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Osteoporosis (OP) is a metabolic bone disorder characterized by low bone mass 
and deterioration of micro-architectural bone tissue. The most common type of 
OP is postmenopausal osteoporosis (PMOP), with fragility fractures becoming a 
global burden for women. Recently, the gut microbiota has been connected to 
bone metabolism. The aim of this study was to characterize the gut microbiota 
signatures in PMOP patients and controls. Fecal samples from 21 PMOP patients 
and 37 controls were collected and analyzed using amplicon sequencing of 
the V3-V4 regions of the 16S rRNA gene. The bone mineral density (BMD) 
measurement and laboratory biochemical test were performed on all participants. 
Two feature selection algorithms, maximal information coefficient (MIC) and 
XGBoost, were employed to identify the PMOP-related microbial features. Results 
showed that the composition of gut microbiota changed in PMOP patients, and 
microbial abundances were more correlated with total hip BMD/T-score than 
lumbar spine BMD/T-score. Using the MIC and XGBoost methods, we identified 
a set of PMOP-related microbes; a logistic regression model revealed that two 
microbial markers (Fusobacteria and Lactobacillaceae) had significant abilities 
in disease classification between the PMOP and control groups. Taken together, 
the findings of this study provide new insights into the etiology of OP/PMOP, as 
well as modulating gut microbiota as a therapeutic target in the diseases. We also 
highlight the application of feature selection approaches in biological data mining 
and data analysis, which may improve the research in medical and life sciences.
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Introduction

Osteoporosis (OP) is the most common metabolic bone disease and is characterized by low 
bone mass and microarchitectural deterioration of bone tissue. Postmenopausal osteoporosis 
(PMOP), which results from estrogen deficiency, is the most common type of osteoporosis 
(Eastell et  al., 2016). The human gut microbiota has been regarded as a key mediator of 
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osteoporosis and osteogenesis (Seely et al., 2021). By regulating host 
metabolism, immune function and hormone secretion, the gut 
microbiota can affect bone metabolism (Li et al., 2019). For example, 
the gut microbiota can regulate bone mass and improve osteoporosis 
by inhibiting osteoclast proliferation and differentiation, inducing 
apoptosis, reducing bone resorption, or promoting osteoblast 
proliferation and maturation (Ding et  al., 2020). By influencing 
multiple factors such as short-chain fatty acids (SCFAs), estrogen, 
immune factors and vitamin D, gut microbiome play important roles 
on calcium balance (Wang J et  al., 2022). Supplementation of 
antibiotic-treated mice with microbial metabolism products SCFAs 
could induce insulin-like growth factor 1 (IGF-1) levels, and promote 
bone formation and growth (Yan et al., 2016). Thus, researchers have 
proposed that the gut microbiota is an overlooked factor that plays 
significant roles in osteoporosis (Hao et  al., 2019). This evidence 
invokes the perspective of the microbiota-gut-bone axis and supports 
the contention that the gut microbiota may be a novel therapeutic 
target in the treatment of osteoporosis and fracture prevention (Li 
et al., 2021; He and Chen, 2022).

Recently, a growing number of studies in OP and PMOP research 
have linked bone loss to changes in gut microbiota. Studies have 
indicated that primary osteoporosis is related to changes in the gut 
microbiome, particularly the enriched genera Dialister and 
Faecalibacterium (Xu et al., 2020). Cinnamic acid suppresses bone loss 
via induction of osteoblast differentiation with the alteration of gut 
microbiota (Hong et al., 2022). Studies have also found that external 
interventions such as dietary changes can alter the gut microbiota 
composition and improve bone health (Yan et  al., 2022). Overall, 
multiple factors, including hereditary, dietary and physical factors 
could alter the gut microbiota composition and further regulate bone 
metabolism (Yan et al., 2022).

Our previous studies have preliminarily investigated changes in 
the diversity and composition of gut microbiota in elderly Chinese 
osteoporosis patients (Wang et  al., 2017; Wang Y et  al., 2022). 
We found that gut microbiota changes were more highly correlated 
with bone mineral density (BMD) alterations in elderly females than 
in elderly males (Wang Y et al., 2022), which implies that the gut 
microbiota is a potential target for the management of PMOP patients. 
Here, we  conducted a further analysis of the gut microbiota in 
postmenopausal women. It is worth mentioning that feature selection-
based machine learning approaches (detailed information regarding 
feature selection approaches are described in the Methods) were 
employed to identify PMOP-related microbial features, which may 
provide additional clues for biological data analysis.

Materials and methods

Study population

A total of 58 postmenopausal female participants, including 37 
healthy controls and 21 PMOP patients were recruited for this 
study. Specifically, female participants with a T-score > −2.5 for the 
BMD measurement were considered as healthy controls, whereas 
female participants with a T-score < −2.5 for the BMD measurement 
were diagnosed with PMOP. We excluded participants or patients 
with other malignancies, including chronic heart disease, liver 

disease, kidney disease, diabetes, and diseases related to secondary 
OP (hyperthyroidism, steroid abuse, Cushing’s syndrome, 
hyperparathyroidism, etc.,). In this study, none of the participants 
had a history of fractures. The participant characteristics are shown 
in Table 1. Our study was approved by the Institutional Review 
Board of Honghui Hospital, Xi’an Jiaotong University and was a 
part of the project “Diversity Analysis for Intestinal Flora in Patients 
with Primary Osteoporosis” registered at 1 as #ChiCTR-
1,800,019,048#. Written informed consent was obtained from 
each participant.

Biochemical tests

Fasting venous blood samples were collected from the 58 
participants for laboratory biochemical analysis, including serum 
calcium (Ca), phosphorus (P), 25-hydroxyvitamin D (vitamin D), 
alkaline phosphatase (ALP), C-terminal telopeptide of type 
I collagen (b-CTX) and procollagen type 1 N-peptide (P1NP). A 
5 ml vacuum blood collection tube was used to collect fasting 
venous blood, which was left at room temperature for 45 (±10) min, 
and the serum was collected for detection after centrifugation (not 
less than 1.5 mL serum). Specifically, the serum contents of ALP 
were detected by using a Roche Cobas c501 automatic biochemical 
analyzer and the corresponding reagents (Roche, United States); 
serum contents of Ca, P, Vitamin D, b-CTX and P1NP were detected 
by using a Roche Cobas e601 electrochemiluminescence instrument 
and the corresponding reagents (Roche, United States).

BMD measurement

All 58 participants underwent BMD measurement with a 
HOLOGIC Discovery Dual Energy X-ray Absorptiometry (DXA) 
scanner (HOLOGIC, United States). Subjects meeting any one of 
the following criteria were not allowed to undergo BMD 
measurement: (1) patients who had taken orally administered drugs 
within the previous 2–6 d that could affect image development, (2) 
patients who were physically weak and unable to lie on their backs 
or lie flat for 5 min, (3) patients with metallic implants or severe 
deformities of the spine, or (4) patients who had radioisotope 
examinations within the previous 3 days. For all participants, both 
lumbar spine and total hip BMD measurements were performed. 
We collected information pertaining to the participant BMD values 
(g/cm2) and T-scores of the lumbar spine and total hip. The T-score 
reference ranges were calculated with data from a healthy Asian 
population provided by the bone densitometry equipment 
manufacturer. Based on the diagnostic criteria, postmenopausal 
females with T-scores ≤ −2.5 at any site were diagnosed as having 
PMOP, −2.5 < T-scores < −1.0 were diagnosed as having osteopenia 
(ON), and T-scores ≥ −1.0 indicated normal bone mass. In this 
study, we divided the subjects into two major groups according to 
the diagnostic criteria: the PMOP group (T-scores ≤ −2.5 at any 
site) and the control group (T-scores > −2.5 at any site).

1 www.chictr.org.cn
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Fecal sample collection and bacterial DNA 
extraction

We collected 58 fecal samples from the participants for gut 
microbiota analyses. Before the collection of fecal samples, the subjects 
were required to avoid the following medicines for 1 month: 
antibiotics, probiotic, steroids, nonsteroidal anti-inflammatory drugs, 
microecological adjustment preparations, immunosuppressants, and 
any Chinese herbal medicine preparations. Participants were required 
to collect a 3–5 mL fresh stool sample between 6:00 and 8:00 in the 
morning on the day of fecal sample collection using a disposable 
sterile stool collection tube. The collected sample collection tube was 
placed in an ice box, and the researcher transported the sample to the 
laboratory within 2 h after collection and stored it at −80°C until 
further use. The QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany) 
was used to extract the microbial genome from fecal samples following 
the manufacturer’s instructions. DNA concentration and purity were 
monitored on 1% agarose gels. Based on the concentration, the DNA 
was diluted to 1 ng/μL using sterile water.

16S rRNA polymerase chain reaction (PCR)

The TransGen AP221-02 Kit (TransGen, China) was used to 
amplify the V3-V4 region of the microbial 16S RNA gene. The 
polymerase chain reaction (PCR) primers of the 16S rRNA V3-V4 
region were as follows: 338F 5’-ACTCCTACGGGAGGCAGCAG-3′ 
and 806R 5’GGACTACHVGGGTWTCTAAT-3′(Mori et al., 2014). 
The same volume of 1× loading buffer (containing SYBR green) was 
mixed with the PCR products, and electrophoresis was performed on 
a 2% agarose gel for detection. The PCR products were mixed in 

equidensity ratios. Next, the PCR products were purified with a 
GeneJET Gel Extraction Kit (Thermo Scientific, United States).

Library preparation and Illumina 
sequencing

The sequencing libraries were generated using the NEBNext Ultra 
DNA Library Prep Kit for Illumina (New England Biolabs, 
United States) following the manufacturer’s recommendations. The 
library quality was assessed on a Qubit@ 2.0 Fluorometer (Thermo 
Scientific, United States). Finally, the library was sequenced on the 
Illumina NovaSeq platform (Illumina, United States). The 16S rRNA 
amplicon sequencing project for 58 participants is available on the 
NCBI-BioProject site under accession PRJNA565497, and the raw 
data have been deposited in the NCBI-SRA database (accessions 
SRX6849522-SRX6849524, SRX6849535, SRX6849539-SRX6849588, 
SRX6849591, SRX6849602, SRX6849613, and SRX6849624).

Data analysis for 16S rRNA amplicon 
sequencing

Sequence analysis was performed with UPARSE software 
(UPARSE v7.0.1001, http://drive5.com/uparse/) (Edgar, 2013). 
Sequences with ≥97% similarity were assigned to the same operational 
taxonomic units (OTUs). Representative sequences for each OTU 
were screened for further annotation. For each representative 
sequence, the Silva Database (Version 138, https://www.arb-silva.de/) 
(Quast et al., 2013) was used to annotate taxonomic information based 
on the Mothur Bayesian classifier algorithm. To study the phylogenetic 
relationships of different OTUs and the difference in the dominant 

TABLE 1 Characteristics of the 58 participants and the statistical results between PMOP and control groups.

Characteristics Total (n = 58) PMOP (n = 21) Control (n = 37) p value

Body measurements

Age (y) 57.47 ± 5.32 59.14 ± 4.40 56.91 ± 5.62 0.0567

Menopause age (y) 47.59 ± 2.36 47.71 ± 2.53 47.51 ± 2.27 0.9607

Waist circumference (cm) 84.61 ± 8.88 83.85 ± 5.47 85.04 ± 10.37 0.6978

BMI (kg/m2) 23.43 ± 3.07 22.59 ± 2.24 23.91 ± 3.39 0.1242

Biochemical tests

Ca (mmol/L) 2.28 ± 0.28 2.21 ± 0.35 2.32 ± 0.23 0.5172

P (mmol/L) 1.18 ± 0.18 1.16 ± 0.23 1.20 ± 0.16 0.7522

Vitamin D (ng/mL) 18.43 ± 6.95 19.41 ± 9.63 17.87 ± 4.90 0.7297

ALP (U/L) 98.31 ± 30.20 95.90 ± 35.51 99.68 ± 27.17 0.8587

b-CTX (ng/mL) 0.43 ± 0.14 0.45 ± 0.14 0.43 ± 0.14 0.5878

Total P1NP (ng/mL) 74.05 ± 28.31 72.77 ± 33.61 74.78 ± 25.30 0.7340

BMD measurements

Lumbar spine BMD (g/cm2) 0.79 ± 0.13 0.66 ± 0.08 0.86 ± 0.10 < 0.0001

Lumbar spine T-score −1.79 ± 1.12 −2.85 ± 0.70 −1.18 ± 0.83 < 0.0001

Total hip BMD (g/cm2) 0.65 ± 0.12 0.55 ± 0.08 0.71 ± 0.09 < 0.0001

Total hip T-score −1.63 ± 1.05 −2.53 ± 0.77 −1.12 ± 0.81 < 0.0001

PMOP: Postmenopausal Osteoporosis; BMI: Body Mass Index; ALP: Alkaline Phosphatase; b-CTX: C-Terminal telopeptide of type I collagen; P1NP: Procollagen type 1 N-peptide; BMD: 
Bone Mineral Density. The p value was obtained from Wilcoxon test in R. The bold p values showed significant statistical results.
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species among samples (groups), multiple sequence alignment was 
conducted using MUSCLE software (Version 3.8.31, http://www.
drive5.com/muscle/). OTU abundance information was normalized 
using a standard sequence number corresponding to the sample with 
the fewest sequences. Alpha diversity was used to analyze the 
complexity of species diversity for a sample through several indices, 
including observed species, Shannon, Simpson, Chao1 and Ace. All of 
these indices were calculated with QIIME (Version 1.7.0). Specifically, 
the Shannon and Simpson indices were used to identify community 
diversity; the Chao1 and Ace indices were selected to identify 
community richness. For beta diversity analysis, we calculated both 
weighted and unweighted UniFrac distances using QIIME for 
principal coordinate analysis (PCoA).

Using XGBoost and SHAP methods to 
identify microbial biomarkers for PMOP

To obtain gut microbes (as features) that have the most significant 
effect on PMOP, the methods of maximal information coefficient 
(MIC) (Reshef et al., 2011; Kinney and Atwal, 2014) and XGBoost 
(Chen et al., 2015; Chen and Guestrin, 2016) explained with Shapley 
Additive exPlanations (SHAP) (Lundberg and Lee, 2017; Lundberg 
et al., 2020; Parsa et al., 2020) were employed for feature selection, and 
the intersection of the two sets of results was selected as the final 
microbial feature.

Maximal information coefficient

Reshef, etc., proposed a novel correlation measurement algorithm 
designated MIC based on mutual information (MI). Compared with 
MI, MIC is more equitable for high-dimensional datasets and has a 
wider range of applications in feature selection. For a dataset D , the 
number of samples is n , and x y,  are positive integers greater than 
1. The MIC can be computed by:

 
MIC D

I D x y
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the MI of D  in the grid of G . The correlations between features and 
classifications can be measured by MIC, and those features with larger 
MIC values were considered potential signatures for the identification 
of PMOP. The MIC code is available on https://github.com/minepy/
minepy. In our study, we performed the MATLAB version to obtain 
the associations between any two variables, and the parameter of alpha 
for function “mine” was set to 0.6.

XGBoost explained with SHAP

XGBoost is an efficient implementation of gradient-boosted 
decision trees that uses a sequence of decision trees to improve the 
model and build a stronger learner (Parsa et al., 2020). The objective 
function L φ( )  of XGBoost is as follows:
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L φ( )  is composed of two parts: a convex loss function l  and a 
regularization term Ω . The loss function measures the difference 
between the prediction ˆ iy  and the target yi , and the regular function 
penalizes the complexity of the model (Chen and Guestrin, 2016). The 
parameters of γ  and λ  are set manually; ω  is the vector formed by 
the values of all leaf nodes of the decision tree, and T  is the number 
of leaf nodes.

Generally, models using XGBoost are considered black boxes 
due to their complexity, and the interpretability of the XBGoost 
model is critical to the prediction accuracy for many applications 
such as bioinformatics and medicine. In 2017, Lundberg et  al. 
proposed Shapley Additive exPlanations (SHAP) (Lundberg and 
Lee, 2017; Lundberg et  al., 2020), a unified framework for 
interpreting predictions, for interpreting the output of those black 
boxes, and the importance of each feature can be computed using 
the TreeExplainer of SHAP with a high speed (Lundberg et  al., 
2020). In our study, we  used TreeExplainer to obtain the most 
valuable factors with the greatest impact on PMOP. The versions of 
Shap and XGBoost based on Python 3.9.16 are 0.41.0 and 1.6.2, 
respectively. The code using shap and XGBoost to explain the 
output is available on.2

Statistical analysis

The statistical tools R 3.6.0 and GraphPad Prism 5.01 were used 
for statistical analysis and figure generation in this study. Data on 
body measurements, biochemical tests, BMD measurements, and 
alpha diversity indices are presented as the mean ± standard 
deviation (SD). Differential analyses between the PMOP and 
control groups of body measurements, biochemical tests, BMD 
measurements, and alpha diversity indices were performed with the 
Wilcoxon test in R, with p < 0.05 indicating a significant difference. 
For gut microbiota composition, we collected the top 10 dominant 
microbial taxa at the phylum, class, order, family, genus, and species 
levels, with p < 0.05 in the Wilcoxon test indicating a significant 
difference between the PMOP and control groups and 0.05 < p < 0.1 
indicating a tendency toward differences. Correlations between gut 
microbial composition and BMD value/T-score as well as between 
the abundance of functional group and BMD value/T-score were 
performed using the Spearman correlation test in R, with p < 0.05 
indicating significant correlations and 0.05 < p < 0.1 indicating a 
tendency for correlations. MedCalc 20.104 and GraphPad Prism 
5.01 statistical software were used for logistic regression and 
receiver operating characteristic (ROC) analysis based on the 
gut microbiota.

2 https://github.com/slundberg/shap
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Results

Characteristics of the study population

The baseline demographic features, laboratory biochemical tests 
and bone BMD measurements of the participants are summarized in 
Table 1. Based on the diagnostic and exclusion criteria, a total of 58 
postmenopausal female participants were included in this study. The 
average age and menopausal age of 58 participants were 57.47 ± 5.32 
and 47.59 ± 2.36, respectively. Generally, there were no significant 
differences in baseline demographic features or biochemical tests 
between the PMOP and control groups (p > 0.05 in the Wilcoxon test). 
However, BMD values and T-scores for both the lumbar spine and 
total hip of PMOP subjects were significantly lower than those of the 
control subjects (p < 0.0001). Detailed information regarding 
demographic features, laboratory biochemical tests and BMD 
measurements are described in the Methods.

Gut microbial diversity and composition 
analysis between the PMOP and control 
groups

To identify the gut microbiota features of the participants and 
microbial composition changes in patients with PMOP, 
we sequenced and analyzed the 16S rRNA V3-V4 region of fecal 
samples from the participants using the Illumina platform. As 
described in the Methods, we  deposited the raw data of the 
sequencing files into the NCBI-SRA database. The species 
accumulation curve of 58 samples tended to plateau with 
increasing sample size, which indicates that the amount of 
measured data was reasonable and reached the sequencing depth, 
as shown in Supplementary Figure S1. Generally, no significant 
differences in the richness and diversity of the gut microbiota 
were found between PMOP and control subjects, although the 
control group exhibited slightly higher values of observed species 
and higher indices of Chao1 and Ace than those of the PMOP 
group (p > 0.1, Supplementary Table S1). To assess the overall 
structural changes in the gut microbiota between the PMOP and 
control groups, PCoA score plots were constructed based on both 
weighted and unweighted UniFrac distances. As shown in 
Supplementary Figure S2, the permutational multivariate analysis 
of variance (PerMANOVA) test based on weighted (p = 0.329) and 
unweighted UniFrac distance measures (p = 0.025) showed that 
the microbial structure differed between the PMOP and 
control subjects.

We then identified the gut microbial compositions in all the 
samples. The microbial community analysis indicated that 
Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria 
accounted for the majority of the phyla with relative abundances of 
71.16, 14.91, 10.02, and 3.59%, respectively, in the total study 
population. There were no significant differences in the abundances 
of the four major phyla between the PMOP and control groups 
(p > 0.1), although the PMOP subjects exhibited relatively higher 
Fusobacteria abundance than that of the control subjects (p = 0.0395). 
Figure 1 and Supplementary Table S2 illustrate and summarize the 
relative microbial compositions in PMOP and control subjects at the 
phylum, class, order, family, genus and species levels. Notably, the 

microbial compositions of Bacilli and Erysipelotrichia were higher 
in the PMOP group than those in the control group (p < 0.1 at the 
class level), and the relative abundances of Lactobacillales/Lactobac
illaceae/Lactobacillus/Lactobacillus salivarius were also increased in 
PMOP subjects at the order/family/genus/species levels, respectively 
(p < 0.1). In contrast, the compositions of the bacteria 
Ruminococcaceae and Bacteroides eggerthii were lower in the PMOP 
group than those in the control group at the family and species levels 
(p < 0.05), respectively.

Gut microbial compositions were more 
correlated with the BMD value/T-score of 
the total Hip

We subsequently assessed the correlation between gut 
microbiota composition and BMD value or T-score to further 
explore BMD-related microbiota in postmenopausal females. It is 
worth mentioning that there were more correlations between 
microbial composition and BMD value/T-score observed in the total 
hip than in the lumbar spine, as demonstrated through Spearman 
correlation coefficients. In the lumbar spine, only the abundances of 
two species, Lactobacillus salivarius and Bacteroides eggerthii, were 
correlated with BMD value/T-score of the participants (p < 0.05). In 
the total hip, the relative abundances of microbial taxa, including 
Clostridia/Clostridiales, Lachnospiraceae, Blautia, Streptococcus, 
Ruminococcus_sp_5_1_39BFAA and Bacteroides eggerthii, were 
positively correlated with BMD value/T-score; whereas Fusobacteria, 
Erysipelotrichia/ Erysipelotrichales, Megamonas, Bifidobacterium 
pseudocatenulatum and Lactobacillus salivarius compositions were 
negatively correlated with the BMD value/T-score of the participants, 
detailed results of the Spearman correlation analysis were shown in 
Figure 2 and Supplementary Table S3.

Feature selection methods identified 
microbial biomarkers for PMOP

To determine whether the gut microbiota can be regarded as 
an identifying biomarker for distinguishing PMOP from control 
subjects, two major feature selection methods, the MIC and 
XGBoost explained with SHAP, were employed, and ROC curves 
were utilized to test the performance of the classification (details 
are provided in the Methods). In the feature selection procedure, 
we analyzed the importance of the 60 major microbial features (as 
biomarkers in classifying the PMOP and control groups) at all six 
taxonomic levels and selected the top 20 microbial features based 
on both the MIC and XGBoost approaches. The maximal 
information coefficient is a measure of the strength of the linear or 
nonlinear association between microbes and PMOP, and 
we  identified the top  20 PMOP-related microbes with MIC, as 
shown in Figure 3A. SHAp values of the top 20 microbial features 
for every sample are illustrated in Figure 3B. The plot below sorts 
features by the sum of the SHAP value magnitudes over all samples 
and uses SHAP values to show the distribution of the impacts that 
each feature has on the model output. We identified nine microbial 
features that overlapped between the two feature selection 
approaches, including the phyla Tenericutes and Fusobacteria; 
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classes Clostridia, Gammaproteobacteria, Negativicutes, and 
Erysipelotrichia; family Lactobacillaceae, and species Bacteroides 
caccae and Bacteroides eggerthii. Logistic regression results of the 
nine microbes indicated that two microbial markers, Fusobacteria 
and Lactobacillaceae, had significant abilities in disease 
classification between the PMOP and control groups; the logistic 
regression equation was Y = −2.920 + 4412*(p_
Fusobacteria) + 34.75*(f_Lactobacillaceae) (Table  2). We  could 

distinguish PMOP patients from control subjects based on the 
combination of p_Fusobacteria and f_Lactobacillaceae, as indicated 
by the area under the ROC curve (AUC), which had a value of 
0.7709 (p < 0.0001, Std. Error: 0.0687, 95% CI: 0.642 to 0.871, 
Supplementary Figure S3). Overall, the PMOP-associated 
microbial features captured by the feature selection method offered 
further evidence of the dysbiotic gut microbiome and highlighted 
its potential application for the detection of PMOP.

FIGURE 1

Relative abundance of gut microbiota at different taxonomy levels. The statistical analysis was performed using Wilcoxon test in R, “*” represents 
p < 0.05, “^” represents 0.05 < p < 0.1. Detailed values about the boxplot were summarized in Supplementary Table S2.
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FIGURE 2

Correlations between microbial composition and BMD value/T-score at both lumbar spine and total hip of the participants. The statistical analysis was 
performed using Spearman correlation test in R, “*” represents p < 0.05, “^” represents 0.05 < p < 0.1; different colors represent the Spearman correlation 
coefficients. Detailed values about the correlation analysis were summarized in Supplementary Table S3.
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Discussion

In the current study, we demonstrated that PMOP patients had 
different gut microbiota profiles compared with those of control 
subjects and showed that the compositions of microbiota were more 
correlated with BMD values of the total hip than those of the lumbar 
spine in participants. By conducting feature selection, we identified 
PMOP-related microbes, which could be  used as biomarkers for 
PMOP diagnosis or management.

Our results confirmed that gut microbiota composition were 
altered in PMOP patients compared with those in normal patients. 
The abundance of Fusobacteria increased in the PMOP patients 
(PMOP vs. control, 0.08% vs. 0.03%, p = 0.0395). Consistent with other 
studies, the relative abundance of Fusobacteria was negatively 
associated with the BMD value (Greenbaum et al., 2022). Fusobacteria 
has been shown to promote M1 macrophage production via AKT2 
signaling (Liu et al., 2019), which induces inflammation and prompts 
the development of osteoporosis (Yang and Yang, 2019). In another 
randomized trial of postmenopausal Japanese women, the total hip 
BMD of participants increased after receiving the probiotic Bacillus 
subtilis (C-3102) compared with that of the placebo group (Cronin 
et al., 2022). Consistent decreases in Fusobacteria species were noted 
at 12 and 24 weeks after using C-3102, which led the researchers to 
speculate that the decrease in Fusobacteria might favorably influence 
BMD by decreasing the production of cytokines that regulate bone 
resorption (Cronin et al., 2022). In addition, we also observed higher 
levels of Lactobacillales/Lactobacillaceae/Lactobacillus/Lactobacillus 
salivarius in PMOP patients than those in the control group, which is 
contradictory to other results and requires further confirmation. In 

most related studies, supplementation with probiotics increased BMD 
values (Yu et  al., 2021). For example, supplementation with 
Lactobacillus reuteri ATCC PTA 6475 reduced bone loss in older 
women with low BMD (Li et  al., 2022). Lactobacillus acidophilus 
inhibited bone loss and increased bone heterogeneity by modulating 
Treg-Th17 cell function in osteoporotic mice (Dar et  al., 2018). 
Lactobacillus rhamnosus attenuated bone loss and maintained bone 
health in ovariectomized mice (Sapra et al., 2021). The above evidence 
supports the beneficial effects of Lactobacillales/Lactobacillaceae/Lact
obacillus on increasing BMD in osteoporosis patients and mouse 
models. It is worth mentioning that even within the same phylum, 
each taxon such as family, genus or species has different functions 
(Ozaki et al., 2021). Generally, Lactobacillales/Lactobacillaceae/Lacto
bacillus bacteria contribute to weight loss and thus benefit obesity 
treatment, and studies have shown that the beneficial effects are strain 
dependent (Crovesy et al., 2017; Alvarez-Arrano and Martin-Pelaez, 
2021). Lactobacillus can reduce body weight and alleviate fat 
accumulation in mice fed a high-fat diet (Wang et  al., 2020). For 
osteoporosis patients, increasing BMI was identified as a protective 
factor for bone loss (Wang Y et al., 2022; Yin et al., 2022). The results 
from a large cohort survey showed that the mean rate of fragility 
fracture was significantly increased in the underweight group 
compared with the obese and normal weight groups in 
postmenopausal women (Kim et  al., 2021). In an age-adjusted 
analysis, men who lost weight during follow-up had a significantly 
greater rate of BMD loss (Sheu et al., 2009). Thus, we may initially 
obtain a negative correlation between Lactobacillales/Lactobacillaceae
/Lactobacillus and body weight or BMI as well as a positive correlation 
between BMD and body weight or BMI, within a reasonable range. 

A B

FIGURE 3

Identified the top 20 microbial features as the classification biomarkers by using feature selection methods. (A) Top 20 microbial features selected by 
MIC method. (B) Top 20 microbial features selected by XGBoost explained with SHAP. Each point represents a sample, the color represents the feature 
value (red high, blue low).
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Although this does not represent a negative correlation between Lact
obacillales/Lactobacillaceae/Lactobacillus and BMD value, as discussed 
earlier, most studies have shown that Lactobacillales or Lactobacillus 
is beneficial for increasing bone mass, and therefore we may speculate 
that different species of Lactobacillales/Lactobacillaceae/Lactobacillus 
have different functions, and some strains may be unfavorable for 
increasing bone mass. Subsequent validation with larger populations 
and mechanistic experiments should be performed to better explore 
this hypothesis.

In contrast to the elevated microbial taxonomies, the abundances 
of Ruminococcaceae (PMOP vs. control, 25.64% vs. 34.99%, 
p = 0.0332) and Bacteroides eggerthii (PMOP vs. control, nearly 00.00% 
vs. 0.62%, p = 0.0007) were lower in PMOP patients than those in 
control subjects. The bacteria of Ruminococcaceae include some 
butyric acid-producing microbes such as Faecalibacterium and 
Butyricicoccus (Ozaki et al., 2021). Butyrate-producing bacteria are 
promising probiotic candidates for gastrointestinal disorders such as 
inflammatory bowel disease (IBD) (Roux et al., 2015). A recent study 
demonstrated that Bacteroides eggerthii was decreased in OP patients 
and negatively correlated with bone resorption markers but positively 
correlated with bone formation markers and 25-OH-D3 (Qin et al., 
2021), which is consistent with our findings in the current study.

We performed BMD measurements at both the lumbar spine and 
total hip for all the participants in this study. The Spearman correlation 
analysis revealed that gut microbial compositions were more related to 
BMD value/T-score at the total hip than those at the lumbar spine. 
Researchers have suggested that clinicians and densitometrists should 
expect that more than 40% of women screened for DXA will have 
T-score discordance between the spine and hip, which is an important 
point worthy of attention (Yoon and Kim, 2021). In clinical trials, 
changes in BMD have been shown to provide a reliable estimate of 
treatment-related antifracture effects, and evidence supports the 
suitability of total hip BMD as a meaningful outcome for the clinical 
management of patients with OP (Leslie et al., 2016; Banefelt et al., 
2022). In another earlier cohort study, the total hip was the best site for 
overall fracture assessment, and the spine was the most useful site for 
the prediction of spinal fractures alone (Leslie et al., 2007). The above 
evidence and our findings indicate that the BMD value/T-score and 
BMD-related factors (such as BMD-related microbiota) are discordant 
among different test sites. This phenomenon should be regarded as a 
real and prevalent finding for physicians and researchers to develop 
better strategies for patients (Moayyeri et al., 2005; Leslie et al., 2020).

In the procedure of identifying PMOP-related microbial 
biomarkers, we  highlight the application of feature selection 
approaches for biological data mining and analysis. Recently, the 
number of microbiome-related studies has notably increased the 
availability of data on human microbiome composition and function, 
which has prompted the application of machine learning in human 
microbiome studies, including but not limited to feature selection, 

biomarker identification, disease prediction and treatment (Goren 
et al., 2021; Marcos-Zambrano et al., 2021; Hinton and Mucha, 2022). 
Recently, human gut microbiota biomarkers were selected via different 
feature selection methods for patients with IBD (Bakir-Gungor et al., 
2022). In addition to gut microbes (Cai et al., 2015; Ai et al., 2019), 
advanced feature selection methods also worked well for selecting the 
key gut microbiome genes (Chen et al., 2016). In this study, we selected 
several gut microbes that were most strongly related to PMOP via the 
feature selection methods MIC and XGBoost and further 
demonstrated that the combination of Fusobacteria and 
Lactobacillaceae performed well in distinguishing between the PMOP 
and control groups. We highlight the power and utility of feature 
selection methods in data mining and processing during biological 
dataset analysis for identifying diagnostic or predictive markers.

Our study has several limitations. Firstly, the GM analyses 
associated with this study is limited to its small sample size, which 
directly influences the research findings. Besides, the research was not 
profound enough, particularly in relying solely on fecal sample 16S 
rRNA sequencing to study the intestinal flora. Moreover, multiple 
factors such as the dietary habit, physical activity, smoking habit 
influent the GM structure and composition, it’s necessary to consider 
the confounders of individuals in larger cohort in the future study, to 
make the research more rigorous.

Conclusion

OP is a chronic, long-term pathologic process that is associated 
with heredity and environmental factors. PMOP is the most common 
type of OP and has become a major public health burden for women 
around the world. Evidence has demonstrated the linkages between 
OP/PMOP and gut microbiota. Our results showed that gut microbial 
compositions were altered in the PMOP group compared with the 
control group. However, the richness and diversity of the gut 
microbiota between the two groups were not that different. 
We performed BMD measurements at both the lumbar spine and total 
hip for all the participants. The Spearman correlation analysis revealed 
that gut microbial compositions were more strongly related to BMD 
value/T-score at the total hip than the lumbar spine. Furthermore, 
we employed two major feature selection methods, MIC and XGBoost, 
to identify PMOP-related microbial biomarkers, and the combination 
of specific microbes exhibited potential diagnostic value for 
distinguishing between PMOP and normal samples. These findings 
may provide new insights for revealing potential etiologies for OP/
PMOP, understanding the role of gut microbiota and modulating gut 
microbiota as a therapeutic target in the diseases. In addition, 
we  highlight the application of feature selection approaches in 
biological data mining and data analysis, which may help improve the 
research techniques for the medical and life sciences.

TABLE 2 Logistic regression results of the selected microbial features in disease classification.

Variable Coefficient Std. Error 95% CI Wald p

Constant −2.920 0.9312 −5.057 to −1.344 9.8337 0.0017

p_ Fusobacteria 4412 2084 956.5 to 9,151 4.4816 0.0343

f_ Lactobacillaceae 34.75 18.29 10.11 to 84.25 3.6107 0.0574

The bold p values showed significant statistical results.
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