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In response to the current worldwide amphibian extinction crisis, conservation 
instances have encouraged the establishment of ex-situ collections for endangered 
species. The resulting assurance populations are managed under strict biosecure 
protocols, often involving artificial cycles of temperature and humidity to induce 
active and overwintering phases, which likely affect the bacterial symbionts living 
on the amphibian skin. However, the skin microbiota is an important first line of 
defense against pathogens that can cause amphibian declines, such as the chytrid 
Batrachochytrium dendrobatidis (Bd). Determining whether current husbandry 
practices for assurance populations might deplete amphibians from their symbionts 
is therefore essential to conservation success. Here, we characterize the effect of the 
transitions from the wild to captivity, and between aquatic and overwintering phases, 
on the skin microbiota of two newt species. While our results confirm differential 
selectivity of skin microbiota between species, they underscore that captivity and 
phase-shifts similarly affect their community structure. More specifically, the 
translocation ex-situ is associated with rapid impoverishment, decrease in alpha 
diversity and strong species turnover of bacterial communities. Shifts between active 
and overwintering phases also cause changes in the diversity and composition of 
the microbiota, and on the prevalence of Bd-inhibitory phylotypes. Altogether, our 
results suggest that current husbandry practices strongly restructure the amphibian 
skin microbiota. Although it remains to be determined whether these changes are 
reversible or have deleterious effects on their hosts, we  discuss methods to limit 
microbial diversity loss ex-situ and emphasize the importance of integrating bacterial 
communities to applied amphibian conservation.
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1. Introduction

Amphibians constitute the most imperiled vertebrate class on earth, with over a third of species 
globally threatened with extinction, mainly because of habitat loss, invasive species, infectious 
diseases, and pollution (Blaustein et al., 2011; IUCN, 2022). In view of their accelerating rate of 
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extinction (McCallum, 2007), the International Union for the 
Conservation of Nature (IUCN) published the first Amphibian 
Conservation Action Plan (ACAP) in 2007 (Gascon, 2007). The ACAP 
recommended the establishment of ex-situ survival assurance 
populations to safeguard those species most at risk and stock for 
potential future reintroduction programs (Mendelson et  al., 2007). 
Such collections typically involve more intensive management than 
display zoo populations (Mendelson, 2018), with increased biosecurity 
procedures (Pessier and Mendelson, 2010; Jensen et  al., 2021) and 
sometimes limited co-housing of individuals (Gray et  al., 2018) to 
reduce risks of pathogen spread, as well as artificial cycles of 
temperature and humidity to reflect natural life conditions and 
maximize reproduction outputs (Santana et al., 2015; Calatayud et al., 
2021; Silla et al., 2021). Following the publication of the ACAP, over 800 
species were classified as ex-situ rescue or research priority species 
(Dawson et al., 2016), and 77 captive breeding programs were created 
in the space of 7 years—of which 43% comprised rescues to establish 
survival assurance populations (Harding et al., 2016).

Although these ex-situ collections have considerably contributed to 
the survival of many species (Griffiths and Pavajeau, 2008; Tapley et al., 
2015), their conservation efforts focus on amphibian hosts only, with 
little consideration for their microbial symbionts (Trevelline et al., 2019). 
However, increasing evidence shows the importance of bacterial 
communities, referred to as “microbiota,” for the health of their host 
(Douglas, 2018; Peixoto et  al., 2021). More specifically, the skin 
microbiota of amphibians plays a crucial role against the deadly 
chytridiomycosis (Rebollar et  al., 2020)—a skin disease notably 
transmitted by the chytrid fungus Batrachochytrium dendrobatidis (Bd), 
already responsible for the decline of many amphibian species, including 
several presumed extinctions (Scheele et al., 2019). A few bacteria with 
inhibitory activity against this pathogen have been identified in the 
natural skin microbiota of amphibians resisting infection (Brucker et al., 
2008; Woodhams et al., 2018). Interestingly, not all amphibians possess 
such protective symbionts, and their susceptibility to the disease is 
principally explained by the composition of their skin bacterial 
communities (Piovia-Scott et al., 2017; Rebollar et al., 2020). Moreover, 
amphibian skin microbiota are dynamic; in the wild, their structure 
naturally changes throughout seasons, although the temporal variation 
of protective symbionts is less clear (Bletz et al., 2017). Considering that 
the amphibian skin microbiota is largely assembled from bacteria 
present in the environment (Walke et al., 2014; Bird et al., 2018), it is 
likely restructured when wild amphibians are moved to captivity, as a 
consequence of the drastic reduction of environmental reservoirs of 
bacteria ex-situ.

Several studies comparing wild and captive amphibians have 
confirmed differences in composition and diversity of their skin 
microbiota (Becker et al., 2014; Kueneman et al., 2016a; Sabino-Pinto 
et al., 2016), but only two monitored its reorganization throughout the 
transition from the wild to captivity (Loudon et al., 2014; Bates et al., 
2019). These latter studies found that the skin microbiota of amphibians 
placed ex-situ for a few weeks significantly decreased in diversity and 
changed in community composition, but they were limited to a short 
period and did not analyze the consequences of captivity on multiple 
Bd-inhibitory taxa. Moreover, the effect of a transition from the wild to 
captivity under specific management protocols used for survival 
assurance populations (i.e., combining biosecurity protocols, restricted 
social groups, and cycles of active and overwintering phases) on the 
amphibian skin microbiota was never investigated to our knowledge. 
Yet, determining whether such ex-situ conservation approaches could 

have unintended deleterious impacts on the natural defenses of 
amphibians against pathogens should be a priority. Diverse and rich 
microbiota are generally associated with better health and stronger Bd 
inhibition in amphibians (Longo et al., 2015; Bates et al., 2018; Harrison 
et  al., 2019); the potential restructuration of their skin bacterial 
assemblages could thus put them at higher risk of infection by emerging 
diseases if reintroduced into the wild.

We explored this gap in knowledge using two amphibian species 
commonly held in ex-situ institutions (data from ZIMS for Studbooks; 
Species 360, 2021): the alpine newt, Ichthyosaura alpestris and the 
palmate newt, Lissotriton helveticus. These species were also selected for 
their contrasting susceptibility to Bd; since this pathogen can be lethal 
to alpine newts but not to palmate newts (Cheatsazan et  al., 2013; 
Miaud et al., 2016), we expected different proportions of Bd-inhibitory 
taxa among their natural microbiota. We captured wild adult newts and 
established an ex-situ collection managed using standard protocols for 
amphibian survival assurance populations, including biosecurity 
measures to reduce the risk of introducing exogenous micro-organisms 
(BSL-2 standards), and alternating cycles of active (aquatic) and 
overwintering (terrestrial) phases (Figure 1). Skin microbiota samples 
were collected monthly, and were characterized through high-
throughput sequencing (Gołębiewski and Tretyn, 2020) to determine 
the evolution of bacterial communities and of Bd-inhibitory phylotypes 
through the transition from the wild to captivity, and throughout 
10 months in captivity. We hypothesized that the two species of newts 
would have distinguishable skin bacterial communities in the wild, but 
that they would be similarly affected by their transfer into captivity. 
We  predicted a reduction in alpha diversity caused by the limited 
diversity of exogenous bacteria ex-situ, and a major species turnover 
during the transitions between aquatic and terrestrial phases. Finally, 
we  predicted that the relative abundance of Bd-inhibitory bacteria 
would decrease as a result of the relaxed selection pressure caused by 
biosecurity protocols.

A

B C

FIGURE 1

Schematic summary of the experimental plan used in this study (A). 
Typical management protocols for survival assurance populations were 
used to maintain the collection of newts, combining biosecurity 
protocols, restricted social groups, and cycles of active and 
overwintering phases. Upon capture in the wild, 40 newts (20 per 
species) were placed by pairs in aquatic aquaria for 4 months without 
mixing species (Aquatic 1: M1 to M4; B). They were then transferred in 
individual containers containing wet cork and placed at 4°C to induce 
a terrestrial overwintering phase for 3 months (Overwintering: M5 to 
M7; C). The same pairs of newts as in the first aquatic phase were 
reunited in a second aquatic phase for 3 months (Aquatic 2: M8 to 
M10). The skin microbiota of the newts was sampled monthly (arrows).
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2. Materials and methods

2.1. Establishment of the ex-situ collection 
of newts

We collected 40 metamorphosed adult newts (alpine newts, 
Ichthyosaura alpestris, ALP: 10 males and 10 females; palmate newts, 
Lissotriton helveticus, PAL: 10 males and 10 females) in the same pond 
in the Larzac plateau, France, on May 28, 2018. The pond is permanent, 
has a natural substrate, is highly vegetated and is surrounded by 
agricultural lands (crops) and a few trees. All animals were immediately 
transported to the laboratory in individual containers. Upon arrival in 
the animal housing facilities, the newts were randomly placed in 
intraspecific heterosexual pairs into 135 l aquaria (60 × 60 cm, 50 cm 
water depth; Figure 1A) filled with dechlorinated water (aerated for 
48 h to evaporate chlorine) and oxygenated with air pumps. 
Photoperiod (14 h light, 325 lux) and temperature 
(mean ± SE = 16.5 ± 0.7°C) reflected environmental conditions from the 
capture location. Partial water changes, oxygen concentration measures 
and titration of reactive nitrogen forms were conducted regularly to 
keep the water quality constant. Each pair of newts was fed every 2 days 
at 18:00, with 400 mg of defrosted bloodworms (Ocean Nutrition, 
Dartmouth, Canada). The food was frozen to reduce chances of 
transmission of exogenous bacteria and zoonotic agents reported in live 
bloodworms (Rouf and Rigney, 1993; Broza and Halpern, 2001; Moore 
et al., 2003).

After 4 months of this first aquatic phase, the newts were placed in 
individual plastic containers (23 × 15 × 6 cm; Figure 1C) filled with a 
cork substratum and kept in a dark, refrigerated, incubator gradually 
set to 4°C to create a 3-months long terrestrial overwintering period. 
The newts were not fed in order to comply with their natural 
metabolism during this phase, but were sprayed 3 times with 
dechlorinated tap-water (30 cm distance from the newts) every 2 days 
to keep their skin moist. The incubator’s temperature was progressively 
increased before the start of the second aquatic phase, which was 
conducted in the exact same conditions as the first one, and lasted 
3 months. The same pairs of individuals from the first aquatic phase 
were reunited (Figure 1B). Co-housing the newts during their aquatic 
phases enabled them to express mating behavior, which naturally 
occurs in the wild and is likely necessary to their welfare. Nevertheless, 
our study species can overwinter alone in the wild, so we separated 
them during the overwintering phase.

The equipment used for capture, transport and maintenance of the 
newts was thoroughly washed and disinfected before and after use with 
a 3% VIRKON solution (Van Rooij et al., 2017).

2.2. Microbiota sampling

The skin microbiota of the newts was sampled upon capture in the 
field, and monthly throughout captivity (11 sampling events per newt; 
Figure  1A). Samples collection consisted of a non-invasive skin 
swabbing. Each individual was held with a new pair of nitrile gloves and 
was gently rubbed with two sterile swabs (MW100 rayon tipped dry 
swab, MWE, Corsham, UK) as follows: 10 strikes back-and-forth on 
the ventrum, five on each side of the tail, five on each side of the back, 
five rolls on each hand and foot. The swabs were preserved dry, on ice 
upon collection in the field, at -25°C at the field station, and at-80°C 
after being transported to the laboratory, until further processing. One 

swab was used for the microbiota analysis and the other was kept for 
long-term archiving in our laboratory.

Despite our biosecurity measures, exogenous bacteria could 
be introduced through the water poured into the aquaria or through 
the cork used as substrate in the overwintering containers. To identify 
these environmental bacteria, swabs were monthly stirred 20 times in 
the water of control aquaria during aquatic phases, and rubbed 10 times 
on the cork of overwintering control containers during the terrestrial 
phase. These control aquaria (n = 3) and containers (n = 3) did not 
contain any newts but were maintained in the same conditions as the 
ones that did.

2.3. Microbiota sequencing and 
bioinformatics

DNA was extracted from the swabs using the DNeasy PowerSoil 
Pro kit (QIAGEN, Hilden, Germany), following the manufacturer’s 
instructions and including non-template controls (NTCs). Following 
the protocol outlined in Harrison et  al. (2019), library preparation 
(using 515F and 806R primers) and community amplicon sequencing 
of the hypervariable V4 region of the 16S ribosomal RNA gene 
(~254 bp) were conducted on a MiSeq system (Illumina, San Diego, 
California, USA), at a depth of 30,000 reads. Demultiplexed sequences 
were processed using DADA2 v.1.8 (Callahan et al., 2016). Forward and 
reverse reads were truncated at decreasing quality (respectively 240 and 
150 bp), and chimeric Amplicon Sequence Variants (ASVs) were 
removed by reconstruction against more abundant parent ASVs. 
Taxonomy was assigned to representative sequences using a naive 
Bayesian classifier implemented in QIIME 2, trained against EMPO 3 
“animal surface” habitat-specific taxonomic weights (Kaehler et al., 
2019). Assignments were accepted above a 0.7 confidence threshold. To 
identify symbiotic phylotypes with known inhibitory activity against 
Bd, representative sequences were aligned to the Antifungal Isolates 
Database (Woodhams et al., 2015) in QIIME 2.

Preprocessing of the sequences was carried out using the R package 
phyloseq (McMurdie and Holmes, 2013). Only bacterial sequences were 
kept, and 13 contaminant ASVs identified from NTCs were removed 
using the R package decontam (Davis et  al., 2018). To address the 
uneven depth of coverage, all samples were normalized by rarefaction 
without replacement (Cameron et al., 2021) at 22140 reads. ASVs with 
no taxonomic affiliation at the phylum level, and spurious ASVs making 
up less than 0.005% of the total reads, were filtered out from the data 
(Bokulich et al., 2013). The final dataset was comprised of 12,255 ASVs, 
across a total of 436 newt samples.

2.4. Statistical analysis

Differences in alpha (within-sample diversity) and beta (among-
samples dissimilarity) diversity between species and phases were 
investigated using statistical tests of similar structure (described below). 
Alpha diversity was quantified using Chao1 (estimated ASV richness) 
and Shannon (estimated ASV evenness) indices. Factors potentially 
influencing these indices were included in linear and linear mixed 
models (described below), and tested through analyses of variance 
(ANOVA). In cases where the residuals of the models did not meet the 
assumptions of normality and homoscedasticity associated with 
ANOVAs, a log-transformation of the response variable was successful 
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at resolving these assumptions. Pairwise contrasts between phases were 
tested using estimated marginal means. Beta diversity was quantified 
using the weighted Unifrac distance (phylogenetic distance weighted by 
species abundance information) to investigate differences in community 
structure among samples (Lozupone et  al., 2011). Permutational 
multivariate analyses of variance (PERMANOVAs) implemented using 
the adonis function (n = 9,999 permutations) were used to test similar 
models as for the alpha diversity. Pairwise differences between phases 
were tested using a pairwise adonis test. Differences in within-group 
variation in community structure (i.e., differences in compositional 
variance of microbiota) were investigated using betadisper tests. To 
identify bacterial taxa responsible for the observed differences in 
community structure among samples, differential abundance analyses 
were completed on unrarefied data (436 newt samples, 14,185 taxa) 
using DEseq2 (Love et al., 2014).

Initial differences in microbiota diversity between wild samples 
were investigated using a model that included species, sex, their 
interaction and individual snout-vent length (SVL) as fixed effects. For 
both alpha and beta diversity indices, this model showed that sex and 
SVL (mean ± SE = 4.19 ± 0.08 cm) had no effect on the diversity of the 
microbiota, therefore these variables were not included in subsequent 
models for parsimony purposes. A second model restricted on data 
from the two first sampling events (i.e., in the wild and after 1 month 
ex-situ) (Figure  1A) was built to investigate short-term changes in 
diversity over the transition from the wild to captivity. It included 
species, time of sampling, and their interaction as fixed effects, and 
individual identity as a random intercept. Lastly, the effect of phase-
shifts on the microbiota was investigated using the full dataset, through 
a model including species, phase and their interaction as fixed effects. 
That model included individual identity, aquarium identity, as well as 
month of sampling as random effects. Estimates associated with the 
covariates in all models were deemed significant if associated with 
p-values below a 0.05 threshold. If interaction terms were not 
statistically significant, models were rebuilt without them (Beck and 
Bliwise, 2014).

All analyses were conducted in the R environment v.4.1.0 (R Core 
Team, 2022). Shared ASVs between species and phases were visualized 
using Venn diagrams created in the R package ggVennDiagram (Gao 
et al., 2021). Variation in beta diversity was visualized using Principal 
Coordinates Analyses (PCoA), built using the R package vegan 
(Oksanen et al., 2020). Other graphical representations were plotted 
using the R packages ggplot2 (Wickham, 2016) and ggpubr 
(Kassambara, 2019). All data and code are publicly available at Figshare 
repository.1

3. Results

3.1. Differences in microbiota structure 
between newt species in the wild

In both alpine and palmate newts, the skin microbiota of wild 
individuals was dominated by Proteobacteria, Verrucomicrobiota and 
Bacteroidota (Figure 2). The microbiota of palmate newts was more 
diverse (Shannon, F(1,34) = 5.42, p = 0.026) (Figure 3A), comprised more 

1 https://figshare.com/s/bcd8e0fe75f28c7c571b

ASVs (Supplementary Figure S1) and tended to be richer than that of 
alpine newts (Chao1, F(1,34) = 2.84, p = 0.101) (Figure  3B). It also 
comprised more Bd-inhibitory phylotypes (Figure  4; 
Supplementary Figure S1). In both species, Bd-inhibitory phylotypes 
belonged to Proteobacteria, Actinobacteriota, Bacteroidota or 
Firmicutes phyla (Figure 4). The alpha diversity of the microbiota of 
wild newts was not significantly determined by their sex (Chao1, 
F(1,34) = 0.34, p = 0.563; Shannon, F(1,34) = 0.12 p = 0.735), nor by their SVL 
(Chao1, F(1,34) = 0.16 p = 0.696; Shannon, F(1,34) = 0.87, p = 0.356).

In the wild, the beta diversity of skin bacterial communities differed 
between species (F(1,20) = 19.06, p < 0.001) and sexes (F(1,20) = 12.03, 
p < 0.001), which explained 29 and 18% of the variation in community 
structure, respectively (Supplementary Figure S2), but was not 
significantly affected by the SVL of the newts (F(1,20) = 0.95, p = 0.570). 
The compositional variance of microbiota did not significantly differ 
between species (F(1,36) = 0.75, p = 0.397) nor between sexes (F(1,36) = 0.16, 
p = 0.697). However, three ASVs, of which two Comamonadaceae and 
one Bacteroidales, had significantly greater relative abundance in 
palmate newts compared to alpine newts. One of these Comamonadaceae 
phylotypes has known Bd-inhibitory activity according to the Antifungal 
Isolates Database (Supplementary Table 1).

3.2. Effect of short-and long-term captivity 
on the skin microbiota

One month after their transfer into captivity, the alpha diversity of 
the newts’ skin microbiota had significantly decreased (Chao1, 
F(1,39) = 288.04, p < 0.001; Shannon, F(1,39) = 12.41, p = 0.001). Differences 
between newt species in evenness of their bacterial communities 
persisted (Shannon, F(1,39) = 5.20, p = 0.028) while their richness remained 
comparable (Chao1, F(1,38) = 3.66, p = 0.063) (Figure 3). The transfer into 
captivity also led to a 10-fold decrease in the total number of ASVs in 
both newt populations despite the acquisition of new taxa; after 1 month 
ex-situ, these new taxa outnumbered the ASVs retained from the wild 
microbiota (Supplementary Figure S3). The majority of these new 
bacteria in the microbiota of captive newts were absent from the water 
filling their aquaria, and most of the exogenous phylotypes introduced 
through this medium did not colonize their skin microbiota 
(Supplementary Figure S4A). More Bd-inhibitory phylotypes were lost 
than acquired during the transfer (ALP, 58 lost vs. 12 new; PAL, 74 lost 
vs. 8 new), with only 9 and 11 protective phylotypes retained in the 
populations of alpine and palmate newts after 1 month ex-situ, 
respectively (Supplementary Figure S3). Consequently, the species 
differences in relative abundance of Bd-inhibitory phylotypes observed 
in the wild (ALP, 1.4%; PAL, 10%) decreased in captivity (ALP, 3.4%; 
PAL, 4.0%) (Figure 4).

The beta diversity of the newts’ skin bacterial communities 
significantly changed after their transfer into captivity (F(1,36) = 22.66, 
p < 0.001), and was differentially affected by that transfer among newt 
species (F(1,36) = 3.19, p = 0.034). While 19% of the variation in 
community structure among samples from the wild and the first 
month in captivity was explained by this environmental change, 18% 
was still due to significant differences between species (F(1,36) = 21.53, 
p < 0.001) (Figure  5A). The structure of the microbiota was not 
significantly different between individuals (F(38,36) = 0.87, p = 0.770) 
and its compositional variance was homogenous across species 
(F(1,76) = 0.08, p = 0.776) and between wild and captive newts 
(F(1,76) = 0.81, p = 0.373). The transfer into captivity led to rapid 
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changes in the relative abundance of ASVs belonging to 12 and 13 
different bacterial phyla, in alpine and palmate newts, respectively. In 
both species, the relative abundance of Proteobacteria increased while 
the proportion of Bacteroidota and Verrucomicrobiota decreased 
(Figure 2). More specifically in alpine newts, 151 ASVs (of which 
eight Bd-inhibitory taxa) had a significantly greater relative 
abundance in wild individuals, while 44 (of which two Bd-inhibitory 
taxa) were more abundant after 1 month in captivity. In palmate 
newts, 218 phylotypes (of which 16 Bd-inhibitory taxa) had greater 
relative abundance in the wild, and 49 (of which three Bd-inhibitory 
taxa) were more abundant in captivity (Figure 6A). Overall, 117 of the 
decreasing ASVs and 20 of the increasing phylotypes were common 
to both species, and were similarly affected by this transition from the 

wild to captivity in this relatively short timeframe 
(Supplementary Tables S2, S3).

The comparison of samples from the wild and after 10 months of 
captivity revealed an even stronger effect of long-term captivity, with 
significant changes in the relative abundance of 189 and 269 ASVS, across 
12 and 14 phyla in the microbiota of alpine and palmate newts, 
respectively. Overall, 175 phylotypes decreased in abundance in the 
microbiota of alpine newts, while 14 increased. In palmate newts, 253 
phylotypes were significantly less abundant after 10 months in captivity, 
while 16 had increased in abundance. All of these increased phylotypes 
remain untested against Bd. Among ASVs that significantly decreased in 
abundance, 16 and 10 had known Bd-inhibitory activity in alpine and 
palmate newts, respectively (Figure 6B; Supplementary Tables S11, S12).

A

B

FIGURE 2

Mean relative abundance of the most frequent bacterial phylotypes in the skin microbiota of alpine (A) and palmate (B) newts, at the phylum level, across 
time of the experiment. Dominant phyla are identified in the legend. Environmental controls were sampled from the water filled in the aquaria (Water) and 
the pieces of cork (Cork) placed in the overwintering boxes.
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3.3. Influence of artificial aquatic and 
terrestrial phase-shifts on the microbiota of 
captive newts

Phase-shifts caused significant changes in the alpha diversity of 
microbial communities (Chao1, F(3,7) = 19.55, p < 0.001; Shannon, 
F(3,7) = 8.03, p = 0.011); it was generally high in the wild, decreased 
through captive aquatic phases, and increased during the overwintering 
(Figure 3). Overall, the diversity of the microbiota was not significantly 
different between host species (Chao1, F(1,18) = 0.52, p = 0.482; Shannon, 
F(1,23) = 1.04, p = 0.318). Microbiota were richer in wild individuals 
compared to any captive period (Supplementary Table S4), but their 
evenness was not uniformly affected by phase-shifts between the two 
species (Shannon, F(3,403) = 9.05, p < 0.001) (Supplementary Table S5).

The beta diversity of bacterial communities significantly differed 
between aquatic and terrestrial phases, with phase-shifts explaining over 
51% of the variation in community structure among samples 
(F(3,390) = 179.85, p < 0.001) (Figure 5B). Across the 10 months of captivity, 
the beta diversity of the newts’ microbiota also significantly differed 
between species (explaining 3.9% of the variation; F(1,390) = 41.43, 
p < 0.001), between individuals (F(38,390) = 1.32, p = 0.014), and was 
differentially affected by phase-shifts among species (F(3,390) = 9.70, 
p < 0.001). In both alpine and palmate newts, each phase was associated 
with distinct community structures (Supplementary Table S6) although 
Proteobacteria remained dominant throughout the 10 months of 
monitoring (Figure  2). Moreover, the interindividual variance in 
microbiota structure was not homogenous among phases and was 

significantly higher during the overwintering phase (F(3,432) = 10.90, 
p < 0.001). In both species, the initially large proportion of 
Verrucomicrobiota in samples from the first aquatic phase decreased 
suddenly over the transition to the overwintering period. Conversely, 
Bacteroidota rapidly increased in proportion, as well as Actinobacteriota 
and Patescibacteria after a longer latency. These two latter phyla were 
present in negligible abundance on the cork from the overwintering 
containers (Figure  2), and only seven of the new phylotypes that 
colonized the newts’ microbiota during the overwintering may have 
come from that material (Supplementary Figure S4B). More precisely, 
differential abundance analyses revealed that the transition from the first 
aquatic phase to the overwintering period was coupled with significant 
changes in the abundance of 193 ASVs across 13 bacterial phyla in 
alpine newts, and of 191 ASVs across 14 different bacterial phyla in 
palmate newts. In both species, the number of phylotypes that 
significantly increased and decreased in abundance over this phase shift 
was similar. However, twice as many Bd-inhibitory phylotypes increased 
than decreased in abundance over this shift (Figure  7A; 
Supplementary Tables 7–8), and overwintering was therefore associated 
with higher abundance of Bd-inhibitory ASVs in both species (Figure 4). 
During the transition from the overwintering to the second aquatic 
phase, 107 and 108 phylotypes significantly decreased in abundance, 
while 37 and 48 ASVs increased in abundance in alpine and palmate 
newts, respectively. Bd-inhibitory phylotypes were affected similarly, 
and therefore decreased in abundance over that phase-shift, although 
this transition was more marked in alpine than palmate newts (Figure 4). 
The same phyla as in the shift from the first aquatic phase to the 
overwintering phase were involved, with the exception of an ASV from 
the Nitrospirota phylum (Figure 7B; Supplementary Tables S9, S10).

A

B

FIGURE 3

Alpha diversity of the skin microbiota of alpine (blue) and palmate 
(green) newts, across time of the experiment, measured as Shannon 
(A) and Chao1 (B) indices. Box plots represent median (horizontal line), 
25th and 75th percentile (box), 5th and 95th percentile (whiskers). Dots 
show individual outlier values of alpha diversity. The bracket with the 
asterisk indicates a significant difference in diversity between wild 
species.

A

B

FIGURE 4

Mean relative abundance of phylotypes with known Bd-inhibitory 
activity (in color) in the skin microbiota of alpine (A) and palmate 
(B) newts, at the phylum level, across time of the experiment. 
Dominant phyla are identified in the legend. Phylotypes with no or with 
untested activity against the chytrid are in grey.
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4. Discussion

This study contributes to our understanding of the effect of 
conservation interventions on animal microbiota. To our knowledge, 
this is the first investigation of the long-term effect of a transfer from the 
wild to captivity, using standard husbandry protocols from survival 
assurance populations, on amphibian skin bacterial communities. Our 
results show that the richness and diversity of the skin microbiota 
rapidly decrease when amphibians are placed in captivity, and that 
artificially-induced seasonal habitat-shifts implemented as part of 
husbandry protocols elicit important turnover among their skin 
bacteria. Altogether, our findings suggest that ex-situ conservation 
might impair amphibian skin microbiota.

4.1. Species differences in microbial 
composition and susceptibility to disease

The dominant phyla identified within our samples are typically 
present in amphibian skin microbiota (Kueneman et al., 2014; Bletz 
et al., 2016; García-Sánchez et al., 2022). Despite being phylogenetically 
close (Zhang et al., 2008; Recuero et al., 2014) and inhabiting the same 
pond in the wild, alpine and palmate newts had distinct skin bacterial 
communities. Species-specific variation in microbiota composition is 
often reported in cohabiting amphibians (Kueneman et al., 2014; Walke 
et al., 2014) and the natural differences in community structure between 

species could explain their different susceptibility to skin diseases. 
Indeed, previous research suggests that palmate newts may be tolerant 
to Bd, while this pathogen can be lethal to alpine newts (Cheatsazan 
et  al., 2013; Miaud et  al., 2016). Our results show that in the wild, 
palmate newts had a larger number of different bacterial phylotypes, a 
higher alpha diversity, and a higher proportion of Bd-inhibitory bacteria 
than alpine newts. Moreover, two Comamonadaceae phylotypes were 
significantly more abundant in palmate newts; several isolates in this 
family inhibit Bd in-vitro (Walke et  al., 2015) and one of the ASVs 
identified here has known Bd-inhibitory activity (Woodhams et  al., 
2015). Differences in abundance of these phylotypes should be tested in 
other populations to confirm whether they explain the distinct 
susceptibilities of alpine and palmate newts to Bd.

4.2. Rapid reorganization of the newts’ 
microbiota following transfer into captivity

Despite initial differences in composition and diversity of their 
bacterial communities in the wild, both host species were similarly 
affected by their transfer into captivity. After only 1 month ex-situ, the 
newts had a different microbiota structure than in the wild. Studies 
comparing wild and captive-reared amphibians (Becker et al., 2014; 
Sabino-Pinto et al., 2016; Kueneman et al., 2016b) or other vertebrates 
(Dallas and Warne, 2022) similarly report distinct microbial 
communities between individuals living in-and ex-situ. The diversity of 
the microbiota of both alpine and palmate newts strongly decreased 
upon arrival in captivity, corroborating findings from shorter-term 
captivity studies (Bates et al., 2019) and comparisons of wild amphibians 
to conspecific individuals maintained ex-situ for several generations 
(Sabino-Pinto et  al., 2016; Passos et  al., 2018). Interestingly, the 
proportion of Bd-inhibitory phylotypes was not specifically affected by 
captivity and while a few new protective bacteria were acquired ex-situ, 
they did not become significantly abundant over the 10 months of 
captivity. Similar results were reported in red-backed salamanders, 
which conserve constant proportions of the symbiont Janthinobacterium 
lividum when transferred into captivity (Loudon et  al., 2014). 
Conversely, the proportion of Proteobacteria in the microbiota of the 
newts strongly increased after only 1 month in captivity. Elevated 
abundance of this ubiquitous bacterial phylum (Kersters et al., 2006) is 
reported in other studies comparing captive amphibians to wild 
conspecifics (Bataille et al., 2016; Bates et al., 2019).

Overall, little of the wild microbiota was retained through the transfer 
into captivity, and the microbial community of captive newts comprised a 
reduced number of different phylotypes than when they were in the wild. 
This corroborates findings that the microbiota of amphibians maintained 
in a biosecure collection for several generations was less rich than that of 
wild individuals (Passos et al., 2018). Interestingly, most phylotypes present 
in the microbiota of the newts after 1 month in captivity were new and of 
unknown origin, despite our biosecurity protocol. Although the water 
filling their aquaria may have introduced up to 83 exogenous bacteria, 
most phylotypes present in the water did not colonize their microbiota. 
Indeed, despite being largely assembled from environmental reservoirs of 
bacteria in the wild (Walke et al., 2014), the amphibian skin microbiota 
may not select for most microbes present ex-situ. This is supported by 
findings that the microbiota of African clawed frogs reared under standard 
and sterile husbandry protocols have similar diversity indices (Piccinni 
et al., 2021). However, it should be noted that swab-sampling of the water 
and cork as we  did is too restrictive to fully identify environmental 

A

B

FIGURE 5

PCoA representing the beta diversity (calculated as the weighted 
Unifrac distance) of the skin microbiota of alpine and palmate newts, 
sampled in the wild and after 1  month in captivity (A), and throughout 
all experimental phases (B). Each dot represents the diversity of a 
microbiota sample. The species of each newt is indicated by the hue of 
its datapoint, and the phase of sampling is indicated by the shape of 
the datapoint as well as the line-type of the ellipse.
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microbiota, so the comparison with the microbiota of the newts is 
indicative rather than comprehensive.

4.3. Restructuration of skin microbiota over 
artificially-induced habitat-shifts

Seasonal shifts in the structure of skin microbiota are reported in 
wild amphibians (Longo et al., 2015; Tong et al., 2020; Douglas et al., 
2021) but to our knowledge, they have never been explored under 
artificial settings ex-situ. We found that although alpine and palmate 
newts maintained distinguishable skin bacterial communities 
throughout the 10 months of monitoring, they were similarly affected by 
the transfer into captivity and the artificial phase-shifts. Their alpha 
diversity, which had strongly diminished upon arrival in captivity, 
significantly increased during overwintering. In the wild, this phase has 
been associated with various effects on the alpha diversity of skin 
microbiota depending on host species (Longo et al., 2015; Tong et al., 
2020; Douglas et al., 2021). Despite reestablishing similar levels of alpha 
diversity as in the wild, overwintering was associated with a very 
different microbial community structure and a much higher 
compositional variance than other phases. The segregation of microbiota 

structures was stronger between phases than it was between newt 
species, suggesting a similar and strong effect of artificial phase-shifts on 
the beta diversity of both species. Indeed, terrestrial and freshwater 
ecosystems, occupied during overwintering and active phases 
respectively, are generally associated with distinct microbial 
environments (Thompson et al., 2017). Moreover, seasonal variation in 
skin structure and feeding activity in amphibians can indirectly affect 
their microbiota, as diet (Antwis et al., 2014), sloughing (Meyer et al., 
2012) and skin morphology (Kueneman et  al., 2014) are known to 
influence their skin bacterial communities. Lastly, interactions among 
microbes also likely participated in shaping microbiota throughout 
phase-shifts, although this could not be further explored in this study.

Interestingly, while a few studies comparing different species in-and 
ex-situ have reported an among-individual uniformization of the 
microbiota in captivity (Becker et al., 2014; Hernández-Gómez et al., 2019; 
Edenborough et al., 2020), an individual signature in the structure of the 
microbiota persisted throughout phase-shifts in our experimental newts. 
Despite the significant decrease in alpha diversity and in abundance of 
many phylotypes over the 10 months of monitoring, the heterogeneity of 
bacterial communities between individuals was not reduced by captivity. 
Moreover, the variation in composition of the microbiota of captive newts 
was hardly influenced by exogenous bacteria in their ex-situ environment. 

A

B

FIGURE 6

Significant log2 fold changes in abundance of bacterial phylotypes in 
the skin microbiota of newts over their transfer from the wild into 
captivity on the short term (1  month) (A) and longer term (10  months) 
(B). Each phylotype is represented by a point whose position indicates 
the change in relative abundance throughout the transition, and whose 
shape characterizes the newt species in which it significantly varies in 
abundance. The color code indicates potential protective function of 
these phylotypes against Bd.

A

B

FIGURE 7

Significant log2 fold changes in abundance of bacterial phylotypes in 
the skin microbiota of captive newts over phase shifts from the first 
aquatic phase to the overwintering period (A) and from the 
overwintering period to the second aquatic phase (B). Each phylotype 
is represented by a point whose position indicates the change in 
relative abundance throughout the transition, and whose shape 
characterizes the newt species in which it significantly varies in 
abundance. The color code indicates potential protective function of 
these phylotypes against Bd.
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For example, only seven of the phylotypes acquired in the overwintering 
phase were common to the cork substrate filling their containers. Moreover, 
changes in the relative abundance of major phyla in the microbiota of the 
newts throughout phase-shifts revealed a strong selection for bacterial taxa 
associated with each phase. We observed an increase in proportion of 
Bacteroidota, Actinobacteriota and of antifungal ASVs during the 
overwintering terrestrial phase, which are also reported in wild individuals 
during this period of elevated prevalence of Bd (Tong et al., 2020; Douglas 
et al., 2021; Le Sage et al., 2021).

4.4. Preserving microbial communities to 
improve the ex-situ conservation of their 
hosts

Several authors encouraged the integration of microbiota to 
conservation plans developed for their hosts (Trevelline et al., 2019; 
West et  al., 2019; Carthey et  al., 2020), and this approach would 
be particularly relevant for amphibians given the essential role of their 
bacterial symbionts against emerging diseases (Vredenburg et al., 2011; 
Rebollar et al., 2020). Indeed, microbiota richness is associated with Bd 
inhibition (Piovia-Scott et  al., 2017), and generally, highly diverse 
microbiota seem beneficial to the health of their host (Longo et al., 2015; 
Bates et  al., 2018; Harrison et  al., 2019). Yet, our results show that 
current management strategies such as ex-situ conservation and artificial 
habitat-shifts alter amphibian skin bacterial communities, which could 
consequently be detrimental to their host and reduce the success of 
reintroduction efforts. Functional analyses and transcriptomics should 
now be implemented to characterize the implications of these shifts in 
microbiota structure for their amphibian hosts.

Although bioaugmentation with probiotics can successfully limit 
diversity loss in microbiota of captive animals (Bletz et al., 2013; Woodhams 
et al., 2016), this strategy does not perpetuate exact replica of natural 
bacterial communities, and thus cannot prevent the elimination of 
phylotypes associated with specific metabolic pathways, which could affect 
their host functional resilience or put them at higher risk of infection by 
pathogens if reintroduced in the wild (Dallas and Warne, 2022). 
“Rewilding” the microbiota of captive animals by placing them in outdoor 
mesocosms before reintroduction in the wild may be a more promising 
solution, but should be  investigated further (Kueneman et  al., 2022). 
Considering the accelerating decline rate of amphibians (McCallum, 2007), 
it is critical to integrate microbiota to amphibian applied conservation and 
to continue to develop methods to maintain wild microbiota in captivity. 
More generally, the effect of conservation approaches on the microbiota of 
endangered species should be closely investigated, as they can be considered 
as an overlooked form of anthropogenic disturbance.
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