vector-borne diseases.

The exosomes in the arthropod’s saliva can be considered a
carrier for various biological processes in vector-borne diseases.
They transfer antigens, proteins and RNA into the host cell to
influence metabolic processes, gene expression and immunological
responses (Figure 2; Yuan et al., 2021). Through this process, these
exosomes may facilitate the transmission of arboviruses that cause
dengue and encephalitis to mammals (Zhou et al., 2019). The
discovery of exosomes produced by arthropods has spurred the
development of new methods to prevent the spread of vector-borne
diseases through the understanding of molecular determinants in
the mode of pathogen transmission. A Malaysian study has found
that the EV secreted by Aedes albopictus and Aedes aegypti contains
a tetraspanin domain-containing glycoprotein known as Tsp29Fb
that could facilitate the transmission of Dengue Virus 2 (DENV2) in
host cells (Vora et al., 2018). This study has led to a novel proposal
to restrict the transmission of DENV2 and other mosquito-borne
flaviviruses to mammalian cells by inhibiting the effects of Tsp29Fb
in mosquitoes using the GW4869 inhibitor. A proteomic study on
exosomes of Drosophila cells infected by the cricket paralysis virus
(CrPV) also revealed that they contained viral RNA to facilitate the
spread of the pathogen’s genetic material in the host (Kerr et al.,
2018).

Pathogen surveillance in arthropods may provide essential
details for disease control. A central American study tried to
discover the best method to survey the prevalence of Trypanosoma
cruzi that causes Chagas disease in the vector Triatoma dimidiata
(blood-sucking bug) (Stevens et al., 2021). The researchers
concluded that using genotype-by-sequencing (GBS) was twice
superior in detecting the pathogen in its vector compared with
PCR assay (based on a test with the significant agreement; 53%
vs. 19%) However, the difficulty of pathogen detection in insects

may be caused by genetic variations in the parasite itself, and this
can affect the disease surveillance and control process. Meanwhile,
detection of the EV secreted by pathogens may also assist in the
development of new clinical biomarkers and therapeutic agents.
The study of exosomes in Brugia malayi has found that miRNA let-
7 (lethal 7) could function as a biomarker for lymphatic filariasis
disease (Zamanian et al., 2015). Table 3 summarizes the potential
miRNA biomarkers for vector-borne diseases. Table 4 summarizes
the exosomal miRNA biomarkers for diagnostic applications in
vector-borne diseases.

Dengue

Dengue fever is a febrile illness caused by Flavivirus of the
family Flaviviridae. This virus has a common size of between
40 and 65 nm and contains a positive single-stranded RNA
genome (Murugesan and Manoharan, 2019). The WHO estimates
its prevalence at 50–100 million cases each year in tropical countries
(WHO Dengue, 2022). In the 21st century, dengue has emerged
as one of the most significant mosquito-borne diseases that pose a
severe threat to public health (Gurugama et al., 2010). Therefore,
finding predictive indicators of severe infection will greatly aid
in patient management and treatment allocations. Conventional
diagnostic methods include the structural protein 1 (NS1) test,
immunoglobulin G/M test and real-time PCR (Kabir et al., 2021).
However, a comprehensive analysis of miRNAs circulating in
the plasma of dengue patients has identified miR-122-5p as a
potential biomarker for diagnosis and prognosis of the disease
(Saini et al., 2020). Integrated bioinformatic analysis predicted
that interferon-induced protein 44-like (IFI44L) and interferon-
α inducible protein-6 (IFI6) could also be used as potential
biomarkers of infection (Xie et al., 2021).

MiRNA expression may change during the different stages of
infection, thus providing the potential biomarkers for treatment
monitoring (Soe et al., 2018). Dengue virus infection causes platelet
cells to release exosomes via the C-type lectin-like receptor 2
(CLEC2) signaling (Sung et al., 2019). Exosomes released from
mosquito cells infected with dengue virus were observed to have an
effect on native C6/36 cells, which shows that the exosomes played
a role in virus dissemination (Reyes-Ruiz et al., 2019). Exosomes
secreted from dengue virus infected cells has been observed to carry
LC3-phosphatidylethanolamine conjugates (LC3 II), which is an
autophagy marker (Wu et al., 2016). However, further knowledge
on plasma exosomes and their exact function in the transmission
dengue virus is still lacking.

Malaria

Malaria is a vector-borne disease caused by plasmodium
parasites carried by the female Anopheles mosquito (Walter and
John, 2022). It is most prevalent in Africa, where 95% of the
fatality occurs. In 2020 alone, it was estimated that there were
about 241 million cases worldwide, with a death toll of 627,000
(WHO Malaria, 2022). To overcome this disease, an in-depth
understanding of the parasite biology and mechanisms underlying
the disease is urgently needed (Chen et al., 2021). Conventionally,

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1097173
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1097173 April 6, 2023 Time: 16:16 # 6

Venkatesan et al. 10.3389/fmicb.2023.1097173

TABLE 2 Diagnostic methods for vector-borne disease detection in the host and their vectors.

Vector-borne
disease

Pathogen Vector WHO guideline on
pathogen detection

Method of
detection in
vector

Exosome
detection in
vector

References

Dengue DENV Aedes aegypti NS1 antigen, IgG and IgM
detection using ELISA, rapid
point-of-care tests and RT-
PCR

Reverse
transcription-polymerase
chain reaction test
(RT-PCR)

Cryo-electron
microscopy

Vora et al., 2018; Ali
et al., 2022

Malaria Plasmodium berghei Anopheles stephensi Microscopy, rapid diagnostic
tests (RDTs)

Artificial neural networks
(ANNs) coupled with
matrix-assisted laser
desorption/ionization
time-of-fight
(MALDI-TOF) mass
spectrometry (MS)

Nabet et al., 2020

Rickettsial infection Rickettsia
aeschlimannii

Haemaphysalis
longicornis

Immunofluorescence assay
(IFA)

16S rRNA gene Electron microscopy
and liquid
chromatography-mass
spectrometry
(LC-MS/MS)

Nawaz et al., 2020; Qi
et al., 2022

American
trypanosomiasis
(Chagas disease)

Trypanosoma cruzi Triatoma dimidiata
s.l.

Microscopic examination Genotype-by-sequencing
(GBS),
microscopy study, PCR
and qPCR detection

Stevens et al., 2021

Schistosomiasis Schistosoma
haematobium,

Schistosoma
japonicum

Planorbis spp Kato-Katz technique,
circulating cathodic antigen
(CCA) test, filtration
technique and microscopic
detection

Real-time PCR Gaye et al., 2021

Zika ZIKV Aedes aegypti and
Aedes albopictus

RT-PCR, NS1 antigen
detection using ELISA, rapid
point-of-care tests, IgM/IgG
detection using EIA, IFA and
rapid point-of-care test
(Plaque-reduction
neutralization test)

RT-PCR Cryo-electron
microscopy

Zhou et al., 2019;
Parra et al., 2022

Japanese encephalitis Japanese encephalitis
virus (JEV)

Culex
tritaeniorhynchus

IgM-capture ELISA Cytochrome c oxidase
subunit 1 (COI)
bar-coding

Lessard et al., 2021

Chikungunya CHIKV Aedes aegypti, Aedes
albopictus and Culex

quinquefasciatus

RT–PCR RT-qPCR Cruz et al., 2020

Lymphatic filariasis Wuchereria
bancrofti, Brugia
malayi, Brugia

timori.

Anopheles spp,
Culex

quinquefasciatus,
Aedes spp and
Mansonia spp

Microscopic examination qPCR Nanoparticle tracking
analysis and liquid
chromatography-mass
spectrometry
(LC-MS/MS)

Harischandra et al.,
2018; Entonu et al.,

2020

Leishmaniasis Leishmania donovani Phlebotomus
argentipes

Parasitological tests
(microscopic examination,
PCR) and serological tests
(IFA, ELISA, Western blot)

PCR and sequencing
method

Transmission electron
microscope

Schnitzer et al., 2010;
Wijerathna et al., 2021

microscopy or a rapid diagnostic kit is used to confirm the presence
of malaria-causing parasites (CDC Malaria, 2022). Lately, studies
have shown that plasma exosome also increases in malaria patients
compared with healthy individuals (Nantakomol et al., 2011).
These biomolecules play many important roles in intercellular

communication during the infection process (Schorey et al., 2015).
Exosomal plasma-derived hsa-miR-150-5p and hsa-miR-15b-5p
have been studied for their potential use as disease biomarkers
(Ketprasit et al., 2020). In the case of clinical management, malaria
is difficult to treat due to the ability of the plasmodium parasite to
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FIGURE 2

Exosomes biogenesis in (A) vector-borne diseases. Arthropods release exosomes into the host blood circulation through their saliva, which transfer
antigens, proteins and RNA to modulate immune responses, gene expression and metabolic processes and (B) in other diseases. Exosomes are
released only by the diseased cell.

develop drug resistance. One study has observed the production
of biomolecules with potential function to pass on drug-resistance
markers to susceptible parasites in gametocytogenesis stage, which
is critical for disease transmission (Regev-Rudzki et al., 2013).

Rickettsial infection

Rickettsia is a species of highly pleomorphic, non-motile,
Gram-negative bacteria that may exist in coccus, bacilli and thread
forms, and is transmitted via the bites of mites, fleas, lice, and ticks
(Moreira et al., 2018). Being an obligate intracellular parasite, it has
to infect eukaryotic host cells to survive and replicate, particularly
endothelial cells. Even though rickettsial infections have similar
clinical presentations, the causative species and epidemiology
may differ regionally. Some examples include epidemic typhus
(Rickettsia prowazekii, worldwide), the Australian tick typhus
(Rickettsia australis, Australia), Rocky Mountain spotted fever
(Rickettsia rickettsii, North America), rickettsialpox (Rickettsia
akari, United States and Russia), oriental spotted fever (Rickettsia
japonica, Japan) and African tick bite fever (Rickettsia africae,
South Africa). To accurately diagnose and treat these diseases, it is
crucial to understand both the typical symptoms and epidemiology
of a specific area (Khamesipour et al., 2018). In severe rickettsiosis,
endothelial barrier dysfunction occurs in the brain and lungs
that results in edema. A recent study showed that endothelial
exosomal miR-23a and miR-30b have potential role in targeting the
endothelial barriers and may serve as an early diagnostic tool (Liu
et al., 2021).

Chagas disease

Chagas disease, also known as American trypanosomiasis, is
a tropical parasitic disease caused by the protozoa Trypanosoma

cruzi. It is transmitted mainly by bugs of the triatominae subfamily
(also known as kissing bugs or vampire bugs) (Rassi et al.,
2010). More than seven million people are infected with Chagas
disease annually, mainly in Mexico, Central America and South
America. It has been estimated to be responsible for 12,500
fatalities per year since 2006 (World Health Organization, 2022b).
Chagas disease is diagnosed using microscopy and serological
tests to detect trypomastigotes in blood (CDC Chagas, 2022). The
significance of miR-208a levels in plasma as a potential biomarker
for clinical prognosis of Chagas disease is illustrated in the chronic
indeterminate phase, which is a progressive phase implicated in the
development of chagas cardiomyopathy (Linhares-Lacerda et al.,
2018). Plasma exosomes produced during disease infection may
also induce different interferon (IFN) and Interleukin-17 (IL-17)
expression, which may be used to track the development of the
disease (Madeira et al., 2021).

Schistosomiasis

Schistosomiasis is the second leading parasitic disease after
malaria, which is caused by trematodes of the genus Schistosoma
(Amoah et al., 2020). Schistosomiasis is prevalent in tropical and
subtropical areas, with 236.6 million cases reported worldwide in
2019 (WHO Schistosomiasis, 2022). It can excrete certain proteins
into the circulation of a final host (humans) to facilitate their
parasitism (Liao et al., 2011). Currently, the diagnostic methods for
this disease include stool and urine microscopy, besides serological
testing for antischistosomal antibody (CDC Schistosomiasis, 2022).
Different schistosome-specific miRNAs, like miR-10, miR-3479,
miR-0001, and miR-10, have been discovered to describe the
pathogen-specific short RNA community in the plasma of a final
host infected with Schistosoma japonicum (Cheng et al., 2013).
Currently, serum exosome-derived miR-142-3p and miR-223-3p
are being used as diagnostic markers of schistosomiasis at an
early stage (Patent number: CN110760589-A and CN110760590-A)
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TABLE 3 miRNA biomarker for vector-borne diseases.

Diseases Sample miRNA Regulation References

Malaria Whole blood hsa- miR-7977 Up-regulated Kaur et al., 2018

Dengue Serum hsa-miR-21-5p, hsa-miR-590-5p,
hsa-miR-188-5p, and
hsa-miR-152-3p

Up-regulated Ouyang et al., 2016

hsa-miR-146a-5p Down-regulated

Schistosomiasis Serum miR-223 He et al., 2013

West Nile virus Whole blood miR-532-5p Bavia et al., 2016

Zika virus Mock cells miR-145, miR-148a Up-regulated Castro et al., 2019

Chikungunya Human skin fibroblast cells miR15, miR-16, miR-17, let-7e,
miR-125, miR-99, miR-23a

Parashar et al., 2018

West Nile virus Human microglial cells miR-3648, miR-3687,
miR-129-5p, miR-572

Kumari et al., 2016

Japanese encephalitis Human microglial cells miR-3687 and miR-572 Up-regulated Kumari et al., 2016

miR-197-3p Down-regulated

TABLE 4 Exosomal miRNA expression in different vector-borne diseases.

Vector-borne diseases Sample Biomarkers References

Malaria Plasma exosomes hsa-miR-150-5p and hsa-miR-15b-5p Ketprasit et al., 2020

Schistosomiasis Serum exosomes miR-142-3p and miR-223-3p Wu et al., 2020

Rickettsia Endothelial exosomes miR-23a and miR-30b Liu et al., 2021

Chagas disease Plasma exosomes IFN- and IL-17 Madeira et al., 2021

Japanese encephalitis Cerebrospinal fluid miR-21-5p, miR-150-5p and miR-342-3p Goswami et al., 2017

(Wu et al., 2020). Some studies have shown that exosomal products
can serve as prognostic and stage-predictive biomarkers of the
disease (Meningher et al., 2017).

Zika virus diseases

Zika virus (ZIKV) is a mosquito-borne virus transmitted by
Aedes mosquitoes. It is closely related to dengue and other diseases
related to viruses in the Flaviviridae family. The virus is enveloped
and icosahedral, containing a positive sense single-stranded RNA
as its genetic material (Marbán-Castro et al., 2021). Conventionally,
ZIKV was detected in blood and other bodily fluids using RT-PCR;
enzyme-linked immunosorbent assay (ELISA) for NS1 antigen;
enzyme immunoassay (EIA) for IgM/IgG; immunofluorescence
assay (IFA); and rapid point-of-care testing, such as the plaque-
reduction neutralization test (PRNT) (World Health Organization,
2022c).

It is vital to differentiate ZIKV from other closely related
flaviviruses that can cross-react when using conventional diagnostic
methods like ELISA and EIA. And to this end, RT-PCR seems to be
the most accurate tool. The detection of ZIKV in Aedes aegypti and
Aedes albopictus mosquitoes using RT-PCR in São Paulo, Brazil,
has helped to understand the transmission dynamics of ZIKV and
potential risk of future outbreaks in several neighborhoods in the
city (Parra et al., 2022). However, in the clinical setting, there is a

need for a method that is fast and low cost. The EVs from the ZIKV-
infected human saliva express typical EV biomarker tetraspanins
CD9, CD63, and CD81 to prevent target cells (Conzelmann et al.,
2020). The induction of miR-145 and miR-148a in postmortem
brain samples from stillborn with severe congenital Zika syndrome
cause neuronal dysfunction and malformation (Castro et al., 2019).
These studies showed the role of extracellular vesicles and the
miRNA in Zika infection.

Japanese encephalitis

Japanese encephalitis virus (JEV) is a mosquito-borne disease
transmitted by Culex mosquitoes. Like dengue, West Nile, Yellow
Fever and Zika counterparts, it is part of the family Flaviviridae that
causes viral encephalitis (Sharma et al., 2021). Conventionally, it
may be diagnosed using ELISA, RT-PCR, and the plaque reduction
neutralization test. However, there is still a need to develop more
efficient, inexpensive, quicker, sensitive and time-saving techniques
to detect JEV (Roberts and Gandhi, 2020). Exosome study in acute
patients has found upregulated miRNAs like miR-21-5p, miR-150-
5p, and miR-342-3p in the cerebrospinal fluid, which can be a
potential diagnostic biomarker (Goswami et al., 2017). The host
microRNA miR-34c-5p in JEV infection is downregulated and
activates a notch pathway to modulate the microglia and mediate
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inflammation (Kumari et al., 2016). This showed that miRNA can
regulate host response to JEV in microglial cells.

Chikungunya

Chikungunya virus (CHIKV) is an alphavirus transmitted
by Aedes and some Culex mosquitoes. It is a positive-sense,
single-stranded RNA virus in the family Togaviridae that causes
Chikungunya disease (Schwartz and Albert, 2010). Conventionally,
Chikungunya is mainly diagnosed using RT-PCR. The study on
extracellular vesicles released by CHIKV-infected cells contained
the immunogenic components of virus as well as its genomic RNA.
These EVs then helped other epithelial cells produce contagious
virions (Le et al., 2022). Since there is a limited study on the
role of exosomal miRNA in chikungunya, this study initiated to
characterize extracellular vesicles in chikungunya infection.

Lymphatic filariasis

Lymphatic filariasis (LF) is a mosquito-borne tropical disease
caused by parasitic nematodes, such as Wuchereria bancrofti,
Brugia malayi, and Brugia timori (Lourens and Ferrell, 2019).
These parasites can modulate the host immune response. However,
there is still a lack of knowledge to understand this mechanism.
In lymphatic filariasis, the first study in parasite B. malayi
exosome reported the mechanism of host response on parasite
infection. This study also suggested that the further investigation
in extracellular vesicles may led to the discovery of novel treatment
approaches and diagnostic biomarkers for lymphatic filariasis
infection (Zamanian et al., 2015). The parasite-derived EV study
on filarial nematode B. malayi has suggested new screening
platforms for anti-filarial drug development (Harischandra et al.,
2018).

Leishmaniasis

Leishmaniasis is a vector-borne disease transmitted by the
protozoan parasites infected adult female phlebotomine sand
flies. It is caused by the leishmania parasite that belongs to the
family Trypanosomatidae. The conventional methods to diagnose
leishmaniasis are parasitological tests (microscopic examination,
PCR detection) and serological tests, such as an indirect IFA,
ELISA, and Western blot (WHO Leishmaniasis, 2023). The
exosomal miRNA study in eukaryotic Leishmania infection cell
reported that the exosomal miR122 can interfere with lipoprotein
status in the host cell after hepatic dysfunctions induced by the
parasite (Di Loria et al., 2020). This study showed that exosomal
miRNA from the vector can involve in the host metabolism
modulation. The parasite detection of Leishmania donovani
in arthropod Phlebotomus argentipes using DNA amplification
(PCR) and sequencing methods help to study the disease
epidemiology in Kurunegala District, Sri Lanka (Wijerathna
et al., 2021). The parasite Leishmania-infected dendritic cells
release the exosomes to protect against the parasite infection.
It provokes new knowledge to develop a cell-free vaccine

for immune prophylaxis against leishmaniasis (Schnitzer et al.,
2010).

Conclusion

The currently available diagnostic methods for many vector-
borne diseases are insufficient and have many limitations. Most
of the detection is dependent on the existence of signs and
symptoms, or antibodies of particular pathogen. Therefore,
there is an urgent need to support the development of new
biomarker techniques in diagnostic platforms. Plasma-derived
exosome miRNAs are more stable, reliable and highly concentrated
than any other bodily fluids. Recent studies have indicated that
exosomal miRNA within excretory-secretory products may serve
as a route for successfully mediating parasite-host contacts for host
manipulation. Interestingly, previous studies discovered certain
differentially expressed host plasma-derived exosome miRNAs
that may be potential diagnostic and prognostic biomarker of
vector-borne diseases. However, there is still limited research of
plasma exosome in vector-borne diseases as compared with other
diseases such as malignancy. The lack of consistent definitions
and a standard method causes considerable confusion in the
laboratory study of exosomes. We believe that further research in
this area will solve the problem, and provide the new ideas and
approaches for the application of plasma-derived exosome miRNA
in clinical practice.
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