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Hydrocarbon spills in cold climates are a prominent and enduring form of 
anthropogenic contamination. Bioremediation is one of a suite of remediation tools 
that has emerged as a cost-effective strategy for transforming these contaminants 
in soil, ideally into less harmful products. However, little is understood about the 
molecular mechanisms driving these complex, microbially mediated processes. 
The emergence of −omic technologies has led to a revolution within the sphere 
of environmental microbiology allowing for the identification and study of so 
called ‘unculturable’ organisms. In the last decade, −omic technologies have 
emerged as a powerful tool in filling this gap in our knowledge on the interactions 
between these organisms and their environment in vivo. Here, we  utilize the 
text mining software Vosviewer to process meta-data and visualize key trends 
relating to cold climate bioremediation projects. The results of text mining of the 
literature revealed a shift over time from optimizing bioremediation experiments 
on the macro/community level to, in more recent years focusing on individual 
organisms of interest, interactions within the microbiome and the investigation 
of novel metabolic degradation pathways. This shift in research focus was made 
possible in large part by the rise of omics studies allowing research to focus 
not only what organisms/metabolic pathways are present but those which are 
functional. However, all is not harmonious, as the development of downstream 
analytical methods and associated processing tools have outpaced sample 
preparation methods, especially when dealing with the unique challenges posed 
when analyzing soil-based samples.
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1. Introduction

Petroleum Hydrocarbon (HC) contamination is a common, extensive and pervasive 
anthropogenic contaminant in the Arctic and Antarctic (Whyte et al., 1999; Errington et al., 
2018). Incidence of HC spills in these environments is correlated with increased human activities 
such as tourism, scientific exploration and exploitation of natural resources, often resulting from 
accidental spills or past mismanagement of waste (Mohn et al., 2001; Bennett et al., 2015; 
Camenzuli and Freidman, 2015). In Antarctica, terrestrial spills are often localized to permanent 
Antarctic bases and range from small localized spills at re-fueling sites through to larger spill 
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incidents from storage tanks which can affect hundreds of square 
meters up to a few square kilometers of soil (Tin et al., 2009; Jesus 
et al., 2015). In the Arctic an estimated 42% of structures built upon 
permafrost are at risk due to permafrost thawing (Ramage et  al., 
2021), the implications of this within the context of hydrocarbon spills 
can be seen in events such as the 2020 collapse of a diesel storage tank 
due to melting permafrost, which released 21,000 tonnes of diesel into 
surrounding waterways including the Ambarnaya river (Glanville 
et al., 2020). Given the enormity of legacy and likely future spills, 
particularly in the Arctic with permafrost vulnerable infrastructure 
(Glanville et  al., 2020; Ramage et  al., 2021), the requirement to 
mitigate environmental damage through remediation and clean-up 
is vital.

Unlike in more temperate climates where natural attenuation of 
hydrocarbon spills is more rapid, terrestrial hydrocarbon spills in cold 
climates can persist in the environment for decades (Revill et  al., 
2007). While the toxicity of hydrocarbon pollutants has been shown 
to decline with age, ecotoxicology tests have demonstrated that 
contaminants from Antarctic diesel can impact the health of 
invertebrates even after extended aging (Brown et al., 2016, 2023). The 
persistence and toxicity of hydrocarbons as a pollutant in otherwise 
relatively remote and pristine locations makes the remediation of 
these contaminants a matter of import, for continued social licence to 
conduct scientific and other endeavors in these unique environments. 
The most common and effective method applied in cold regions 
utilizes endemic microorganisms in a process known as 
bioremediation (Whyte et al., 1999; Mohn et al., 2001; Josie et al., 
2014; Camenzuli and Freidman, 2015; van Dorst et  al., 2021). 
Bioremediation projects vary in sophistication and labor costs on a 
spectrum, from natural attenuation (effectively ‘sit back’ and monitor), 
to in situ treatment, or excavation and treatment of the soil in 
landfarms or engineered biopiles, in which heat, water availability, 
nutrient content and microbial composition can be monitored and 
controlled (Ruberto et al., 2003; Bento et al., 2005; Kauppi et al., 2011; 
Gutiérrez et al., 2020; Johnsen et al., 2021; van Dorst et al., 2021).

On site bioremediation can have lower economic and 
environmental costs compared to offsite disposal or treatment. This 
has made bioremediation an attractive option for the clean-up of 
hydrocarbon spills in cold climates (Ruberto et al., 2003; Martínez 
Álvarez et  al., 2015; Errington et  al., 2018). However, cold desert 
climates such as in the Arctic and Antarctic also pose unique 
challenges in the bioremediation of hydrocarbons. The extreme low 
temperatures and short summers reduce the volatization and 
bioavailability of hydrocarbons in the soil (Pawar, 2012; Gomez and 
Sartaj, 2013; Cipullo et al., 2019). In addition to cold temperatures, 
essential resources such as nitrogen, phosphorus and water are scarce, 
all resulting in a comparatively low microbial load and activity. 
Relative to temperate environments and controlled laboratory 
conditions, natural attenuation rates are negligible under these harsh 
conditions (Pawar, 2012; Gomez and Sartaj, 2013; Josie et al., 2014; 
Cipullo et al., 2019).

Omic technologies have emerged as powerful tools in untangling 
how native microbes respond to these unique challenges, as well as 
how they respond to rapid changes brought about by bioremediation 
processes themselves (Gupta et al., 2020; Josie et al., 2014; Ramírez-
Fernández et  al., 2021; Zhang et  al., 2022). Antarctic soils are 
dominated by microbial communities, making up the majority of local 
genetic diversity and driving major geochemical cycles (Ruberto et al., 

2009; van Dorst et al., 2021). Technologies such as 16S community 
profiling, metagenomics, proteomics and transcriptomics enable 
researchers to monitor the composition and function of microbial 
communities both in their natural state as well as once impacted by 
change (Eckford et al., 2002; Han, 2013; Magalhães et al., 2014; Simas 
et  al., 2015). Given the objective of bioremediation projects is to 
reduce environmental harm, by removing contaminants like 
hydrocarbons (HC) from the soil without causing further damage and 
disruption, understanding the metabolic pathways responsible for HC 
degradation as well as other key nutrient cycling pathways is crucial 
in developing effective bioremediation strategies (Josie et al., 2014; 
Gupta et  al., 2020; Ramírez-Fernández et  al., 2021; Zhang 
E. et al., 2021).

2. Methods

The corpus used for this study was generated with Scopus search 
using the keywords ‘bioremediation AND (Antarctica OR ARCTIC 
OR COLD) AND hydrocarbons’ which yielded 104 research articles. 
After omitting articles related to heavy metals and other xenobiotics, 
71 articles were selected. Three additional searches were conducted in 
which the term Antarctica was replaced with ‘genomic’, ‘proteomic’ or 
‘transcriptomic’. The search period was restricted to 2002 and 2022. 
The articles were filtered for relevance with articles focusing on heavy 
metals and other xenobiotics omitted as well as review articles. In 
total, 117 articles were added to a Mendeley library before importing 
to VOSviewer version 1.6.17 (van Eck and Waltman, 2011).

3. Text mining

Academic papers are being produced at an unprecedented rate, 
with annually published research articles increasing exponentially 
(Fire and Guestrin, 2019). Currently, most of this information is in the 
form of written paragraphs otherwise known as unstructured data 
(Bajocco et al., 2019). Unstructured data while convenient for the 
reader, is often incompatible with current statistical and analytical 
methods, making unbiased and accurate assessment of trends within 
the literature difficult (Rao, 2003). The sheer volume of available 
information limits the capacity of human researchers to sift through 
the literature in a timely and accurate manner. To solve this emerging 
issue a variety of software capable of automatic categorization and 
information extraction of text data have emerged (Ganino et al., 2018; 
S. H. H. Shah et al., 2020). These processes commonly result in a form 
of text analysis known as text mining, with the text broken up or 
‘tokenised’ to uncover the prevalence of key terms or phrases (Bajocco 
et al., 2019; Parkavi et al., 2020; Wong et al., 2021). Here, we aim to 
utilize text mining to uncover trends in bioremediation research, 
particularly related to the utilization of ‘omic’ technologies within 
this field.

Figure 1 displays a shift in bioremediation research from 2002 to 
2022, during this time the most popular lines of inquiry shifted from 
a broader macroscopic level approach represented by blue and green 
network links to highly specific molecular scale approaches 
represented in yellow. Demonstrated by the shift in research focus 
from bioremediation and biostimulation in field and microcosm 
experiments, dealing with temperature, water and nutrient 
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amendment, to sophisticated ‘omic’ studies investigating novel 
metabolic pathways and functional genes associated with 
biodegradation (Delille et al., 2004; Bento et al., 2005; Dias et al., 2015; 
Kai et al., 2020; Wang et al., 2021). The most prominent terms with an 
average publication year between 2010 and 2012 were biostimulation 
and bioaugmentation. In contrast, 2013–2018 focused on microbial 
community composition, and the function and production of 
metabolites of interest, such as biosurfactants. Of the commonly 
mentioned genera, Rhodococcus garnered more attention in recent 
years with emerging studies using metagenomics to study metabolic 
pathways. In Figure 1 the literature visualization tool VosViewer was 
utilized to provide an overview of the trends within bioremediation 
research over the past 20 years. There are multiple benefits to text 
mining approaches, the first being one of time saving time, as it 
provides the user with the ability to generate a visual summary of 
hundreds of publications instantly. The side by side comparison of 
decades of research may provide the stimulus for revisiting techniques 
that have fallen out of focus, such as bioaugmentation, in an attempt 
to explain the molecular mechanisms causing introduced bacteria to 
have limited success in field scale bioaugmentation studies (Bento 
et al., 2005; Stallwood et al., 2005; Ruberto et al., 2009, 2010; Kauppi 
et al., 2011; Watahiki et al., 2019).

4. Omic tools in bioremediation 
research

Prior to the emergence of ‘omic’ approaches the study of 
microbial diversity and function was limited to those organisms that 
were culturable (Aislabie et al., 1998; Jamal and Penninckx, 1999; 
Whyte et al., 1999). Consequently, a large portion of the microbial 

population in any given sample was ignored (Paul, 2022). Culture 
independent technologies such as amplicon sequencing, 
metagenomics, transcriptomics and proteomics have become 
ubiquitous in modern microbiology for their ability to produce 
accurate, high throughput data on microbial taxonomy, function and 
phylogeny (Gupta et al., 2020; Paul, 2022). The presence of ‘omic’ 
tools within the sphere of bioremediation in all climates is 
summarized in Table 1. While the bulk of the studies incorporating 
‘omics’ were not focused on cold climates specifically, the summary 
demonstrates the potential impact of these technologies in assessing 
the function and composition of the local microbiome as a means of 
assessing soil health. Of the above mentioned ‘omic’ technologies, 16S 
rRNA amplicon sequencing has cemented its place as the workhorse 
of microbiology research (Evans et  al., 2004; Païssé et  al., 2010; 
Kauppi et al., 2011; Zhang and Lo, 2015; Koshlaf et al., 2019; van 
Dorst et al., 2021).

16S amplicon sequencing involves the amplification and parallel 
sequencing of the highly conserved 16S small sub-unit ribosomal 
RNA gene to differentiate organisms based on taxonomy (von 
Wintzingerode et al., 2002). This technology is commonly leveraged 
within bioremediation studies to monitor the diversity of the microbial 
communities as well as the shifts in community structure that occur 
as bioremediation progresses (Païssé et al., 2010; Ruberto et al., 2010; 
Kauppi et al., 2011; van Dorst et al., 2020, 2021). The relative low costs 
and well established downstream bioinformatic processes associated 
with 16S amplicon sequencing coupled with its utility lend to its 
current ubiquity within environmental and medical microbiology 
fields (Baraniecki et al., 2002; Wong et al., 2021). This technology is 
limited in that it does not provide direct insight into organism 
function, other than what is already known about the microbes that 
are identified (Gupta et al., 2020).

FIGURE 1

Visual network analysis of keyword frequency overlayed by average publication date.
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Statistical approaches, such as linear discriminant analysis (LDA) 
effect size (LEfSe) can fill this gap by enabling researchers to assign 
specific taxa as biomarkers for desirable conditions within a 
bioremediation project (Xue et al., 2020; Sui et al., 2023). One potential 
use for this form of analysis is in testing potential nutrient amendments 
for desirable bacterial responses while only comparing 16S data to 
various experimental conditions (Xue et al., 2020; Sui et al., 2023). 
Crocker et al. (2019) utilized LefSe analysis of 16S data obtained from 
sub-Arctic soils to identify the organisms that had the greatest 
response to chitin supplementation within the context of degrading 
hexahydro-1,3,5-trinitro-1,3,5-triazine and 2,4-dinitrotoluene. The 
findings indicated a rapid increase in hydrocarbon degradation by 
bacteria and fungi in the families Cellulomonadaceae and 
Mortierellaceae when supplemented with biochar (Crocker 
et al., 2019).

Furthermore, as microbial genomes become better annotated and 
functional genes within taxa identified, analytical methods, such as 
functional annotation of prokaryotic taxa (FAPROTAX) for estimating 
the functional capacity of a microbiome have been developed 
(Sansupa et al., 2021; Hou et al., 2023). In the bioremediation space, it 

is common to manually track the abundance of known HC degraders 
in order to make an inference on whether biostimulation protocols are 
favorable to these organisms (Gesheva et al., 2010; Gutiérrez et al., 
2020; Habib et al., 2020; S. Kumar et al., 2020; L. A. M. Ruberto et al., 
2005; Tribelli et al., 2018). Tools such as FAPROTAX provide evidence 
for this practice by assigning functional capabilities to all taxa in the 
sample. For example, this technology has been applied on 16 s and 
functional data during electrobioremediation of oil field soils to 
demonstrate if the diversity and abundance of organisms harboring 
hydrocarbon degrading genes was greater in biochar supplemented 
soils (Rushimisha et al., 2023). But, limitations with the application of 
this analytical method stem from the FAPROTAX database being 
created from cultured representatives for marine and freshwater 
samples (Jung et al., 2021). In this case, metabolic functions attributed 
to the aquatic cultured bacteria used to build the FAPROTAX database 
may not have be represented by species of the same taxa present in a 
hydrocarbon contaminated soil. Additionally, the database is built 
entirely from cultured organisms and as a result it cannot be used to 
identify functional genes residing within the so called ‘microbial dark 
matter’ (Sansupa et al., 2021). The creating of additional databases that 

TABLE 1 Overview of utilization of omic technologies in bioremediation research.

Technology Benefits Disadvantages Use in context Reference

16S amplicon sequencing Cheap

Well established 

bioinformatic pipelines

Can relatively quickly 

generate high throughput 

data

Provides insight on 

microbial diversity and 

abundance

Does not provide insight into 

microbiome activity

Provides qualitative and 

quantitative taxonomic data.

Identified the loss of diversity 

associated with some 

biostimulation protocols and 

HC contamination.

von Wintzingerode et al. 

(2002), Païssé et al. (2010), 

Ruberto et al. (2010), Kauppi 

et al. (2011), and van Dorst 

et al. (2020)

Metagenomics Can be used to generate 

metagenome assembled 

genomes (MAGS)

Provides insight into 

taxonomy and functional 

genes

More expensive

More challenging from a 

bioinformatic standpoint

Construction of MAGS, access 

to functional genes allows for 

the prediction of metabolic 

pathways within a microbial 

consortium.

Khomenkov et al. (2008), 

Zhang et al. (2019), Dell’Anno 

et al. (2021), van Dorst et al. 

(2021), and Gao et al. (2021)

Transcriptomics Provides information on 

microbiome activity

Target RNA sequences can 

be amplified

RNA is delicate and requires precise 

handling

Many post transcriptional changes 

can take place meaning 

transcriptomic data is not directly 

correlative with function/protein 

synthesis

Used to determined gene 

expression independent of 

population size. Used to 

demonstrate upregulation of 

genes associated with 

biodegradation in 

Novosphinobium while it 

remained in a non-growing 

state.

Fida et al. (2017) and Lamas 

et al. (2019)

Proteomics Most accurate measure of 

organism function

Proteins are quite stable 

therefore loss of data less 

likely in sample transport 

and storage

Proteins arn’t amplifiable meaning 

getting large enough sample 

volumes in sparse soil can 

be challenging.

Proteomic data used in the 

design of synthetic microbial 

consortiums for phenanthrene 

degradation.

Potential negative impacts on 

cell wall lipoproteins and 

extracellular proteins caused 

by nutrient and artificial 

surfactant addition

Zhao and Poh (2008), Macchi 

et al. (2021), and Zhang et al. 

(2022)
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not only represent cultured aquatic samples but also cultured and 
uncultured annotated genomes of soil micro-organisms would go a 
long way in improving this technology (Sansupa et al., 2021; Leite 
et al., 2022).

Amplicon sequencing has been applied both at the field and 
laboratory scale in bioremediation processes, with prior taxonomic 
screening of a community a critical first step toward developing site-
specific bioremediation strategies (Ruberto et al., 2003; van Dorst 
et  al., 2020). It was through 16S sequencing approaches that a 
significant loss in microbial diversity was observed in both the initial 
hydrocarbon contamination stage as well as with many forms of 
biostimulation (Evans et al., 2004; Silva-Castro et al., 2013; van Dorst 
et al., 2020), with the notable exception of biostimulation strategies 
that rely heavily on bulking agents such as pea-straw (Josie et al., 2014; 
Koshlaf et al., 2019). As demonstrated by van Dorst et al. (2014), the 
typically taxonomically heterologous Macquarie Island soils 
experience a significant taxonomic and functional shift when 
contaminated with 1,000 mg/kg total petroleum hydrocarbons (TPH), 
characterized by a loss of oligotrophs and ammonium oxidizers and 
instead heavily favoring known HC degrading microorganisms. These 
results provided evidence for a predictable site-specific shift in 
taxonomy and function when soils experience HC toxicity that was 
then used for monitoring field sites during active bioremediation (van 
Dorst et al., 2020). Monitoring community structure has played a 
major role in influencing our understanding of another popular 
bioremediation approach called bioaugmentation, the introduction of 
a mixed or pure culture of known hydrocarbon degraders to a 
contaminated site (Gomez and Sartaj, 2013). Bioaugmentation has 
produced promising results in lab scale studies, slightly outperforming 
biostimulation alone (Bento et al., 2005; Gomez and Sartaj, 2013). 
However, monitoring foreign strains after introduction into a 
microbial community has shown that in many cases the introduced 
consortium often fail to persist in field-scale studies, reducing its 
likelihood of having a significant positive impact on hydrocarbon 
degradation (Bento et al., 2005; Kauppi et al., 2011; Gomez and Sartaj, 
2013), with Watahiki et al. (2019) reporting significant reductions of 
R. jostii in the population 6 days post-inoculation.

Targeted next generation amplicon sequencing allows for a single 
gene or panel of genes to be sequenced from a sample, it is the next 
‘step up’ from 16S amplicon sequencing in the context of functional 
analysis of soil allowing for greater specificity and accuracy. For 
example by targeting known hydocarbon degrading genes such as 
alkB in addition to other functional genes of interest (Bewicke-Copley 
et al., 2019; Sansupa et al., 2021). Targeted amplicon sequencing of 
functional genes has been used to investigate the relationship between 
environmental conditions and genes linked with geochemical cycling. 
Certain genes can act as markers for specific groups of organisms and 
provide information beyond their primary function, for example by 
monitoring the abundance of NifH genes in a hydrocarbon 
contaminated site researchers can determine the degree of toxicity 
caused by HCs as nitrifiers are known to be particularly susceptible to 
hydrocarbon toxicity (Pudasaini et al., 2019). While the introduction 
of bioavailable nitrogen to a soil system whether the source be from 
penguin guano or biostimulation protocols has been affiliated with an 
increase in de-nitrifying genes, such as NirS, NirK, and NosZ (Jung 
et al., 2011; Ramírez-Fernández et al., 2021; van Dorst et al., 2021). 
However, increased abundance of a functional gene is not always an 
accurate indicator of metabolites being produced by an organism, for 

example penguin guano impacted soils are commonly associated with 
high levels of NO2 emission (Zhu et al., 2013; Wang et al., 2019). This 
is despite a high abundance of NosZ genes associated with these soils - 
which is responsible for reducing NO2 to nitrogen gas (Ramírez-
Fernández et  al., 2021). Some possible explanations for such a 
discrepancy are the target gene not being expressed or uneven reaction 
kinetics. While limited in its capacity to predict microbiome function, 
targeted sequencing of functional genes within the context of 
bioremediation has provided a rapid and cost-effective method of 
monitoring abundance of key functional genes, during and after 
bioremediation strategies have been implemented (Mills et al., 2003; 
Li and Yan, 2021).

Non-sequencing-based approaches such as quantitative PCR 
(qPCR) have emerged as a method for quantifying genes of interest, 
with the benefits of reduced financial and time cost than sequencing 
techniques (Lasa et al., 2019; Li and Yan, 2021). The trade-off for these 
conveniences is less discovery power with a smaller array of genes 
being searched for in a single run (Lasa et al., 2019; Li and Yan, 2021). 
Metagenomics involves the fragmentation and sequencing the entirety 
of the genetic material in a sample (Albertsen et al., 2013; Meziti et al., 
2021). From this pool of data, metagenome assembled genomes or 
MAGs can be  created. The assemblage of draft genomes from 
metagenomic data removes the need to isolate an organism in culture 
before sequencing its genome. Instead, whole genomes can 
be  assembled directly from environmental samples, this reduced 
reliance on culturing has saved countless hours of labor as well as 
generating draft genomes of organisms for which are yet to be isolated 
and exist as microbial dark matter (Albertsen et al., 2013; Meziti et al., 
2019, 2021). The generation of MAGs from metagenomes received 
some early criticism due to loss of accuracy from potential 
contamination of reads, mis-binning and potential lack of read depth 
and coverage (Chen et al., 2020; Waschulin et al., 2022). However, 
these issues have not outweighed the primary benefit of bypassing the 
requirement of culturing pure isolates prior to conducting molecular 
studies on microorganisms, to the extent that generation of MAGs has 
begun to out-pace isolate derived genomes (Bowers et al., 2017).

Metagenomic techniques are gaining prominence for being the 
‘omic’ one stop shop. Metagenomic data can provide information on 
taxonomic diversity, functional potential of the microbiome and 
MAGs, but importantly not information regarding gene expression 
(Bao et al., 2017; Zhang et al., 2019; Dell’Anno et al., 2021). Within the 
context of bioremediation, it is rare to find an individual organism 
capable of degrading a xenobiotic to its terminal point, rather it is far 
more likely that a composite metabolic pathway is formed between 
several synergistic microorganisms (Khomenkov et al., 2008; Zhang 
et al., 2019; Gao et al., 2021). Metagenomic screening of soils and 
sediments is a popular method for determining the suite of organisms 
and specific functional genes that contribute to a metabolic pathway 
(Khomenkov et al., 2008; Zhang et al., 2019; Gao et al., 2021; Baek 
et al., 2022; Semenova et al., 2022). Gao et al. (2021) applied this 
technology to the bioremediation of hydrocarbons with the 
comparison of the metabolic pathways - Nitrogen and Hydrocarbon 
within a target soil, finding glutamine and glutamate synthase to be a 
key enzymes in the nitrogen cycles of HC degraders. In this instance, 
this new information was validated in practice as ammonium was 
shown to be the most efficient nitrogen supplement. Metagenomic 
analysis of soils, via prediction of metabolic pathways has the potential 
to inform researchers and project managers on optimal nutrient 

https://doi.org/10.3389/fmicb.2023.1113102
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Abdullah et al. 10.3389/fmicb.2023.1113102

Frontiers in Microbiology 06 frontiersin.org

amendment. Metagenomic also offers the ability to identify 
bottlenecks or missing elements to a HC degradation pathway and 
inferring tentative predictions of metabolites that could be formed 
during these processes (Khomenkov et al., 2008; Zhang and Lo, 2015; 
Zhang et  al., 2019; Gao et  al., 2021; Baek et  al., 2022; Ibrar and 
Yang, 2022).

While metagenomics has grown with the promise of 
circumventing the bottleneck of difficult to culture organisms within 
microbial studies it comes with its own restrictions. These being 
predominantly related to limitations the bioinformatic processing of 
large data sets, which commonly occurs at a slower pace than the 
generation of sequencing datasets (Ugarte et al., 2019; Hiseni et al., 
2021; Shahroodi et al., 2022). Specifically, issues relating to limited 
reference database coverage, lack of integration and modularity 
between bioinformatic pipelines and taxonomic look up functions are 
all current sources of bottlenecks which can reduce accuracy of results, 
create difficulties upgrading and maintaining pipelines or they may 
simply be computationally intensive (Ugarte et al., 2019; Hiseni et al., 
2021; Shahroodi et  al., 2022). It has also been demonstrated that 
MAGs at a completeness of 95% can miss up to 50% of the variable 
genes in a population, that is those genes that are present in greater 
than 10% but less than 95% of the population (Meziti et al., 2021). 
While likely due to incomplete or incorrect binning of contigs, the 
resulting lack of sensitivity to variable genes could pose a roadblock 
to detecting novel variants of functional genes responsible for 
xenobiotic degradation (Nelson et al., 2020; Meziti et al., 2021).

While metagenomics and binning approaches provide deeper and 
highly specific information on the taxonomy and functional capacity 
of individual members within a complex microbial community, is 
accompanied by higher comparative costs, data burden and increased 
complexity of downstream bioinformatic processes (Meziti et  al., 
2021). These limitations are consequently restricting the analysis of 
large metagenomics datasets to organizations with access to high 
performance computing clusters, yet, even with access to specialized 
tools, data analysis can take multiple days to a week (Tikariha and 
Purohit, 2019; Silva et al., 2021; Chivian et al., 2023). Nevertheless, 
improvements to downstream analysis pipelines and technologies are 
constantly occurring and with time will likely mitigate these challenges 
(Meziti et al., 2019, 2021; Tikariha and Purohit, 2019; Nelson et al., 
2020). Bioinformatic environments such as Kbase provide powerful 
platforms which enable the assembly and analysis of MAGS from 
initial reads as well as genome analysis such as metabolic modeling 
and genome annotation, while these technologies are available 
elsewhere the shift toward centralized tools for metagenome analysis 
will increase accessibility, data sharing and support which are key 
factors in reducing limitations to this technology (Nelson et al., 2020; 
Chivian et al., 2023).

Transcriptomics utilizes RNA fragments that correspond to DNA 
from gene coding regions, such as messenger RNA, ribosomal RNA 
and transfer RNA through technologies such as RNA-seq, microarray 
and real time PCR (Lamas et  al., 2019). Within the context of 
bioremediation, transcriptomics is used to determine the array of 
functional genes being expressed at a given time (Stallwood et al., 
2005; Fida et  al., 2017; Tribelli et  al., 2018). For example, 
Novosphinobium in a bioaugmentation system was observed to enter 
a viable non-cultivatable state in which its population did not increase 
(Fida et al., 2017). However, Novosphinobium continued to up-regulate 
genes known to be  associated with hydrocarbon degradation 

suggesting that significant shifts in microbiome function can occur 
during bioremediation that cannot be identified via taxonomic trends 
alone. To date, bioremediation studies leveraging transcriptomics are 
limited, and have focused on xenobiotics other than hydrocarbons, as 
it is a powerful tool in unraveling novel metabolic pathways (Das et al., 
2020; Baek et  al., 2022). Within the field of hydrocarbon 
bioremediation, transcriptomics has been of particular use in 
identifying genes associated with tolerance to Polycyclic Aromatic 
Hydrocarbons (PAHs) (Ito et al., 2022; Su et al., 2022), as well as 
monitoring dynamic changes in arrays of genes associated with 
hydrocarbon degradation (Das et al., 2020; Wang et al., 2021).

While not as abundant within bioremediation literature as 
metagenomics, the use of transcriptomics is growing within 
bioremediation studies. Transcriptomics as a method of investigating 
microbial response to differing environments commonly reports 
differentially expressed genes in the thousands to tens of thousands 
(Fida et  al., 2017; Tribelli et  al., 2018; Das et  al., 2020), which is 
significantly more data than other technologies such as meta-
proteomics used for this purpose (Zhao and Poh, 2008; Zhang et al., 
2022). Transcriptomics has been used to uncover metabolic pathways 
and novel gene expression shifts in an environment independent of 
taxonomic shifts. For example, such as during exposure of 
Pseudomonas aeruginosa to crude oil, where interestingly some HC 
degrading genes were shown to be downregulated like xylL, xylX, and 
antA in the presence of crude oil (Das et al., 2020). When considering 
the sheer diversity of potential and known HC degrading genes that 
were differentially expressed it suggests P. aeruginosa is capable of 
several pathways of HC degradation and is capable of tailoring gene 
expression to the form of HC in its environment (Das et al., 2020). 
This discovery has implications for wider studies focused on 
bioremediation, for example transcriptomic analysis of potential HC 
degraders could be  useful in organism selection regarding 
bioaugmentation studies.

Transcriptomics also finds practical use in uncovering natural and 
artificial factors they may lead to suppression of key HC degrading 
genes, for example early findings in marine samples show greater 
upregulation of the alkB gene in hydrocarbon degrading bacteria 
supplemented with biosurfactants than with those supplemented with 
Ultrasperse 2 (De Couto et al., 2016). Further investigation into this 
area could be beneficial as utilization of chemical surfactants has not 
been sufficiently explored in relation to their potential toxicity and 
how that may affect expression of hydrocarbon degrading genes (De 
Couto et al., 2016).

RNA is characterized by low stability in in-vitro studies, the 
lability of RNA is increased in the context of cold environments as 
many psychrophilic RNAase’s can remain active at low temperatures 
(Cristescu, 2019; Gunjal Aparna et al., 2021; Hualpa-Cutipa et al., 
2022). The other issue facing RNA analysis is the co-extraction of 
contaminants that can interfere with downstream enzyme applications 
(Tveit et al., 2014). Common solutions to these complications are 
centered around amplification through PCR (Rio, 2014; Tveit et al., 
2014; Cristescu, 2019). It has been demonstrated that contaminants 
can be  essentially eliminated through dilution followed by linear 
amplification of RNA template (Tveit et al., 2014). In contexts where 
the lability of RNA is a concern, such as when transporting samples 
back from remote locations, reverse transcription of RNA sequences 
to DNA can enhance the stability of samples without losing read depth 
(Rio, 2014).
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Meta-proteomics involves the quantification of all intra and extra-
cellular proteins in an environmental sample most commonly via high 
performance liquid chromatography combined with mass 
spectrometry (Wilmes and Bond, 2006; Manuel, 2022). In addition to 
quantifying structural and intra-cellular proteins, proteomics provides 
a more accurate view of community function than transcriptomics 
due to post transcriptional changes that can occur before protein 
synthesis (Schenk et al., 2019). Meta-proteomic analysis can benefit 
current understanding of bioremediation projects primarily in three 
ways; elucidating the effect specific biostimulants might have on 
enzyme activity, screening for the presence of known hydrocarbon 
degrading enzymes in soil and uncovering the protein expression of a 
known isolate (Macchi et al., 2021; Méndez García and García de 
Llasera, 2021; Baek et al., 2022; Zhang et al., 2022).

Certain bioremediation treatments such as the addition of 
chemical surfactants or biosurfactants can affect protein function 
independently of gene expression. For example, full proteomic 
analysis of B. subtilis revealed a negative correlation between artificial 
surfactants and function of proteins associated with alkane 
degradation, whereas bio-surfactants did not negatively impact 
protein function (Zhang et al., 2022). Proteomic analysis has been the 
predominant technology used for identifying enzymes involved in 
PAH degradation (Méndez García and García de Llasera, 2021). 
PAHs can be more persistent in the environment and often require a 
more complex metabolic pathway to reach terminal oxidation 
(Gomez and Sartaj, 2013; Cipullo et al., 2019). In a study investigating 
the biodegradation of toluene in a bioelectric well, meta-proteomic 
analysis was used to investigate protein expression in the bulk of the 
reactor in addition to the anode. The study revealed the abundance 
of proteins related to hydrocarbon degradation were skewed toward 
the bulk phase of the reactor, with proteins involved with the 
tricarboxylic acid cycle featuring prominently on the biofilm formed 
on the anode surface (Tucci et al., 2022). It is worth noting that the 
proteins identified from the anode were low, with 46 and 67 proteins 
identified from each trial, this is a common shortcoming of 
metaproteomic analysis with no means of protein amplification low 
protein yield from difficult samples, can significantly impact the 
results (Tribelli et al., 2018; Tucci et al., 2022). Nonetheless, when 
combined with other omic technologies such as shotgun sequencing, 
it is likely that novel metabolic pathways can be predicted. Recently, 
Tucci et al. (2022) proposed a three step electrogenic degradation 
pathway that involves initial digestion of toluene by anaerobic 
hydrocarbon degraders, the resulting unknown intermediaries are 
then fermented before terminal oxidation by Geobacter sp. residing 
on the anode.

One pathway to improving the degradation of PAHs is by 
identifying hydrocarbon degraders via in silico analysis which can 
then be  confirmed via shotgun proteomics (Macchi et  al., 2021). 
Furthermore, a synthetic microbial consortium designed in this way 
was shown to be effective at degrading phenanthrene in liquid culture, 
but it is unclear if the same results could be achieved in contaminated 
soils as past bioaugmentation studies have observed a lack of 
persistence of inoculate in situ (Bento et al., 2005; Gutiérrez et al., 
2020; Macchi et al., 2021). Currently these studies select consortiums 
based on individual members ability to degrade a particular 
hydrocarbon (Baek et  al., 2022). However, as understanding of 
microbial interactions increases, it is likely that some microbes will 
be added to these consortiums with the desired effect of supporting 

overall consortium health thereby indirectly increasing the efficiency 
of hydrocarbon degraders.

The bottleneck for ‘omic’ studies is often the preparation of 
complex environmental samples for downstream analysis. Soil 
DNA extraction followed by 16S amplicon sequencing or 
metagenomic analysis has been widely utilized, with proven 
sample preparation methods available that have been employed in 
bioremediation projects (Ferrari et al., 2016; Koshlaf et al., 2019; 
Gupta et  al., 2020; Gao et  al., 2021; van Dorst et  al., 2021). 
However, when it comes to the study of both tRNA and proteins, 
many of the established methodologies have focused on analyzing 
concentrated cell samples comprised of a cultivated isolate only, 
often making them less suitable for direct application to 
environmental samples (Tribelli et  al., 2018; Mukherjee et  al., 
2022). The afore mentioned trend is also present in meta-
proteomic studies, with in-vitro meta-proteomic samples, 
originating from a pure culture being more widespread than 
samples of ex-vitro origins (Zhao and Poh, 2008; Schenk et al., 
2019; Kumar et  al., 2020; Macchi et  al., 2021; Zhang E. et  al., 
2021). This imbalance has resulted in current methods of 
analyzing protein samples outstripping sample preparation 
methods (Zhao and Poh, 2008; Chourey et al., 2010; Schenk et al., 
2019; Das et al., 2020; Macchi et al., 2021; Zhang et al., 2022).

The application of meta-proteomics to bioremediation within 
cold climates faces unique challenges. Low biological yields 
necessitate the concentration of samples, while substances, known 
to interfere with Gas Chromatography/Mass Spectroscopy, such 
as salts, DNA and humic acids are co-extracted along with 
proteins (Chourey et al., 2010; Tschitschko et al., 2016; Abiraami 
et al., 2020). These factors in combination can limit discovery 
power in soil metaproteomic studies (Tucci et al., 2022). It should 
be  noted that this limitation is less prominent in aquatic 
environmental samples as well as in vitro studies (Tschitschko 
et  al., 2016; Macchi et  al., 2021), likely due to easier access to 
greater sample concentrations and reductions in detritus prior to 
any sample processing being applied (Chourey et  al., 2010; 
Abiraami et al., 2020). The development of multiplexing protocols 
such as labeling peptides with isobaric tags has emerged as a 
potential solution to the issue of protein identification in complex 
samples and offers greater quantitative accuracy and 
discoverability (Creskey et al., 2022). The primary limitation to 
this technique is the associated high costs and use of volatile 
compounds such as acetonitrile, which need to be handled with 
care as degradation or inaccurate transfer can lead to inaccurate 
sample quantitation (Creskey et  al., 2022). Currently, Tandem 
Mass Tag (TMT) labeling has been successfully utilized to provide 
a detailed insights into the molecular mechanisms involved in 
PAH degradation in both bacteria and yeasts (Li et  al., 2021; 
Zhang L. et  al., 2021), although it should be  noted that these 
studies analyzed samples grown in culture and the potential for 
multi-plexed labeled techniques to solve the challenges posed to 
soil-based samples is yet to be investigated.

The optimization of sample preparation techniques for soil are 
required, specifically when dealing molecules such as proteins, current 
sample cleaning methods result in protein loss and are thus 
antagonistic toward the need to extract more protein, whereas by 
extracting more protein a greater amount of contaminants are 
co-extracted requiring more sample cleaning.

https://doi.org/10.3389/fmicb.2023.1113102
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Abdullah et al. 10.3389/fmicb.2023.1113102

Frontiers in Microbiology 08 frontiersin.org

5. Insights from omic technologies in 
the polar environment, molecular 
mechanisms driving hydrocarbon 
biodegradation

Table 2 summarizes some of the key taxa and their HC degrading 
potential that ‘Omic’ research has unveiled. When applied within the 
context of psychrophillic, psychrotrophic and industrially exploitable 
organisms in cold climate, hydrocarbon contaminated soils, and their 
products (Ruberto et al., 2005; Parrilli et al., 2010; Kumar et al., 2020).

The utilization of ‘omic’ technologies, especially regarding 
upstream sample preparation, is tailored toward ecological or 
industry focused studies. Their popularity can be accredited to their 
capacity to unravel the molecular mechanisms underpinning a 
process of interest (Jung et al., 2011; Rio, 2014; Jurelevicius et al., 
2021; Méndez García and García de Llasera, 2021; Ramírez-
Fernández et al., 2021; van Dorst et al., 2021). In the context of 
hydrocarbon bioremediation, the primary focus in the use of these 
technologies has been investigating the mechanisms driving alkane 
and PAH degradation (Jurelevicius et al., 2012; Tribelli et al., 2018; 
Kuc et al., 2019). When assessing the capacity of a microbiome to 
degrade diesel the relative abundance of a gene called alkB which 
encodes the alkane monooxygenase enzyme is used (Yergeau et al., 
2012; Crane et al., 2018; Li et al., 2020; Ling et al., 2023). Alkane 
monooxygenase is the first enzyme in the pathway responsible for 
the terminal oxidation of alkanes and has been commonly found in 
hydrocarbon contaminated soil in both cold and temperate climates 
(Yergeau et al., 2012; Crane et al., 2018; Li et al., 2020; Ling et al., 
2023). Within the context of bioremediation research, an increase 
in alkB is thought to be associated with the degradation of short 
chain alkanes, which form a large proportion by mass of Antarctic 
blend diesels (Yergeau et al., 2012; Kuc et al., 2019; Semenova et al., 
2022). Within hydrocarbon contaminated soils it is not uncommon 
to find an alkB relative abundance of greater than 100 gene copies 
detected per 100 organisms, likely due to many organisms having 
multiple copies of this gene (Yergeau et  al., 2012). Due to this 
confounding variable, it may not be suitable to use alkB abundance 
in a population as the sole indicator for alkane degradation 
potential in aerobic soils. Instead a more reliable array of molecular 
indicators can be assembled from the identification of a significant 

population of known hydrocarbon degraders. For example targeting 
Rhodococcus and Pseudomonas via amplicon sequencing (Gutiérrez 
et al., 2020; Kai et al., 2020), who harbor and abundance of alk and 
acetyl-CoA synthase genes which are indicators of the alkane 
oxidation pathway reaching its terminus (Li et al., 2020; Semenova 
et al., 2022).

The above mentioned functional genes and enzymes have been 
frequently demonstrated to correlate with hydrocarbon degradation 
rate and ‘completeness’, therefore it may be viable to screen for their 
abundance as an indicator of microbiome ‘fitness’ within the context 
of degrading hydrocarbons (Yergeau et al., 2012; Crane et al., 2018; 
Li et al., 2020; Ling et al., 2023). Understanding the degradation 
pathways of PAHs is of particular importance, analysis of functional 
genes in both cold and temperate soils report co-metabolism of 
PAHs by numerous members of the microbiome more commonly 
than terminal catabolism by a single organism (Muangchinda et al., 
2015; Li et  al., 2020; Ali et  al., 2023; Sui et  al., 2023). Greater 
diversity among the structure and potential toxicity of PAHs leads 
to greater complexity among the molecular mechanisms 
underpinning their degradation (Muangchinda et al., 2015; Li et al., 
2020; Ali et al., 2023; Sui et al., 2023). In a study investigating the 
impact of contamination of native soil from a temperate climate 
with two PAHs, benzene and benzo[a]pyrene (BaP) demonstrated 
the increased biodegradation of BaP while co-contaminated with 
benzene compared to when contaminated with BaP alone, inversely 
the degradation of benzene occurred faster when it was the sole 
contaminant (Ali et  al., 2023). This result is likely due to the 
composite nature of metabolic pathways for PAH degradation. This 
phenomenon has also been observed at the level of an individual 
organisms, such as L. fusiformis when cultured in isolation in 
petroleum contaminated soil. Here, the upregulation of alkB and 
acetyl-coA synthase was demonstrated suggesting the capacity for 
terminal oxidation of alkanes (Li et al., 2020). At the same time the 
upregulation of enzymes that catalyze the oxidation of aromatic 
compounds such as cyclohexanone monooxygenase was observed 
(Li et al., 2020). Interestingly, L. fusiformis did not appear to express 
cytochrome P450 alkane hydroxylase which is associated with the 
oxidation of medium chain alkanes, this finding was further 
evidenced by reduced growth rates when diesel consisting of 
medium chain alkanes was used as a carbon source (Li et al., 2020).

TABLE 2 Summary of key hydrocarbon degrading bacteria.

Taxa HC degrading capabilities Reference

Pseudomonas Production of biosurfactants

xylL and XylX mediated PAH degradation

terminal alkane oxidation via AlkB initiated pathway

Crude oil degradation

Das et al. (2020), Li et al. (2020), Semenova et al. (2022), and Hou et al. (2023)

Rhodococcus Production of biosurfactants

Terminal alkane oxidation oxidation via alkB initiated pathway

Li et al. (2020) and Semenova et al. (2022)

Lysinibacillus Terminal oxidation of alkane via alkB mediated pathway Li et al. (2020)

Cellumonadacea Potential hexahydro-1,3,5-trinitro-1,3,5-triazine degrader Crocker et al. (2019)

Methylosinus Crude oil degradation Hou et al. (2023)

Marinobacter

Rhodocyclaceae Anaerobic fermentation of toluene Tucci et al. (2022)
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As biostimulation protocols can be associated with a loss of 
community diversity, there is a case to be made that with lower 
diversity some steps in the co-metabolic pathway of PAH 
degradation may also be lost (Evans et al., 2004; Cury et al., 2015; 
Van Goethem et al., 2020). However, metagenomic analysis of soil 
communities in both temperate and cold hydrocarbon contaminated 
soils have reported a high degree of redundancy among PAH 
degrading genes (Jurelevicius et al., 2012; Muangchinda et al., 2015; 
Ali et al., 2023; Lv et al., 2023). In cold climates, little is known 
about the degradation pathways used by anaerobic hydrocarbon 
degraders despite evidence of their being present in contaminated 
soils with high organic carbon on King George Island (Sampaio 
et al., 2017). However, anaerobic degradation of the HCs toulene 
and hexadecane, as mediated by benzoyl-CoA reducatase was 
shown to be more effective than aerobic processes in a biostimulated 
microcosm study using spiked soils from Casey station, Antarctica 
(Powell et al., 2006). Despite these promising findings, anaerobic 
HC degradation mechanisms in cold climates is understudied, this 
gap in the literature is likely due to the utility of biopiles for the 
degradation of hydrocarbons in these climates; slower contaminant 
oxidation rates and higher O2 saturation in many cold climate soils 
are all factors which highly favor aerobic processes (Delille and 
Coulon, 2008; Whelan et al., 2015; Martínez Álvarez et al., 2017; 
van Dorst et al., 2021). In contrast, anaerobic processes are better 
studied in warmer climates where methanogens have been observed 
degrading HCs through fermentative processes (Liu et al., 2019; 
Madison et  al., 2023). Enzymes such as naphthyl-2-methyl-
succinate synthase, naphthalene carboxylase, alkyl succinate 
synthase, and benzoyl coenzyme A have been shown to 
be significantly upregulated in anaerobic HC contaminated soils 
(Liu et al., 2019; Madison et al., 2023). Many of these enzymes are 
associated with PAH degradation, offering a potential explanation 
for observations that these organisms outperform aerobic bacteria 
in degrading larger alkanes and PAHs (Cason et al., 2019; Liu et al., 
2019; Madison et al., 2023).

6. Conclusion

Text mining is an effective method for generating a visual 
overview of the current literature but selection, as well as 
extrapolation of information from keywords requires careful 
consideration. The emergence of omic technologies have 
revolutionized microbiology and as they become more widely 
available, multi-omic studies will enable a more complete picture 
of the molecular landscape. Significant progress has been made 
in mapping out co-metabolic pathways associated with the 
aerobic degradation of hydrocarbons in cold climates and 
biomarkers such as AlkB and acetyl-CoA have been shown to 
correlate with terminal oxidation of alkanes. However, anerobic 
processes in cold climates are still not well understood, although 
there is evidence that they could be utilized for the preferential 
degradation of PAHs. Although great strides have been made, 
several barriers remain before these technologies can be  truly 
effective as a monitoring tool within the context of 

bioremediation. Three key impediments are the high costs of the 
more sophisticated metagenomics and transcriptomic 
approaches, the specialized facilities required for down-stream 
analysis, and difficulty with upstream processing of soil samples. 
Moving forward, improvements in sample preparation that 
address the issues of rapid sample degradation, potentially in the 
form of more cost effective DNAase, RNAase and proteinase 
inhibitors, and co-extraction of potential contaminating 
molecules while reducing sample loss will greatly benefit the 
utilization of meta-proteomics and meta-transcriptomics within 
the context of environmental samples. In the future decreasing 
costs of multi-omic studies will enable a deeper understanding 
on how microorganisms interact with hydrocarbons, other 
xenobiotics and their environment.
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