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Soil microorganisms are critical biological indicators for evaluating soil health and 
play a vital role in carbon (C)-climate feedback. In recent years, the accuracy of 
models in terms of predicting soil C pools has been improved by considering the 
involvement of microbes in the decomposition process in ecosystem models, but 
the parameter values of these models have been assumed by researchers without 
combining observed data with the models and without calibrating the microbial 
decomposition models. Here, we conducted an observational experiment from April 
2021 to July 2022  in the Ziwuling Mountains, Loess Plateau, China, to explore the 
main influencing factors of soil respiration (RS) and determine which parameters 
can be  incorporated into microbial decomposition models. The results showed 
that the RS rate is significantly correlated with soil temperature (TS) and moisture 
(MS), indicating that TS increases soil C loss. We  attributed the non-significant 
correlation between RS and soil microbial biomass carbon (MBC) to variations in 
microbial use efficiency, which mitigated ecosystem C loss by reducing the ability 
of microorganisms to decompose organic resources at high temperatures. The 
structural equation modeling (SEM) results demonstrated that TS, microbial biomass, 
and enzyme activity are crucial factors affecting soil microbial activity. Our study 
revealed the relations between TS, microbial biomass, enzyme activity, and RS, which 
had important scientific implications for constructing microbial decomposition 
models that predict soil microbial activity under climate change in the future. To 
better understand the relationship between soil dynamics and C emissions, it will 
be necessary to incorporate climate data as well as RS and microbial parameters into 
microbial decomposition models, which will be important for soil conservation and 
reducing soil C loss in the Loess Plateau.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) 
assessment reports that global average temperatures will rise by 
2.1–3.5°C, and the frequency and intensity of extreme heatwaves 
and precipitation events are also likely to increase (Tollefson, 2021). 
This climate change is expected to put general stress on ecosystems. 
The soil ecosystem is an important part of the terrestrial ecosystem 
and the hub of material and energy flow in the biosphere (Piao et al., 
2010b). Carbon (C) is the basic element of life forms, without which 
life cannot exist, so the C cycle is one of the most important 
biogeochemical cycles (Bot and Bernites, 2005), and terrestrial soil 
C cycle research is an important component of global change 
research. Soil microbes are largely involved in the soil C cycle and 
play a crucial role in climate feedback (Jansson and Hofmockel, 
2020), including CO2, N2O, and other greenhouse gas emissions. As 
the most active component of soil, microorganisms are significant 
biological indicators for evaluating soil health (Fierer et al., 2021). 
In recent years, it has been proposed that soil microbial 
characteristics can be used as biological indicators of soil health to 
guide soil ecosystem management (Schloter et al., 2003; Cardoso 
et  al., 2013). Sicardi et  al. (2004) believe that soil microbial 
characteristics, such as soil respiration (RS), microbial biomass, and 
enzyme activity, vary significantly from season to season, suggesting 
that they are sensitive and reliable indicators of changes in soil 
physicochemical properties.

RS refers to the process by which soil releases CO2 into the 
atmosphere and the most important component of RS is the 
heterotrophic respiration of soil microorganisms (Wang et al., 2019). C 
is stored in the soil as organic matter, its storage is approximately twice 
that of the atmospheric C pool and it plays a significant role in the C 
cycle of the terrestrial ecosystem (Mahajan et al., 2021). Therefore, RS 
can significantly affect the global C cycle in terrestrial ecosystems (Zhou 
et al., 2009). The world is now experiencing a period of rapid warming 
due to the effects of human activities and CO2 emissions, and RS, which 
releases more than 10 times more CO2 into the atmosphere than the 
combustion of fossil fuel (Marland, 1983), is the second-largest source 
of continental C fluxes (Hu et al., 2019). Due to the enormous storage 
capacity of soil organic carbon (SOC), even a small change in soil C 
storage and RS will significantly affect the CO2 concentration in the 
atmosphere, thereby affecting the feedback effect of terrestrial 
ecosystems on climate change (Davidson et al., 2006).

In ecosystems, microorganisms play a crucial role in soil metabolism 
as decomposers that drive nutrient turnover in soil ecosystems by 
mineralizing organic matter (Wieder et al., 2015). Soil microbial biomass 
is the active component of soil organic matter (SOM) and the most 
active soil factor (Jenkinson and Ladd, 1981). Since soil microbial 
biomass is very sensitive to environmental factors, slight changes in soil 
can change it (Chander et  al., 1998), so various environmental 
disturbances can be predicted earlier.

All soil biochemical processes proceed because soil enzymes act as 
the driving force. An essential soil microbial function is to decompose 
key nutrients in litter and accumulate organic matter through soil 
enzymes (Caldwell, 2005). For example, cellobiohydrolase (CBH) and 
β-1,4-glucosidase (βG) are required to decompose cellulose in a litter 
(Sinsabaugh et al., 1992), and peroxidase (PER) and polyphenol oxidase 
(PPO) also play important roles in lignin decomposition (Lucas et al., 
2007). Green et al. demonstrated that oxidase is an important factor 
affecting soil microbial respiration (Green and Oleksyszyn, 2002). In 

addition, Sinsabaugh et al. (2008) also demonstrated that soil microbial 
biomass determines the organic matter decomposition process of soil 
enzymes. Therefore, soil enzyme activity and other soil microbial 
indicators can be used to identify early warnings of soil ecosystems 
under stress conditions and anthropogenic disturbances (Boerner 
R. et al., 2005).

The results of most ecosystem models show that climate change 
will stimulate the microbial decomposition of SOM and generate 
feedback on global climate change (Friedlingstein et al., 2006). The 
positive feedback system model for climate change over time has a 
poor effect in simulating the global SOC pool and has great 
uncertainty (Voigt et  al., 2016). Therefore, the global ecosystem 
model needs to consider microbial effects to accurately predict the 
feedback relationship between climate warming and SOM 
decomposition (Ji et al., 2018). In recent researches, the accuracy of 
the models in predicting soil C pools has been improved by 
considering microbial involvement in the decomposition process in 
ecosystem models (Abs et  al., 2020; Guo et  al., 2020), but the 
parameter values of these models are assumed by researchers 
without integrating the observed data with the models and 
calibrating the microbial decomposition models. Therefore, to 
improve the accuracy of microbial ecosystem models, it is also 
necessary to calibrate microbial parameters, and RS, microbial 
biomass, and enzyme activity are the most reliable observations for 
model calibration and validation (Hanson et al., 2000; Wang et al., 
2015). In addition, dynamic data (e.g., soil temperature and 
moisture) can represent real-world climatic and environmental 
conditions, which can be beneficial for the model and understanding 
soil C cycling more realistically (Wang et al., 2020).

Forest soil microorganisms, which are vital part of forest ecosystems, 
play an important role in the decomposition of litter and soil nutrient 
cycling (Barberan et  al., 2015). Forest RS occupies an important 
proportion of terrestrial ecosystems, and its dynamic changes will have 
an important impact on the global C balance (Laganière et al., 2012). 
Forest RS is also one of the important research objects of the long-term 
monitoring CO2 flux network currently being established, which is of 
great significance to scientific ecology and earth system research 
(Schlesinger and Andrews, 2000).

The Loess Plateau is a mixture of arid, semiarid and semihumid 
areas but is generally considered a semiarid area (Yu et al., 2020) and 
has always been known for severe land degradation, low land 
productivity, and soil erosion (Fu et  al., 2016). The Ziwuling 
Mountains are located in the hinterland of the Loess Plateau, which 
is a well-preserved natural secondary forest area that plays a critical 
role in improving the surrounding ecological environment and 
climate regulation (Kang et al., 2014). From April 2021 to July 2022, 
we  carried out an observational experiment in the Ziwuling 
Mountains, Loess Plateau, China, to record the monthly diurnal 
changes in RS and the monthly dynamic changes in soil microbial 
biomass and enzyme activity. Since soil physicochemical properties 
can vary significantly at different soil depths (Rahman et al., 2022), 
we collected topsoil (0–30 cm) and subsoil (30–100 cm) respectively 
in the process of collecting soil samples. We hypothesized that the 
topsoil and subsoil physicochemical and microbial properties would 
be significantly different, and soil microbial properties would also 
change significantly in different months or seasons. The main goals of 
this study were to I) explore the main influencing factors of RS and II) 
determine which parameters can be incorporated into a microbial 
decomposition model.
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2. Materials and methods

2.1. Study site

Field sampling and observation experiments were conducted from 
April 2021 to July 2022. The study site (Figure 1) was located in the 
Shuanglong Forest Farm (35°39′ ~ 35°43’N, 108°56′ ~ 108°58′E), a 
natural secondary forest in the Ziwuling Mountains of North China 
(Zhang et al., 2022). Our study site was 100 × 100 m. The climate of this 
site was a warm temperate semihumid climate, with a mean annual 
temperature of approximately 7.4°C and a mean annual precipitation of 
587.6 mm (Chai et al., 2016). The main soil type was loessial soil, which 
was turbid brown or orange. The soil texture was loose and soft with few 
roots and pores, which indicated silt loam. The typical arbor species 
include Betula platyphylla, Swida macrophylla, Carpinus turczaninowii 
Hance, Quercus aliena Bl, Quercus liaotungensis, Rhus potaninii Maxim, 
and cer davidii Franch. The typical shrub species include Acer tataricum 
subsp.ginnala, Viburnum dilatatum Thunb, Cotoneaster multiflorus Bge, 
Rhamnus leptophylla Schneid, Lonicera hispida Pall. ex Roem. et Schult.

2.2. RS observation experiment

Three sites with flat terrain were selected as sampling points for the 
measurement of the RS rate (μ mol m−2 s−1). We installed ACE automatic 
RS monitoring systems on iron rings with the inner diameter of 20 cm 

and the height of 10 cm (ACE-200, Ecotech Ecological Technology Ltd) 
and inserted 4–5 cm into the soil at each sampling point. RS measurement 
sites were chosen to be more than 50 cm away from the surrounding 
vegetation, with each site being more than three meters away. To reduce 
soil disturbance, we  inserted the iron rings at least 24 h before the 
measurement, and the broken roots and litter on the soil surface were 
removed. From April 2021 to July 2022, we  used automatic RS 
monitoring systems to monitor the RS rate every 30 min for all sample 
points every month for 24 h. The RS monitoring systems could 
simultaneously measure and record the soil temperature (TS, °C) and 
soil moisture (MS, %vol) within 0–10 cm below the surface soil of the 
sampling site. A meteorological monitoring station (CR200Series) was 
established at the research site to collect air temperature and moisture 
data from April 2021 to July 2022.

2.3. Soil sample collection

During the study period, from April 2021 to July 2022, soil 
sampling was performed every 2 months. Five sampling points were set 
at the research site using the five-point sampling method. To avoid edge 
effects, the sampling points were neither close to the edge of the plot 
nor far from the edge of the sample plot. Each sampling site was 
5 × 0.5 m plot. The sampling sites were surrounded by abundant 
vegetation and the soil surface had obvious humus layers. We divided 
each sampling point into 12 areas, assigned a random block to all the 

FIGURE 1

Map of study site. The Shuanglong Forest Farm is located in Shuanglong Town, Huangling County, Yan’an City, Shaanxi Province, China. It is located in the 
Ziwuling Mountains and is a natural secondary forest.
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sampling points, and conducted sampling according to the random 
block order (Supplementary Figure S1). The sampling depth was 
divided into two types. The soil at a depth of 0–30 cm below the surface 
soil was used as topsoil, and the soil at a depth of 30–100 cm was used 
as subsoil. A total of five replicates were collected separately for topsoil 
and subsoil. The soil from each depth at each sampling point was mixed 
evenly after collection, and the broken roots and litter in the soil were 
removed to reduce errors in the analysis process. Sterile gloves were 
worn during soil collection to prevent soil contamination. The soil 
samples were transported in sterile sampling bags, stored in a freezer, 
and taken to a laboratory by car for further analysis.

2.4. Soil sample analysis

We used the Kjeldahl method (Bradstreet, 1965) to determine the 
total soil nitrogen (TN), and the soil was hydrolyzed under alkaline 
conditions in a diffusion dish (Wang, 2010) to calculate the content of 
alkaline hydrolyzed nitrogen (HN). We used the alkali fusion-Mo-Sb 
antispectrophotometric method (Chen et al., 2018) to determine the 
total phosphorus (TP) and sodium bicarbonate solution (Cade-Menun 
and Lavkulich, 1997) to determine the available phosphorus (AP). The 
soil-available potassium (AK) was determined by ammonium acetate 
flame photometry (Zanati et  al., 1973).The potassium dichromate 
oxidation-external heating method was used to determine soil organic 
matter (SOM), and then the SOM was determined by titration with a 
standard ferrous iron solution (Zhu et  al., 2020). The soil pH was 
measured by using a pH meter. Microbial biomass carbon (MBC), 
microbial biomass nitrogen (MBN), and microbial biomass phosphorus 
(MBP) were determined by using the chloroform fumigation extraction 
method (Vance and Brookes, 1987). The soil samples were leached with 
KCL solution and then analyzed using a continuous flow analyzer to 
determine NH4

+--N and NO3
−--N (Liu et al., 2014).

We used a fluorometric method (Eivazi and Tabatabai, 1988) to 
measure the β-1,4-glucosidase (βG) activity in the soil and a nitrophenol 
colorimetric method (Wood and Bhat, 1988) to measure the 
cellobiohydrolase (CBH) activity. Polyphenol oxidase (PPO) was 
determined spectrophotometrically by using pyrogallol (1,2,3-trihydroxy 
benzene) as a substrate (Bach et  al., 2013). Peroxidase (PER) was 
measured by calculating the rate of substrate oxidation after the addition 
of H2O2 (Burns et al., 2013).

2.5. Statistical analysis

The RS mean value and error were calculated from three replicate 
measurements. The mean values and errors of soil physicochemical and 
microbial properties were calculated from five replicate measurements. 
Pearson correlation analysis was used to examine the correlation of RS 
with TS and MS. Origin 2017 software was used to obtain the regression 
equations between RS rate, TS, and soil MS, and then these regression 
relationships were plotted. Monthly and seasonal differences in RS and 
soil physicochemical and microbial properties were tested by 
ANOVA. The datasets were checked for normality and homogeneity 
assumptions before performing ANOVA. The magnitude of this 
feedback largely depends on the temperature sensitivity of SOM 
decomposition (Q10).

Q10 was measured by the exponential relationship between RS and 
TS and was calculated as follows:

 RS S= aebT  (1)

 Q10
10= e b

 (2)

where TS is the soil temperature, a is the RS rate when the soil 
temperature is 0°C, and b is the temperature coefficient reflecting the 
temperature sensitivity of RS.

To examine how soil microbial characteristics influenced RS, 
structural equation modeling (SEM) was performed with Amos software 
(IBM SPSS Amos 26.0.0) for different soil layers. In stepwise multiple 
regression (Supplementary Tables S1, S2), in order to optimize the 
model, we  removed the non-significant variables and paths. 
We evaluated the goodness of fit of the model according to the low 
chi-square (χ2; the model is a great fit when 0 ≤ χ2/df ≤ 2) (Tabachnick 
and Fidell, 2007), the high whole-model p value (if p > 0.05, there is no 
path loss and the model was a great fit), the comparative fit index (CFI; 
the model is a great fit when 0.97 ≤ CFI ≤ 1) (Hu and Bentler, 1999), and 
a root mean square error of approximation (RMSEA; the model is a 
great fit when 0 ≤ RMSEA ≤0.05) (Vile et al., 2006).

3. Results

3.1. Atmospheric temperature and humidity 
observation values and soil physicochemical 
and microbial properties

The monthly variations in air temperature and air moisture are 
shown in Figure 2. During the observation period from April 2021 to 
July 2022, the average air temperature was 16.1°C, the highest 
temperature was 22.2°C, and the lowest temperature was 4.9°C. The 
average air moisture was 61.7%, the maximum moisture was 75.68%, 
and the minimum moisture was 46.70% (Figure 2A).

During the observation period, the TS showed a pattern consistent 
with the seasonal variations in air temperature and air moisture. That 
is, the TS gradually increased from April to July 2021, reaching a 
maximum value of 19.4°C in July 2021, and then the TS decreased for 
the rest of the year. The MS had obvious monthly variations during the 
observation period, reaching a maximum value in October 2021 and 
minimum value in June 2021 (Figure 2B). The maximum and minimum 
values were 92.44 and 42.20%, respectively.

The soil at the study site was alkaline, and there was no significant 
difference in pH between the topsoil (0–30 cm) and the subsoil 
(30–100 cm) (Table 1). The TP content in the subsoil was significantly 
higher than that in the topsoil, while the other soil physicochemical 
properties in the subsoil were lower than those in the topsoil, and AK 
and SOM were significantly reduced in the subsoil (p < 0.01).

3.2. Diurnal, monthly and seasonal variations 
in RS

The diurnal variation in the RS rate in different months is shown in 
Supplementary Figure S2. The RS rate showed a multi-peak distribution 
trend, and the RS rate reached its peak at noon every day except in April 
and May within the 24 h observation period of each month. Except in June 
and August 2021, the RS rate showed a minimum value in the morning 
(approximately 5:00 to 8:00 AM), and then the RS rate gradually increased. 
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The monthly variation in the RS rate showed a trend of increasing and then 
decreasing. The RS rate gradually increased after April, reached a maximum 
in July 2021, and then gradually decreased (Supplementary Figure S3).

The seasonal changes in the RS rate are shown in Figure 3. On the 
seasonal scale, there were significant differences between the RS rates in 

different seasons. In 2021, the average RS rate in summer was 
0.75 μmol m−2 s−1, which was significantly higher than that in spring 
(0.52 μmol m−2 s−1) and autumn (0.37 μmol m−2 s−1) (p < 0.05). In 2022, 
the average RS rate in summer was 0.97 μmol m−2 s−1 (Figure 3).

3.3. Relationship between TS, MS, and RS

The correlation analysis results showed that there were significant 
correlations between TS, MS, and RS (p < 0.01). The relationship between TS 
and the linear equation fitting the diurnal-scale variation in RS is shown in 
Figure 4, and the relationship between MS and the linear equation fitting 
the diurnal-scale variation in RS is shown in Supplementary Figure S4. The 
RS rate increased with TS and decreased with MS. According to Eq. (1), Q10 
is 2.61, which is within the normal range (Zhou et al., 2009).

3.4. Soil inorganic nitrogen, microbial 
biomass, and enzyme activity

In the topsoil, the NO3
−--N from August 2021 to July 2022 was 

significantly higher than that from April to June 2021, and the MBC 
from October 2021 to July 2022 was significantly higher than that from 

A

B

FIGURE 2

Monthly variations in temperature and moisture. (A) The monthly changes in air temperature and moisture from April 2021 to July 2022. (B) The monthly 
variations in soil temperature and moisture from April 2021 to July 2022.

TABLE 1 Soil physicochemical properties in the topsoil (0–30 cm) and 
subsoil (30–100 cm).

Variables Soil layer

Topsoil Subsoil

TN (g/kg) 1.91 ± 0.23 0.66 ± 0.03

TP (mg/kg) 385.06 ± 25.43** 474.61 ± 48.02**

HN (mg/kg) 194.91 ± 21.32 49.04 ± 2.73

AP (mg/kg) 6.27 ± 1.02 2.20 ± 0.49

AK (mg/kg) 208.84 ± 32.78** 107.67 ± 8.87**

SOM (g/kg) 27.77 ± 5.61** 16.99 ± 5.11**

pH 8.42 ± 0.02 8.69 ± 0.02

* denotes significant differences among different layers at p < 0.05. ** denotes significant 
differences among different layers at p < 0.01. TN, total nitrogen; TP, total phosphorus; HN, 
hydrolysable nitrogen; AP, available phosphorus; AK, available potassium; SOM, soil organic 
matter. The data are expressed as the mean values ± SEs.

https://doi.org/10.3389/fmicb.2023.1105723
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qu et al. 10.3389/fmicb.2023.1105723

Frontiers in Microbiology 06 frontiersin.org

April to August 2021. NH4
+--N reached a maximum (12.59 mg/kg) in 

August 2021, and there were no significant differences in NH4
+--N 

between other months except in August 2021. The MBP in the topsoil 
in August 2021 was significantly higher than that in the other months. 
The MBN reached the maximum (34.95 mg/kg) in May 2022 
(Figure 5A). In the subsoil, the NO3

−--N from April 2021 to June 2021 
was significantly higher than that in other months, and there was no 
significant difference in NH4

+--N among the 6 months. The MBC 
reached a maximum (113.88 mg/kg) in October 2021. The MBN from 
May to July 2022 was significantly higher than that from April 2021 to 
August 2021. There were no significant changes in MBP from April 2021 
to July 2022 (Figure 5B).

The soil enzyme activity in the topsoil and subsoil varied 
significantly among different months (p < 0.05). The PER activity in the 
topsoil in May 2022 and July 2022 was significantly lower than that in 
the other months, and in the subsoil there were significant differences 
in the PER activity between April 2021 and July 2022. The PPO activity 
in both the topsoil and subsoil varied significantly among different 
months. Similar to that in the topsoil, in the subsoil, the βG activity in 
May 2022 was significantly higher than that in other months. The βG 
activity in the topsoil in April, June, and August 2021 was significantly 

different from the βG activity in the subsoil. The CBH activity in the 
topsoil in August 2021 was significantly lower than that in other months, 
and in the subsoil, the CBH activity in May 2022 was significantly higher 
than that from April to August 2021 but not significantly different from 
that in other months. In addition, from April 2021 to August 2021, the 
CBH and βG activities were significantly different in the topsoil and 
subsoil, so we believe that the CBH and βG activities in the topsoil were 
generally greater than those in the subsoil (Table 2).

3.5. Relationship between soil microbial 
biomass, enzyme activity and RS

Based on the stepwise multiple regression results 
(Supplementary Tables S1, S2), we determined the variables that mostly 
explained the variation in RS. Model optimization was performed 
continually until the model fits well. SEM demonstrated the influence of 
RS in different soil layers (Figure 6). The model for topsoil showed values 
of χ2 = 2.809, p = 0.422, df = 3, RMSEA = 0, and CFI = 1 (Figure 6A); the 
model for whole soil showed values of χ2 = 4.339, p = 0.362, df = 4, 
RMSEA = 0, and CFI = 1 (Figure 6B).

In the topsoil, TS, βG, MBP, and PPO all directly affected RS, except 
for MBP, TS, βG and PPO, which were significantly and positively 
correlated with RS, and TS, βG were the variables that had the strongest 
effects on RS. In the whole soil, TS, βG, MBP, MBN, and PPO all directly 
affected RS, except for MBP, TS, βG, PPO, MBN, which were significantly 
and positively correlated with RS, and TS, βG, PPO were the variables 
that had the strongest effects on RS.

4. Discussion

4.1. Effects of TS and MS on RS

Global warming not only increases the temperature of the 
atmosphere but also leads to changes in precipitation, which in turn 
causes greater variation in TS and MS (Zhang et al., 2016). In this study, 
the air temperature reached its highest value in summer and then 
gradually decreased, and the atmospheric moisture showed a multipeak 
trend, which experienced a decrease followed by an increase in the 
summer (Figure 1A). This may be related to the specific climate of the 
Loess Plateau. Since the Loess Plateau is an area sensitive to climate 
change, changes in atmospheric temperature and precipitation caused 
by global warming often lead to frequent droughts in many areas (Piao 
et al., 2010a). The climate of the Loess Plateau showed a trend of aridity 
in spring and summer (Hou et al., 2021) and then experienced violent 
precipitation in autumn, causing the air temperature to decrease after 
August, while air moisture began to increase significantly after August, 
reaching a maximum in October, and then gradually decreased again. 
TS and MS also show similar trends to air temperature and moisture 
(Figure 1B).

It has been demonstrated in previous studies that RS is closely 
related to TS (Wang et al., 2006). During the observation period, the 
monthly diurnal variation in RS showed a multi-peak trend, and the RS 
rate reached its peak value at noon and decreased to a minimum value 
in the morning (Supplementary Figure S2). This is consistent with the 
results of Wang et al. (2018). A possible explanation for this phenomenon 
is that the reaction process of RS is mainly catalyzed by soil enzymes, and 
temperature is the main limiting factor affecting soil enzyme activity 

FIGURE 3

Seasonal RS rates from April 2021 to July 2022. The asterisk (*) indicates 
significant differences in RS rates between different seasons at a 
significance level of 0.05.

FIGURE 4

Relationship between RS and soil temperature.
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(Melillo et al., 2018). When the TS is low, the activities of some critical 
enzymes that control RS decrease, resulting in a lower RS rate. On the 

monthly scale, with increasing TS, the RS rate starts to increase in April, 
reaches a maximum value in July, and then gradually decreases to a 

A

B

FIGURE 5

NH4
+--N, NO3

−--N, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) contents in the 
(A) topsoil and (B) subsoil from April 2021 to July 2022. Different letters indicate significant differences between months for the same variable (p < 0.05). 
* indicates that the same variable in the same month is significantly different in different soil layers (p < 0.01).

TABLE 2 Peroxidase (PER), polyphenol oxidase (PPO), β-1,4-glucosidase (βG), and cellobiohydrolase (CBH) activities in the topsoil (0–30 cm) and subsoil 
(30–100 cm) from April 2021 to July 2022.

Site Soil depth PER  
(mg H2O2·g−1)

PPO (nmol·g-1·h−1) βG (nmol·g-1·h−1) CBH (nmol·g-1·h−1)

April-21 Topsoil 4.28 ± 0.05a 3687.34 ± 163.80a 181.65 ± 25.41b** 38.01 ± 13.33a**

June-21 3.97 ± 0.13a 3340.60 ± 76.59b 122.77 ± 14.06bc** 18.96 ± 4.66ab**

August-21 3.68 ± 0.40a 20.50 ± 1.20d 2.34 ± 0.35c** 0.18 ± 0.03c**

October-21 3.41 ± 0.29ab 476.30 ± 52.40c 73.92 ± 11.07c 16.01 ± 4.00bc

May-22 2.78 ± 0.37b 479.42 ± 52.89c 291.16 ± 42.54a 26.13 ± 2.42ab

July-22 2.28 ± 0.36b 496.76 ± 48.71c 199.42 ± 43.04b 28.75 ± 2.15ab*

April-21 Subsoil 4.10 ± 0.20a 2632.48 ± 219.10b 11.69 ± 2.86d** 9.79 ± 8.52b**

June-21 4.03 ± 0.25ab 3335.98 ± 156.34a 23.08 ± 9.38 cd** 1.62 ± 1.25b**

August-21 3.69 ± 0.12ab 16.84 ± 1.08d 0.31 ± 0.03d** 0.02 ± 0.01b**

October-21 3.21 ± 0.22ab 507.90 ± 49.44c 74.68 ± 11.48c 11.11 ± 4.84ab

May-22 3.23 ± 0.48ab 485.6 ± 41.14c 248.73 ± 20.69a 22.93 ± 2.45a

July-22 3.15 ± 0.50b 480.1 ± 63.26c 202.42 ± 39.42b 21.80 ± 0.49ab*

The data are expressed as the mean values ± SEs. Different letters indicate that the same variable differs significantly from month to month (P < 0.05).
* indicates that the same variable in the same month is significantly different in different soil layers (p < 0.05). ** indicates that the same variable in the same month is significantly different in 
different soil layers (p < 0.01).
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lower value in October, which is consistent with the results of Tong et al. 
(2021). Our results differ from the results of Wen et al. (2018). A possible 
explanation for this phenomenon is the sensitivity of the research site to 
climate warming, resulting in a significantly higher rate of temperature 
change than in the other areas (Cao et al., 2016), thereby increasing the 
TS to a maximum at an earlier time and leading to an increase in the RS 
rate. The temperature sensitivity (Q10) of RS is often used as an important 
parameter to measure the feedback of RS to global warming (Hu et al., 
2013). During the whole study period, there was a significant statistical 
relationship between the RS rate and TS (p < 0.01; Figure 4), and the 
fitting effect between the RS rate and TS also had some explanatory 
significance (R2 = 0.2654). Increased temperature stimulates RS because 
climate warming may enhance the activity of soil microorganisms and 
promote soil organic C and litter decomposition, which partly explains 
why the RS rate in summer is significantly higher than that in spring and 
autumn (Figure 3). Our findings suggest that a sustained increase in 
temperature may lead to greater soil C loss; that is, climate warming 
reduces soil C sinks.

MS has been identified in previous studies as a major factor affecting 
RS, especially after drought rewetting events stimulate RS (Hu et al., 
2019). Our results show that MS is significantly negatively correlated 
with RS (Supplementary Figure S4), proving that MS limits CO2 
emissions from soil in a shorter period, which is different from the 
results of Yu et al. (2021). There may be several reasons for this: first, 
higher MS inhibits the CO2 transportation process from the atmosphere 
to the soil (Yan et al., 2018). During the study period, the MS variation 
range was 92.44% ~42.20%, especially in summer and autumn, and the 
MS remained at a high level (Figure  2B). It has been suggested in 
previous studies that under anoxic conditions, soil organic carbon 
(SOC) may be more persistent (Li et al., 2021), resulting in a decrease in 
RS rate. Second, differences in SOC and microbial communities that 
decompose specific soil SOC lead to different relationships between MS 
and RS (Yan et al., 2018). Third, in this study, MS may not be the main 
factor affecting the RS rate because RS is often regulated by multiple 
factors (Duan et al., 2021). For example, soil salinity and RS show a 
negative correlation. When in a salt-stress environment, the activities of 

plant roots and soil microorganisms are severely affected (Song 
et al., 2021).

The correlations between TS, MS, and RS demonstrate that TS and MS 
data are useful for optimizing microbial decomposition models, which 
facilitates soil microbial activity prediction much better in the context 
of future climate change.

4.2. Physical and chemical properties in 
different soil layers

Most previous studies have focused on the topsoil physicochemical 
properties (Liu et  al., 2021). In this study, there were significant 
differences in the TP, AK, and SOM contents of different soil layers; TP 
was higher in the subsoil, and AK and SOM were higher in the topsoil 
(Table 1). The soil physicochemical properties changed with increasing 
soil depth, and our results are consistent with the results of Rahman 
et al. (2022). Microbial secretions can significantly affect soil potassium 
availability (Zorb et al., 2014), and factors such as microbial abundance 
and activity determine the pathway of soil litter conversion into SOM 
(Witzgall et  al., 2021). In addition, plant roots and soil microbial 
communities can also dissolve P in the soil (Yang et al., 2021). Litter and 
most of the plant roots in the study site are concentrated in the topsoil. 
As shown in Figure 7, the microbial enzyme activity in the topsoil is 
higher than that in the subsoil, which proves that the microorganisms 
in the surface soil may be more active. Therefore, the AK and SOM 
contents were significantly higher than those in the subsoil, and the TP 
content was significantly lower than that in the subsoil. C and N cycle 
and nutrient turnover in soil are carried out by microorganisms through 
substrate (organic matter and litter) decomposition. In recent years, 
microbial decomposition models have been commonly used to explore 
the role of soil microorganisms in the coupled C and N cycle (Wang 
et al., 2014; Buchkowski et al., 2015). Our results can provide a reference 
for describing C, N, and P stocks and stoichiometry as well as soil 
nutrient distribution patterns in Loess Plateau soils and provide initial 
response data for soil microbial decomposition models.

A B

FIGURE 6

Structural equation model describes the relationship between variables and RS in the topsoil (A) and whole soil (B). RS, soil respiration; MBN, microbial 
biomass nitrogen; MBP, microbial biomass phosphorus; PPO, polyphenol oxidase; βG, β-1,4-glucosidase; soil temperature (TS). Arrows represent the 
assumed direction of causation. The width of arrow is proportional to the path coefficient. The red and black solid lines represent negative and positive 
pathways, respectively. Insignificant pathways are indicated by grey dashed lines. The importance of the variables is reflected by standardized path 
coefficients. R2 reflects the proportion of variance explained for all variables in the model. The significance levels are as follows: *p < 0.05, **p < 0.01, and 
***p < 0.001.
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4.3. Effects of soil microbial biomass and 
enzyme activity on RS

The soil microbial biomass can regulate microbial biochemical 
processes and nutrient cycling and affect soil physical and chemical 
properties, which in turn affects soil quality (He et al., 2003). MBC is 
often considered to be a crucial factor affecting RS, reflecting the ability 
of microorganisms to utilize SOC (Zeng et al., 2018). We found that, 
whether in the subsoil or topsoil, the MBC content showed a gradually 
increasing trend, and the MBC in May 2022 was significantly higher 
than in the other 3 months (Figure 5). We found that the trend of RS was 
out of sync with that of the MBC. RS decreased to a minimum value in 
autumn 2021, but the MBC reached a peak value in 2021. Our multiple 
stepwise regression results demonstrate that MBC is not a crucial factor 
affecting RS (Supplementary Tables S1, S2). The reason for this 
phenomenon may be  due to the decrease in the use efficiency of 
microorganisms. Microbial carbon use efficiency (CUE) refers to the 
distribution ratio between the MBC produced by organic matter 
catabolism and the C allocated by microorganisms for aerobic 
respiration (Schimel et  al., 2022). The results of Manzoni et  al. 
demonstrated that high temperature reduces the CUE of microorganisms 
(Manzoni et al., 2012) because the increase in TS results in less C being 
allocated for microbial growth, which in turn reduces the ability of 
microbes to decompose organic resources to mitigate ecosystem C loss 
(Allison et al., 2010). During the growing season, TS gradually increased, 
and microbes probably allocated more C for RS than for MBC.

According to the results of the SEM, in addition to TS, βG and PPO 
also significantly influenced RS. Soil enzymes and microorganisms are 
involved in regulating the transformation of various organic matter and 
material circulation processes. Enzyme activity can be  used as an 

indicator of microbial activity and plays a crucial role in decomposing 
organic compounds (Boerner R. E. J. et al., 2005). Previous studies have 
demonstrated that βG could participate in the decomposition of cellulose 
in litter (Caldwell, 2005). Litter is the most important source of organic 
matter input to the soil, and it can influence RS by affecting the amount 
of labile C in the soil (Zhang et al., 2020). Therefore, βG has a significant 
positive effect on RS. In addition, PPO can promote the accumulation of 
SOC by depolymerizing or aggregating lignin molecules and phenolic 
compounds in the soil (KIRK et al., 1987), thus positively influencing RS.

Our results suggest that TS, microbial biomass, and enzyme activity 
may be the main factors influencing soil microbial activity, which has 
important scientific implications for constructing microbial 
decomposition models that predict soil microbial activity under climate 
change in the future. To better understand the relationship between soil 
dynamics and C emissions, it will be necessary to incorporate climate 
data as well as RS and microbial parameters into microbial 
decomposition models, which will be important for soil conservation 
and reducing soil C loss in the Loess Plateau.

5. Conclusion

We examined the soil physical and chemical properties at different 
depths in the Ziwuling Mountains, Loess Plateau, China, and conducted 
a soil observation experiment to record the temporal and spatial 
dynamic changes in the soil microbial characteristics in this area. Our 
results prove that RS in the Ziwuling area has obvious diurnal and 
seasonal variations and that the RS rate is significantly correlated with TS 
and MS. The strong effect of temperature on RS leads to increased CO2 
emissions from the soil to the atmosphere, which in turn leads to greater 

A B

C D

FIGURE 7

Monthly variations in enzyme activities in the topsoil (0–30 cm) and subsoil (30–100 cm) from April 2021 to July 2022. (A) PER, peroxidase. (B) PPO, 
polyphenol oxidase. (C) βG, β-1,4-glucosidase. (D) CBH, cellobiohydrolase.
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forest soil C loss. Our study reveals the main factors affecting RS, in 
order to better understand and predict changes in soil carbon dynamics 
in the future, incorporating TS, MBN, MBP, βG, and PPO data into 
microbial decomposition models is necessary.
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