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Microorganisms are closely related to skin diseases, and microbiological 
imbalances or invasions of exogenous pathogens can be a source of various skin 
diseases. The development and prognosis of such skin diseases are also closely 
related to the type and composition ratio of microorganisms present. Therefore, 
through detection of the characteristics and changes in microorganisms, the 
possibility for diagnosis and prediction of skin diseases can be markedly improved. 
The abundance of microorganisms and an understanding of the vast amount of 
biological information associated with these microorganisms has been a formidable 
task. However, with advances in large-scale sequencing, artificial intelligence (AI)-
related machine learning can serve as a means to analyze large-scales of data 
related to microorganisms along with determinations regarding the type and status 
of diseases. In this review, we describe some uses of this exciting, new emerging 
field. In specific, we described the recognition of fungi with convolutional neural 
networks (CNN), the combined application of microbial genome sequencing and 
machine learning and applications of AI in the diagnosis of skin diseases as related 
to the gut-skin axis.
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Introduction

A tremendous array of microorganisms widely exist in nature and the human body. In 
healthy humans various types of microorganisms and dominant microbiota are present within 
different parts of the body and a stable number and ratio of microorganisms are maintained 
through competition or synergy (Dominguez-Bello et al., 2019). With changes in the ratio 
between the dominant microbiota and individual microbiota, a microecological imbalance 
occurs, which can lead to specific skin diseases and, the characteristics of these changes are 
related to the progression of the disease. Due to the large number and variety of microorganisms, 
analyzes using previous techniques have been incapable of handling these data (Goodswen 
et al., 2021). However, with the  development of AI and machine learning related technologies, 
information based on  microbial image recognition or genomics data can be applied in many 
fields, including the identification of specific conditions for application in forensic science and 
clinical disease diagnosis. In this review, we provide a detailed introduction to the application 
of AI as based on microbial information for use in diagnosing skin diseases and predicting 
disease progression of these conditions.
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Recognition of fungi with 
convolutional neural networks

Convolutional Neural Network (CNN) is a special type of machine 
learning that can assimilate both isolated topographies as well as entire 
images and classify these images according to their unique features 
(Dildar et al., 2021). Dermatologists can also apply this method for 
disease diagnosis. For example, an image is annotated according to the 
corresponding medical records and pathological results and, after 
generating standardized data, these data can then be analyzed using 
CNN to distinguish and thus diagnose skin lesion images from that of 
normal skin images (Haenssle et al., 2018; Liopyris et al., 2022). This 
method is often used in the diagnosis of fungal infections, such as 
onychomycosis, as this condition represents the most common nail 
disease infected with fungi. The traditional clinical diagnosis for this 
condition is based on direct microscopy with potassium hydroxide 
(KOH), a periodic acid schiff stain (PAS) and/or a fungal culture. 
However, as colony formation requires an extended period of time and 
is susceptible to antifungal drugs, this diagnostic approach can 
be problematic (Gupta et al., 2020). The diagnosis of this condition, 
which involves the observation of a specific type of fungal morphology, 
is particularly suitable for that of CNN (Hogarty et al., 2020; Zhang 
et al., 2021).

The differences in diagnosing onychomycosis using CNN vs. 
manual microscopic examinations have been compared and analyzed. 
Results from one report found that the accuracy of CNN diagnosis was 
10% greater than that of traditional diagnostic methods (Yilmaz et al., 
2022). In that study, 60 nail samples from patients with onychomycosis  
and 297 nail samples from healthy controls were treated with KOH. Two 
different CNN  diagnostic performance models (VGG16 and 
InceptionV3) were developed. These two  models have different 
algorithms, but both accomplish the purpose of diagnosis by  extracting 
fungal-specific structures. As compared with that of the traditional 
clinical method, these two CNN models not only demonstrated a higher 
degree of accuracy, but also showed a better sensitivity (75.04% and 
74.93% vs. 74.81%) and specificity (92.67% and 93.78% vs. 74.25%). 
Similar findings were reported in another study with the specificity of 
diagnosis using VGG16 being 72.7% vs. 49.3% with the traditional 
clinical method, however, the sensitivity of CNN diagnosis was slightly 
lower at 70.2% vs. 73%, as determined in a group of 90 patients (Kim 
et al., 2020). In addition, CNN showed a greater degree of specificity in 
the diagnosis of onychomycosis as compared with conventional 
diagnostic methods using the periodic acid-Schiff reaction (PAS stain). 
As reported in a study with 199 cases, CNN showed an increased level 
of specificity (98% vs. 90.35%) and area under the receiver operating 
characteristic curve (AUC – 0.960 vs. 0.932) as compared to that 
obtained with three dermatopathologists (Decroos et  al., 2021). 
Moreover, CNN can also be used as a primary screening tool to assist 
manual microscopic examinations to greatly improve diagnostic 
accuracy. As the specificity and sensitivity of machine learning can 
be adjusted by changing the intersection over union (IOU) parameter, 
the specificity of machine learning can be increased by increasing IOU 
to ensure a higher true positive rate. Subsequently, the clinician can 
re-screen samples diagnosed as negative in hyphae with use of CNN to 
reduce the false negative rates. Such an approach not only improves 
detection efficiency and reduces expenses, but also increases diagnostic 
accuracy (Koo et al., 2021).

In addition to nails, fungal infections within other regions, such as 
the skin and hair, can also be diagnosed using CNN. However, due to 

the expansive areas involving skin and hair, the lesions are not 
concentrated. As a result, the low fungal content in an individual lesion 
hinders the recognition of mycelial characteristics by CNN, which can 
then decrease the diagnostic accuracy in these regions (Gao et al., 2021). 
One approach to alleviate the deficiency of CNN to extract effective 
information from small-scale data sets, is to combine the CNN model 
with the attention mechanism (AM) to build an IL-MCAM framework. 
IL-MCAM is based on attention mechanisms and interactive learning 
and can be applied to add misclassified images to the training sets using 
an interactive approach after the images have been classified with CNN 
to improve the classification ability of the CNN model. Although, to our 
knowledge, no reports are available using IL-MCAM to diagnose fungal 
skin diseases, a 99.77% correct diagnosis rate for colorectal cancer has 
been reported with this model (Chen et al., 2022a).

Combined application of microbial 
genome sequencing and machine 
learning

Machine learning can provide the means for identifying patterns in 
the sequencing data of a pathogen to generate a system for subdividing 
that pathogen. In this way, it can be used to determine which branch of 
the pathogen is infected to provide a basis for administration of the most 
appropriate medication. This method can be applied for the diagnosis 
of syphilis, as the internal structure of treponema is like that of bacteria 
with five genera, among which treponema is the pathogenic bacteria 
resulting in syphilis. In contrast, the clinical diagnosis of syphilis 
requires serological tests including TPPA and TPHA, which lack the 
ability to determine which branch of the pathogen is infecting the 
patient, thus precluding decisions regarding the most effective 
medication (Forrestel et al., 2020). One example of this approach has 
been applied to enable an advanced determination as to whether a 
patient was infected with drug-resistant spirochetes. Investigators 
collected and sequenced treponema pallidum from syphilis-infected 
patients in 8 countries and 6 continents and classified the spirochete 
branches using machine learning – maximum likelihood phylogeny 
method (ss14 and Nichols). It was found that the clades recognized by 
this model as Nichols C and Nichols B were consistent with resistance 
to azithromycin (Lieberman et al., 2021). This observation not only 
helped in clinically diagnosing the type of syphilis, as achieved using PC, 
but also provided a guide with regard to the initial administrations of 
medications to avoid use of ineffective antibiotics for patients infected 
with drug-resistant strains. While promising, these findings were based 
on a small sample size which lacked South Asian and South American 
populations, which raises an issue regarding the reliability and validity 
of these experimental results.

Machine learning can process 16S sequencing results to obtain 
information on differences in microbial species and composition ratios 
between patients and healthy individuals. Compared with traditional 
diagnostic methods, machine learning has the capacity to obtain 
additional information regarding body skin status and pathogen type. 
The 16S sequencing approach is a commonly used sequencing method 
to reveal species composition and evolution, mainly via its ability to 
detect partial fragments of microbial ribosomal DNA. This fragment 
includes 9 variable and 10 conserved regions, with the former 
determining relationships between species and the latter providing an 
understanding of differences between species. Diversity information of 
microorganisms in a sample can be  obtained by amplifying and 
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sequencing partial regions of the rRNA DNA sequence in the extracted 
sample (Abellan-Schneyder et al., 2021). As an example, males with an 
HPV infection may present with insidious symptoms, but their penile 
microbiota will change, with this change placing their sexual partners at 
risk for HPV infection (Onywera et al., 2020b). The V3-V4 hypervariable 
regions of the 16S rRNA gene from the penile skin microbiota of 238 
South African males were analyzed, and 6 distinct community state 
types (CSTs) were identified. With use of the machine learning – linear 
discriminant analysis effect size algorithm, differences in the abundance 
of microbial populations were observed as a function of different HPV 
infection subtypes. High-risk (HR)-HPV males had a significantly 
greater relative abundance of prevotella, dialister, peptoniphilus, and 
unclassified clostridiales and CST types 2–6, as compared with those not 
infected with HR-HPV. Males with a CST type dominated by 
corynebacterium were less likely to be infected with HR-HPV, but the 
opposite was true for women (Onywera et al., 2020a). While all HPVs 
are contagious, different types of HPV infection can lead to different 
diseases including genital warts, flat warts and even genital cancer. Due 
to its mode of transmission (contact transmission) and the potential for 
latent clinical symptoms following infection, HPV infections can readily 
affect the health of sexual partners, if no treatments and/or protection 
are undertaken. Therefore, 16S sequencing and machine learning 
represent important tools which can be used to predict, not only the 
HPV type, but even the type in their partner, which enables the 
possibility for an early detection and treatment.

In addition to being used in the diagnosis of HPV infection, 16S 
sequencing has also been used in evaluating skin status and generating 
probabilities for the prediction of skin diseases. In one study, 1,200 
microbial samples were obtained from the legs of Canadian women aged 
21–65 and subjected to 16S rRNA sequencing. Combined with skin 
hydration status (including PH value and conductance capacitance), 
three machine learning methods – random forest (RF), XGBoost, and 
LightGBM were used to analyze these samples. In addition, samples 
from the legs of 278 British women were also obtained for analysis using 
machine learning. The results from this study revealed that skin 
moisture levels were higher and a better skin condition was observed as 
a function of increased levels of lactobacilli. With an abundance of 
Bergeyella, the skin was dehydrated and the probability for dermatitis 
was relatively high (Carrieri et al., 2021).

Metagenomics, which differs from that of 16S sequencing, directly 
extracts DNA from all microorganisms of environmental samples, with 
the detection object including all microbial genomes, due to its more 
prolific genome database (Gu et al., 2019). The diagnosis of acne can 
be performed by analyzing the metagenomic sequencing data of acne 
using machine learning methods. Acne, which is associated with 
adipogenic fibroblasts, genetic factors and skin and intestinal microbiota, 
is one of the most common skin diseases worldwide (Mitchell et al., 
2022; Sánchez-Pellicer et  al., 2022). As it remains unclear whether 
changes in skin microbiota play an indicative role in acne, diseased skin 
(DS) and healthy skin (HS) samples from 35 acne patients and 35 
normal control (NC) skin samples were collected for analysis. Through 
metagenomics analysis, 2,520 sequence data points from each volunteer 
were selected. Using machine learning – principal component analysis 
(PCA) and kernel principal component analysis (KPCA) methods, the 
corresponding lipids that largely contributed to the status of each type 
of skin were identified. Using a multiset canonical correlation analysis 
(MCCA) method, lipids which can effectively differentiate among the 
three different skin states were revealed, with the results that lipid No. 
1240 can distinguish a DS sample set, lipids No. 608 and 2334 can 

distinguish a HS sample set and a decrease in lipids No. 95, 1069, and 
1108 indicates an improvement in the disease. Accordingly, the results 
of this study have significant implications with regard to the diagnosis 
of acne (Wang et al., 2021).

AI and skin diseases as related to 
the gut-skin axis

Gut microbiota play an important role in maintaining human 
health. The host and microbiota maintain a state of homeostasis within 
the body through subtle interactions, with disruptions in this balance 
affecting the entire organism, even within organs far removed from the 
gut, such as the integumentary system (De Pessemier et al., 2021). In 
fact, increasing evidence has accrued which indicates that many skin 
diseases are accompanied by alterations in the gut microbiome (e.g., 
atopic dermatitis, psoriasis, vitiligo, and acne vulgaris; Szántó et al., 
2019). Such findings have led to development of the gut-skin axis 
concept. That is, when the relationship between gut microbes and the 
immune system is compromised, subsequent effects on the skin can 
be triggered and even develop into skin diseases. Therefore, skin diseases 
may be diagnosed through the detection of gut microbes (Mahmud 
et al., 2022).

Results from previous studies have shown that microbes on the skin 
surface are highly related to the occurrence and development of vitiligo, 
and the progression of this disease can be  estimated by observing 
changes in skin microbes. For example, increased levels of streptomycin 
and streptococci are observed in active vs. stable vitiligo as detected by 
the Novaseq sequencer; and differences in Beta diversity (Non-Metric 
Multi-Dimensional Scaling) are present between patients with active vs. 
stable vitiligo (Lu et  al., 2021). While the composition of gut 
microbiomes remains stable from infancy, skin surface microbes are 
susceptible to environmental influences. Only in the presence of vitiligo 
does the proportion of microorganisms in gut microbes change as a 
function of disease progression. When gut microbes of 30 patients with 
vitiligo were compared with that of 30 matched healthy controls, results 
from the 16S rRNA sequencing assay revealed that the Shannon and 
Simpson index was higher and the ratio of Bacteroides/Firmicutes 
decreased in vitiligo patients (Ni et  al., 2020). The alpha-diversity 
(a measure of richness and uniformity) in patients experiencing vitiligo 
for >5 years was greater than that of patients experiencing a shorter 
interval of illness. Finally, when combining machine learning with assay 
results indicating the presence of Corynebacterium 1 and Psychrobacter, 
a diagnosis of vitiligo with an accuracy rate of 0.929 was obtained. These 
data suggest that gut microbiota can not only be used to distinguish 
vitiligo in patients vs. healthy individuals, but can also provide a 
determination for the duration of this disease.

Atopic dermatitis (AD) is a chronic inflammatory disease that may 
result from a complex interaction among genetic predisposition, 
immune dysfunction, environmental allergens and skin barrier 
abnormalities. Interestingly, results from previous studies have suggested 
that AD patients show abnormal gut microbiomes prior to the onset of 
this disease. Infants (2 months of age) whose fecal calprotectin was 
greater than normal showed an increased risk of developing AD at 
6 years of age (Lunjani et al., 2018). In addition, these children had 
increased E. coli, fewer bifidobacteria, bacteroides and lower levels of 
alpha-diversity (Arboleya et  al., 2016). Such findings indicate the 
importance of intestinal microbial changes in the diagnosis of AD as can 
be determined using machine learning (Jiang et al., 2022). In that study, 
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data from intestinal epithelial cell transcriptomes and flora were 
collected from 88 AD patients and 73 healthy controls (the average age 
of the healthy group was 3 months younger than that of the AD group) 
and the supervised machine learning pipeline—Logistic Regression 
(LR), Support Vector Machine (SVM), and Random Forest Classifier 
(RFC) were constructed as based on 44,608 gene expression probes and 
366 species of microorganisms in transcriptome and microbial 
databases. Fifty microbial characteristic maps as related to AD were 
screened, including akkermanisia, verrucomicrobia, propionibacterium, 
and those with the highest F1 scores (high precision 0.70 and recall 
0.88), could then be used as AD predictors (Jiang et al., 2022). Finally, 
results from a literature review have verified that these microbial 
characteristics are highly correlated with AD, and therefore cannot only 
be used to predict AD but even distinguish among disease subtypes.

Discussion

The human microbiome is closely related to skin diseases. Accordingly, 
an understanding of the microbial community composition, structure, 
function and its changes within the skin can serve as critical indices for the 
diagnosis of skin diseases. With this method,  different machine learning 
models can be used to analyze changes in the abundance, type, and 
composition ratio of microorganisms in different aspects of the disease state 
versus  that of healthy people, which can then enhance the accuracy of 
diagnosing skin diseases.  Moreover, as compared with that of traditional 
methods, this procedure can also serve to  predict the occurrence and 
progression of diseases.

As this new technology currently resides in developmental stages, 
many limitations remain. For example, sequencing data have low rates 
of representation and insignificant  features as well as easy under-
segmentation caused by the image characteristic which can  result in a 
reduction in the accuracy of conclusions derived with this technique 
(Zhang et  al., 2022). In addition, it is difficult for CNN to identify spores 
and hyphae with varying  degrees of linear curvature and the relatively 
low resolution of pathological images can make it difficult for AI to 
distinguish between serum particles and fungal elements in the images. 
However, this reduction in accuracy resulting from low-resolution 
images can be  resolved by altering the method used for image 
generation, such as using whole slide imaging (WSI) or through 

application of visual transformer models to obtain more stable results 
(Chen et al., 2022b; Li et al., 2022). The development of 269 AI has 
accelerated the progress of research in the study of microorganisms. In 
addition to the capacity for  disease diagnosis and prediction as 
described in this report, AI’s automatic identification  of microbial 
genomes can also be applied for forensic identification of deceased  
individuals and thus offers the potential to assist forensic investigators 
in resolving  medical disputes. While combining AI with microbes 
remains a challenge, this  technology holds great promise for applications 
in the fields of medicine and forensics.
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