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Background: The gut microbiome was reported to be associated with dyslipidemia 
in previous observational studies. However, whether the composition of the gut 
microbiome has a causal effect on serum lipid levels remains unclear.

Objective: A two-sample Mendelian randomization (MR) analysis was conducted 
to investigate the potential causal relationships between gut microbial taxa and 
serum lipid levels, including low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and log-transformed 
triglyceride (TG) levels.

Materials and methods: Summary statistics of genome-wide association studies 
(GWASs) for the gut microbiome and four blood lipid traits were obtained from 
public datasets. Five recognized MR methods were applied to assess the causal 
estimates, among which, the inverse-variance weighted (IVW) regression was used 
as the primary MR method. A series of sensitivity analyses were performed to test the 
robustness of the causal estimates.

Results: The combined results from the five MR methods and sensitivity analysis 
showed 59 suggestive causal associations and four significant causal associations. In 
particular, genus Terrisporobacter was associated with higher LDL-C (PIVW = 3.01 × 10−6) 
and TC levels (PIVW = 2.11 × 10−4), phylum Actinobacteria was correlated with higher 
LDL-C level (PIVW = 4.10 × 10−4), and genus Oscillospira was associated with lower TG 
level (PIVW = 2.19 × 10−6).

Conclusion: This research may provide novel insights into the causal relationships 
of the gut microbiome on serum lipid levels and new therapeutic or prevention 
strategies for dyslipidemia.
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1. Introduction

Dyslipidemia is a common lifestyle-related disease and one of the 
crucial risk factors for the development of cardiovascular disease 
(CVD), which is a major health issue and the leading cause of mortality 
worldwide. As one of the defects in lipid metabolism, dyslipidemia is 
characterized by abnormal blood lipid levels, which may include a 
combination of increased low-density lipoprotein cholesterol (LDL-C), 
total cholesterol (TC), and triglyceride (TG) or decreased high-density 
lipoprotein cholesterol (HDL-C) (Kopin and Lowenstein, 2017). 
Aggressive dyslipidemia diagnosis and treatment can help lower the 
morbidity and mortality rates of CVD (The Human Microbiome Project 
Consortium, 2012).

The gut microbiota refers to the whole microbial population 
that colonizes the intestinal tract, including bacteria, archaea, 
viruses, and protozoans. Most of them are within the large intestine, 
where more than 70% of all microbes in the body have been 
discovered (Piccioni et al., 2021). In recent years, the relationship 
between gut microbiota and disease pathogenesis has attracted 
much attention from the academe. The composition of the gut 
microbiota varies substantially with age, sex, lifestyle, or 
environmental factors (De Filippo et al., 2010; Jin et al., 2017; Takagi 
et  al., 2019). The gut microbiota participates in regulating lipid 
metabolism in the host leading to a change in blood lipid levels 
(Visconti et al., 2019), which indicates that it may be a potential risk 
factor for dyslipidemia. Previous studies have confirmed the link 
between gut microbiota and dyslipidemia. A cohort study by Fu 
et al. (2015) pointed out the important role of the gut microbiota in 
the variations in TG and HDL-C levels. Animal studies have also 
reported that host lipid metabolism can be  affected by the gut 
microbiota through multiple direct and indirect mechanisms 
(Ghazalpour et al., 2016; Schoeler and Caesar, 2019). In addition, 
Miyajima et al. (2022) found that several bacterial taxa, including 
Prevotella 9 and Bacteroides in men and Akkermansia and 
Escherichia/Shigella in women, are associated with serum lipid 
profiles in a Japanese cohort. Although the correlations between gut 
microbiota and dyslipidemia have been described by previous 
studies, the causal relationship between them remains unclear, and 
interpreting the causation would be  much more complex 
and challenging.

A great number of genome-wide association studies (GWASs) have 
analyzed the correlations between genetic variation and diseases or 
phenotypes. Mendelian randomization (MR) is a powerful statistical 
method to evaluate causation. It uses genetic variations remarkably 
associated with exposure as instrumental variables (IVs) to assess the 
causal relationship of the exposure to the outcome (Burgess et al., 2015). 
Two-sample MR analysis can measure causal estimates based on single-
nucleotide polymorphism (SNP)-exposure and SNP-outcome 
associations extracted from independent GWAS studies. Recent MR 
studies have explored the causal relationships between different 
exposures to dyslipidemia. However, to our knowledge, no MR analysis 
has been performed to evaluate the causal association of the gut 
microbiota with serum lipid levels.

Therefore, we obtained summary statistics from public large-scale 
GWAS consortiums and conducted a two-sample MR analysis to assess 
the causal relationships between the composition of gut microbiota and 
serum lipid levels to identify potentially modifiable risk factors 
for dyslipidemia.

2. Materials and methods

The study flow is illustrated in Figure 1. Two-sample MR method 
was applied to assess the causal relationship between gut microbiota 
composition and serum lipid levels. The SNPs used as IVs in summary-
level MR analysis should satisfy the following three key assumptions of 
MR analysis (Davey Smith and Hemani, 2014): (1) the relevance 
assumption: IVs are strongly correlated with the exposure of interest; (2) 
the independence assumption: IVs are not associated with confounders 
related to the exposure or outcome; (3) the exclusion assumption: IVs 
only affect the outcome through the exposure. Two-sample MR analysis 
should be performed under these assumptions to prevent the causal 
estimates from being biased.

2.1. Data sources

Genetic predictors for human gut microbiota composition were 
obtained from the summary statistics of a large-scale, multi-ethnic, 
microbiota-based GWAS meta-analysis (the MiBioGen study), which 
consists of 18,340 participants from 24 cohorts (Kurilshikov et al., 2021). 
In the present study, the microbial composition was profiled by targeting 
three distinct variable regions of the 16S RNA gene, and all datasets were 
rarefied to 10,000 reads per sample. The direct taxonomic binning 
method was applied in taxonomic classification. A total of 211 bacterial 
taxa presented in more than 10% of the samples in each cohort were 
included in the analysis of the relationship between the host and gut 
microbiota composition. Fifteen unknown bacterial taxa were excluded, 
and 196 taxa (119 genera, 32 families, 20 orders, 16 classes, and 9 phyla) 
were included in the MR analysis as the exposures. In addition, the 
GWAS summary statistics of another two large-scale metagenomics 
mbQTL studies, as listed in Table 1, were included as the candidate 
replication datasets to test the reliability of significant causal associations.

The summary statistics for serum lipid levels (LDL-C, HDL-C, TC, 
and log-transformed TG) were assessed from the Global Lipids Genetics 
Consortium–aggregated GWAS meta-analysis of 201 primary studies, 
involving 1,654,960 participants from five genetic ancestry groups. 
Ancestry-specific GWAS summary statistics for the four lipid traits in a 
European cohort were used in our MR analysis (Graham et al., 2022). 
No ethical approval was needed, because all data used in the current 
study were obtained from publicly available GWAS datasets.

2.2. Selection of instrumental variables

We performed strict quality control (QC) on the SNPs in the 
microbiota-based GWAS summary study to select valid IVs for MR 
analysis. We used a relatively loose p value of 1 × 10−5 to select SNPs 
associated with each bacterial taxon as candidate IVs. Afterward, 
independent IVs were selected for each bacterial taxon by performing 
linkage disequilibrium (LD) analysis to prevent the causal estimates 
from being biased. We clumped each set of microbiota-associated SNPs 
to obtain independent instruments (R2 < 0.01, window size = 500 kb) 
with the genome samples from the 1,000 Human Genomes Project 
(EUR) (The 1000 genomes project consortium, 2012) used as the LD 
reference panel. Among the SNPs in substantial LD, whose R2 was 
greater than the threshold, only the SNPs with the strongest association 
with the corresponding bacterial taxa could remain as the candidate IVs. 
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The relevance assumptions of MR analysis require that the selected IVs 
should be  substantially associated with the exposure. F-statistics 
(Burgess et al., 2011) is a method used to measure the strength of the 
IVs in MR analysis. Therefore, the total instrument F-statistic for each 
bacterial taxon was calculated by the following formula to evaluate the 
strength of the association between the candidate IVs and the 
corresponding taxon:

 
F

PVE n k
PVE

=
− −( )

−( )
1

1

where PVE represents the proportion of exposure variation by the 
selected IVs, n represents the total exposure GWAS population size, and 
k represents the total number of IVs. The PVE of each IV was calculated 
using the formula:
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where MAF is the minor allele frequency, β is the beta value, and Se 
is the standard error (Shim et al., 2015). Through fixing k equals 1, 
per-SNP F-statistics were also calculated using the first formula, and the 
weak IVs with F-statistics less than 10 were excluded from the candidate 
IV sets.

In addition, the existence of pleiotropic variants related to other 
unknown confounding factors may violate the independent assumptions 
of the MR analysis, which could probably result in the bias of causal 
estimates. Therefore, we  applied the MR–Egger and MR–PRESSO 
approaches to test the horizontal pleiotropy of all candidate IVs that 
passed the QC steps (Verbanck et al., 2018). In the MR–Egger method, 
we  considered that the horizontal pleiotropy of the IVs was not 
remarkable enough to cause an impact on the causal conclusions if the 
absolute value of the intercept was <0.1 and the corresponding p-value 
was >0.05. Similarly, we drew the same conclusion that no significant 
pleiotropy exists if the MR–PRESSO global test gave a p value of >0.05. 
Once horizontal pleiotropy was detected, we  took a step further to 
conduct the MR–PRESSO outlier test and removed the potentially 
outlying SNPs.

FIGURE 1

Flow chart of the MR analysis.

TABLE 1 Summary information of the datasets employed in the current MR study.

Traits N nSNP Data type Population References

Gut microbiota 

(discovery)

18,340 NA Continuous 72.3%European Kurilshikov et al. (2021)

Gut microbiota 

(replication)

5,959 7,980,478 Continuous European Qin (2022)

7,783 5,584,686 Continuous European Lopera-Maya et al. (2022)

Serum lipids 1,320,016 47 M Continuous European Graham et al. (2022)

N, the total sample size; nSNP, number of the SNP used as the IVs for the MR analyses.
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2.3. MR estimates

In the current study, we performed a two-sample MR analysis to 
assess the causal relationship between gut microbiota composition and 
serum lipid levels. For the bacterial taxa with at least three IVs, 
we applied multiple different robust MR methods, including inverse-
variance weighted (IVW) model (Burgess et  al., 2013), maximum 
likelihood estimator (MLE) (Pierce and Burgess, 2013), MR–Egger 
regression (Bowden et al., 2015), weighted median estimator (WLE) 
(Bowden et al., 2016), and weighted mode-based estimator (Hartwig 
et al., 2017), to investigate their causal links to the outcomes. If the 
causal estimates of more than three MR methods were nominally 
significant, gut microbiota taxa could be considered to have potential 
causal effects on blood lipids.

Among the five MR methods, we used the IVW method as the 
primary method to identify potential causation, as it is acknowledged as 
the most powerful statistic method of summary-level MR. It combines 
the Wald ratios of each valid IV to assess the total effect of exposure 
variables on the outcome through a meta-analysis approach (Burgess 
et  al., 2013). The IVW regression model can provide an unbiased 
estimate of the causal effect robustly when no SNPs violate the IV 
assumption of independence (inexistence of horizontal pleiotropy). 
When performing the IVW approach, fixed-effects or random-effects 
regression models are available for analysis. If excess existence of 
heterogeneity (p < 0.05) is detected in the IVs, a random-effects IVW 
model is more recommended to be used rather than a fixed-effects 
IVW model.

The MR–Egger method is exploited to the causal estimates based 
on the slope of a weighted linear regression of the IV–outcome 
associations on the IV–exposure associations with the Instrument 
Strength Independence of Direct Effect (InSIDE) assumption satisfied 
(Bowden et al., 2015). Different from the IVW method, where the 
intercept of IVW forced linear regression is zero, we can evaluate the 
average pleiotropic effect according to the intercept of the MR–Egger 
regression. In particular, the InSIDE assumption allows the genetic 
instruments to have pleiotropic effects independent of the associations 
between the variants and exposure, which weakens the IV assumption 
of independence. That is to say, the causal estimates from the MR–
Egger method would still be robust to horizontal pleiotropy under 
this assumption. However, the MR–Egger model may give an 
inaccurate causal effect estimate when influential data points or 
outliers are present in the IVs, which results in a lowered power for 
the MR–Egger model to draw a valid causal inference than the 
IVW method.

Median-based estimator and mode-based estimator further weaken 
the IV assumptions of MR analysis. The median-based estimator can 
provide unbiased causal estimates despite the existence of unbalanced 
horizontal pleiotropy, even when the ratio of invalid SNPs is up to 50%. 
In the mode-based estimator approach, SNPs are divided into different 
subclasses, in which the IVs exhibit similar causal effects. If all IVs in the 
largest subclasses are valid, the mode-based estimator can also give 
consistent and unbiased causal estimates.

2.4. Sensitivity analysis

In summary-level MR analysis, the presence of IVs with substantial 
heterogeneity may bias the causal estimates, lessening the reliability of 

the causal conclusions. Even when all SNPs are valid instruments and 
satisfy the three MR assumptions, some heterogeneity effects may still 
exist in the IVs. Therefore, variant-specific IVW regression was utilized 
to test the heterogeneity of each IV. If the p-value of Cochran’s Q statistic 
in the heterogeneity test is lower than 0.05, we would have enough 
evidence to consider the presence of a considerable heterogeneity among 
the IVs (Bowden et al., 2018).

Leave-one-out sensitivity analysis was also applied to detect possibly 
influential SNPs and test the robustness of the causal conclusions 
(Burgess, 2014). In this step, the causal estimates were re-assessed with 
each SNP removed from the IVs in turns. If certain SNPs had substantial 
correlations with the exposure, then these SNP were likely to dominate 
the causal estimate. Therefore, we should assess the robustness again by 
re-estimating the causal effect with all such SNPs excluded.

2.5. Bidirectional MR analysis

An additional reverse MR analysis was conducted to explore the 
reverse causal relationship of the blood lipid levels (as exposures) to the 
three identified bacterial taxa (as outcomes). The procedures of the 
reverse MR analysis were the same as the abovementioned MR analysis.

2.6. Tools

Data cleaning was conducted using Python and Jupyter Notebook. 
All MR analyses were conducted using R. The five robust MR methods 
and the sensitivity analysis were performed using the R package 
“TwoSampleMR” (version 0.5.6), and MR–PRESSO analysis was 
performed by the R package “MRPRESSO” (version 1.0).

3. Results

3.1. Selection of instrumental variables

We selected 653, 1,300, 1,640, 2,566, and 7,834 SNPs associated with 
gut microbiota in the phylum, class, order, family, and genus levels, 
respectively, at a relatively loose significance level (p < 1 × 10−5). After LD 
clumping and harmonization, the number of candidate IVs associated 
with a certain bacterial taxon for each outcome varied from 3 to 22. No 
evidence of horizontal pleiotropy effects was detected in the 
MR − PRESSO global test (p > 0.05), which was also shown consistently 
by the intercept of the MR − Egger regression. In all analyses for serum 
lipid levels, all the F-statistics of the IVs were >10, indicating no evidence 
of weak instrument bias.

3.2. MR analysis

The causal relationship between each pair of bacterial taxa and 
serum lipid levels was tested by five MR methods. In the primary 
analysis, we applied the IVW method to assess the causal relationship 
between gut microbiota and serum lipid levels, and then identified 63 
suggestive associations (PIVW < 0.05) for 53 bacterial taxa. Among the 63 
taxa, 21, 15, 16, and 16 taxa were related to HDL-C, LDL-C, TC, and TG, 
respectively (Supplementary Tables S2–S5). After multiple-testing 
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correction, four significant causal associations (false discover rate 
[FDR] < 0.05) were detected: genus Terrisporobacter on LDL-C 
(Estimate = 0.0348, 95% confidence interval [CI]: 0.0202–0.0494, 
FDR = 5.90 × 10−4), phylum Actinobacteria on LDL-C (Estimate = 0.0315, 
95% CI: 0.0140–0.0490, FDR = 0.040), genus Terrisporobacter on TC 
(Estimate = 0.0318, 95% CI: 0.0150–0.0486, FDR = 0.041), and genus 
Oscillospira on TG (Estimate = −0.0271, 95% CI: −0.0415 to −0.0127, 
FDR = 0.043). In addition, four taxa had promising causal relationships 
with TG (0.05 < FDR < 1). In addition, 16 taxa, which include all four 
identified taxa, showed suggestive causal associations with at least two 
outcome traits.

In addition to the IVW method, four robust MR methods, namely, 
MR–Egger, maximum likelihood, weighted mode-based estimator, and 
weighted median-based estimator, were applied to evaluate the reliability 
of the causal estimates in our analyses. The full results of all MR methods 
for the 63 suggestive associations identified in the primary analysis are 
shown in Supplementary Table S6. For the four significant associations 
detected by the IVW method, at least three MR methods generated 
similar and significant causal estimates (Table  1; Figure  2), namely, 
genus Terrisporobacter on LDL-C (PIVW = 3.01 × 10−6, PMaximum 

likelihood = 1.81 × 10−5, Pweighted median = 1.61 × 10−4), phylum Actinobacteria on 
LDL-C (PIVW = 4.10 × 10−4, PMaximum likelihood = 5.25 × 10−4, Pweighted 

median = 1.96 × 10−2), genus Terrisporobacter on TC (PIVW = 4.10 × 10−4, 
PMaximum likelihood = 5.25 × 10−4, Pweighted median = 1.96 × 10−2), and genus 
Oscillospira on TG (PIVW = 4.10 × 10−4, PMaximum likelihood = 5.25 × 10−4, Pweighted 

median = 1.96 × 10−2). Clearly, these significant results are highly consistent 
with those obtained using IVW regression, indicating the robustness of 
the identified association signals. The scatter plots of the SNP effect sizes 
for the four significant associations are shown in Figure 3.

The results of the reverse MR analysis are shown in 
Supplementary Table S7. However, no significant causal estimates were 
detected by the five MR methods, which indicated no evidence of causal 
effect from blood lipid levels to identified bacterial taxa.

3.3. Sensitivity analysis

We performed a series of sensitivity analysis to test the heterogeneity 
and horizontal pleiotropy of the selected IVs to evaluate the robustness 
of the causal estimates for all the 63 suggestive associations identified by 
IVW. No heterogeneity effect was detected in the heterogeneity test 
(p > 0.05). The intercept of the MR–Egger regression did not remarkably 
deviate from zero, and the p-value of the MR–PRESSO global test was 
above 0.05, indicating the absence of horizontal pleiotropy and that no 
IVs behaved as potential outliers (Table 2). A leave-one-out sensitivity 
analysis was used to confirm the reliability and stability of the causal 
effects of the four identified associations. All SNPs of the four identified 
causal relationships displayed no sensitivity to the results, indicating 
strong causal links from the identified taxa to the corresponding 
outcome traits (Figure 4).

FIGURE 2

Forest plots of the MR results of the four identified causal associations.
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3.4. Replication analysis

In this stage, we searched these two genera Terrisporobacter and 
Oscillospira in the candidate replication datasets. However, only the 
GWAS summary statistics for the genus Terrisporobacter as well as the 
species Terrisporobacter othiniensis, which were reported in the study 
conducted by Qin (2022), could be obtained. An additional replication 
MR analysis was conducted to test the robustness of the causality from 
the genus Terrisporobacter to the blood lipid levels. The causal effects of 
genus Terrisporobacter on LDL-C (PIVW  = 9.13 × 10−3, PMaximum 

likelihood = 9.74 × 10−3, Pweighted median = 4.13 × 10−2) and TC (PIVW = 4.33 × 10−3, 
PMaximum likelihood = 3.95 × 10−3) were successfully replicated, as shown in 
Table  3. However, no evidence of causal effects of the genetically 
predicted Terrisporobacter othiniensis on serum lipid levels was found. 
The plots for the significant results of the replication MR analysis are 
shown in Figure 5. The full results of the replication analysis are listed 
in Supplementary Table S8.

4. Discussion

In this study, we used a two-sample MR method to explore the 
directional causal relationship between gut microbiota and blood lipids 
based on large-scale GWAS summary statistics. After conducting a 
series of QC procedures, the instrumental variables were excluded that 
might bias the causal estimates. Besides, the results of the sensitivity 
analysis detected no heterogeneity, horizontal pleiotropy, or potentially 
influential IV, suggesting that the causal inferences of our MR study 
were robust enough. Our research is the first MR study focusing on the 
causal links between gut microbiota and serum lipid levels.

In total, we detected 63 promising associations between bacterial 
taxa with blood lipid levels. After the correction of multiple testing, 
we found that the genus Terrisporobacter was causally associated with 
LDL-C and TC, phylum Actinobacteria was causally associated with 
LDL-C, and genus Oscillospira was causally related to TG. No reverse 
causal relationship was detected in bidirectional MR analyses.

A B

C D

FIGURE 3

Scatter plots for the causal effects of the identified bacterial taxa on serum lipids. (A) Terrisporobacter (genus)–LDL-C. (B) Actinobacteria (phylum)–LDL-C. 
(C) Terrisporobacter (genus)–TC. (D) Oscillospira (genus)–TG. (Light blue line: inverse-variance weighted; blue line: maximum likelihood; light green line: 
MR Egger; green line: weighted median estimator; red line: weighted model-based estimator).
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A compelling finding of this study is that the genus 
Terrisporobacter showed substantial positive causal effects on 
LDL-C and TC, which was also confirmed by the replication MR 
analysis. Although very little is known about Terrisporobacter, our 
finding is similar to the results of Lee et al. (2020), who discovered 
that the abundance of Terrisporobacter is positively correlated with 
CRP, TG, BMI, and weight and negatively correlated with HDL-C 

after the consumption of symbiotic beverages. In addition, the genus 
Terrisporobacter has been linked to short-chain fatty acids (SCFAs) 
and oxidative stress in an animal study (Li et  al., 2021). A 
randomized controlled trial in children with type 1 diabetes 
identified a remarkably higher relative abundance of Terrisporobacter 
in the placebo group compared with the prebiotic group at 3 months 
(Ho et al., 2019). All these studies suggest that Terrisporobacter is a 

TABLE 2 Five MR models’ estimation of the causal relationships between identified bacterial taxa and serum lipid levels and tests for heterogeneity and 
horizontal pleiotropy.

Exposure Outcome Method nSNP Beta (95%CI) p-
value

F-
statistics

PHeterogeneity PPleiotropy PGlobal 

Test

genus.

Terrisporobacter.

id.11348

LDL-C Inverse-

variance 

weighted

5 0.035 (0.02, 0.049) 3.01E-06 21.25 0.28 0.86 0.61

Maximum 

likelihood

0.036 (0.019, 0.052) 1.81E-05

MR Egger 0.031 (−0.015, 0.076) 2.78E-01

Weighted 

median

0.04 (0.019, 0.061) 1.61E-04

Weighted 

mode

0.041 (0.012, 0.07) 5.19E-02

phylum.

Actinobacteria.

id.400

LDL-C Inverse-

variance 

weighted

10 0.032 (0.014, 0.049) 4.10E-04 22.11 0.79 0.71 0.51

Maximum 

likelihood

0.032 (0.014, 0.051) 5.25E-04

MR Egger 0.018 (−0.053, 0.089) 6.36E-01

Weighted 

median

0.029 (0.005, 0.054) 1.96E-02

Weighted 

mode

0.027 (−0.006, 0.06) 1.41E-01

genus.

Terrisporobacter.

id.11348

TC Inverse-

variance 

weighted

5 0.032 (0.015, 0.049) 2.11E-04 21.25 0.22 0.63 0.46

Maximum 

likelihood

0.033 (0.017, 0.049) 3.91E-05

MR Egger 0.019 (−0.032, 0.069) 5.23E-01

Weighted 

median

0.034 (0.014, 0.054) 1.03E-03

Weighted 

mode

0.035 (0.007, 0.062) 6.96E-02

genus.Oscillospira.

id.2064

TG Inverse-

variance 

weighted

8 −0.027(−0.041, 

−0.013)

2.19E-04 21.74 0.45 0.87 0.56

Maximum 

likelihood

−0.028(−0.043, 

−0.013)

3.00E-04

MR Egger −0.032(−0.095, 0.03) 3.52E-01

Weighted 

median

−0.03(−0.05, −0.01) 2.64E-03

Weighted 

mode

−0.034(−0.064, 

−0.004)

6.08E-02

nSNP, number of the SNP used as the IVs for the MR analyses; 95% CI, 95% confidence interval; PHeterogeneity, p-value of the heterogeneity test; PPleiotropy, p-value of the intercept of the MR Egger; 
PGlobal test, p-value of the MR-PRESSO global test.
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pathogenic bacterium. Xiao et al. (2020) reported that 8 bacterial 
genera including Terrisporobacter were significantly and positively 
correlated to TC, TG, LDL-C, and negatively related to HDL-C. Their 
study also demonstrated that decreased abundance of 
Terrisporobacter might increase the levels of phospholipids, purine, 
carboxylic acids, unsaturated fatty acids, and bile acids. Some of  
the abovementioned metabolites, for instance, phospholipids 
(Henderson et al., 2019) and bile acids (Li and Chiang, 2015), have 
been explicitly shown to be  associated with reduced cholesterol 
levels. Thus, we presumed that the genus Terrisporobacter might 
involve in the regulation of enzymes in bile acid metabolism or lipid 
biosynthesis, eventually leading to higher serum lipid levels and 
dyslipidemia. However, to date, studies on the role of 
Terrisporobacter on serum lipid levels remain limited owing to the 
lack of research on Terrisporobacter. Therefore, more studies on 

genus Terrisporobacter are needed to demonstrate the underlying 
mechanisms and causal effects of these identified associations in 
the future.

Our MR analysis also identified the substantial and positive 
causal relationship of phylum Actinobacteria on TC. As one of the 
basic phyla of gut microbiota, Actinobacteria is a controversial 
intestinal flora. Some previous studies reported that Actinobacteria 
is beneficial for human health (Cani et  al., 2007) while some 
suggested the opposite. Nonetheless, growing evidence indicates 
that an increased abundance of Actinobacteria is positively 
correlated with obesity (Wu et al., 2011) and adipogenesis (Wieland 
et al., 2015). An animal study demonstrated that the microbiota of 
high-fat diet (HFD)-fed mice is characterized by multiple 
substantially increased bacteria, including Actinobacteria (Ke et al., 
2020). Another animal research also found that Actinobacteria is 

A B

C D

FIGURE 4

Forest plots of leave-one-out sensitivity analysis for the four identified associations. (A) Terrisporobacter (genus)–LDL-C. (B) Actinobacteria (phylum)–
LDL-C. (C) Terrisporobacter (genus)–TC. (D) Oscillospira (genus)–TG.
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considerably more abundant in the HFD-fed group after 4 weeks of 
diet consumption and that a variety of pathogenic bacteria of such 
phyla could incite inflammation (Li et al., 2020). Similarly, our MR 
results are in agreement with a previous study that also reported 
that liver lipid content, including TC and LDL-C, was positively 
associated with Actinobacteria. Therefore, Actinobacteria may play 
an important role in promoting the development of hyperlipidemia. 
Actinobacteria are the most efficient biocatalysts of steroid 
transformation, such as deacetylation and bioconversion from 
steroid ketones to steroid alcohols (Donova, 2007), so increased 
serum TC levels might be  due to increased intestinal 
Actinobacteria abundance.

The result of our MR analysis revealed that genus Oscillospira is 
considerably associated with lower TG and promisingly related to 
lower TC, suggesting a possible protective factor for host health. 
This finding is consistent with previous studies. Oscillospira is a 
common and beneficial bacterial genus that can be  found 
throughout the animal and human intestines but has not been 
purely cultured. It has been reported that the Oscillospira abundance 
is strongly related to obesity, leanness, and human health (Sweeney 
and Morton, 2013). Besides, growing evidence indicates that 
Oscillospira is capable of producing all kinds of SCFAs dominated 
by butyrate, which can act as an important reference indicator to 
identify new probiotics (Yang et al., 2021). Chen et al. conducted 
multivariate association analysis using data from the Guangdong 
Gut Microbiome Project, in which they found that Oscillospira is 
positively associated with HDL-C and sleep time and negatively 
related to SBP, DBP, TG, fasting blood glucose, and uric acid (Ran 
et al., 2020). Their correlation results are highly consistent with the 

causal conclusions of our MR analysis. In addition, previous studies 
have also shown that Oscillospira plays an important role in the 
regulation of numerous metabolic processes associated with obesity 
and dyslipidemia (Ji et al., 2022). Thus, the results of our MR study 
further demonstrate the associations between Oscillospira and 
reduced serum lipid levels as well as improved dyslipidemia.

Our study has several advantages. First, the largest publicly available 
GWAS statistics of the gut microbiome were used in the two-sample MR 
analysis. Second, the causal estimates are reliable and stable owing to the 
strict quality control procedures and robust MR methods applied. Third, 
the potential causal associations identified by the IVW method may 
provide candidate bacterial taxa for future functional studies on the 
mechanism of the associations between gut microbiome with 
serum lipids.

Our study may also have some limitations. First, due to the 
design of the MR study, the data obtained from public databases 
were not individual-level statistics, which might lead to biases in 
causal estimates. Second, MR analysis strongly relies on its three 
assumptions of instruments, which are always difficult to completely 
satisfy despite the strict quality control conditions and sensitivity 
analysis. Third, while MR methods may provide novel insights into 
the causalities from the exposure traits to the outcome traits, the 
magnitude of the associations may not be estimated accurately, and 
thus, more research is needed to confirm the findings. Fourth, since 
this MR analysis mainly focused on populations with European 
ancestry, without extrapolating the results to other ethnic groups 
might also be a limitation of our study.

In conclusion, this MR study supports the positive and negative 
causal effects of gut microbiota on serum lipid levels. Our MR study 

TABLE 3 Replication of the causalities from Terrisporobacter to LDL-C and TC.

Exposure Outcome Method nSNP Beta (95%CI) P-
value

F-
statistics

PHeterogeneity PPleiotropy PGlobal 

Test

Genus 

Terrisporobacter

LDL-C Inverse-

variance 

weighted

13 0.021 (0.005,0.037) 9.13E-03 0.88 0.44 21.98 0.90

Maximum 

likelihood

0.022 (0.005,0.038) 9.74E-03

MR Egger 0.007(−0.03,0.045) 7.06E-01

Weighted 

median

0.023 (0.001,0.045) 4.13E-02

Weighted 

mode

0.03(−0.005,0.065) 1.16E-01

Genus 

Terrisporobacter

TC Inverse-

variance 

weighted

13 0.023 (0.007,0.039) 4.33E-03 0.39 0.45 21.87 0.42

Maximum 

likelihood

0.024 (0.008,0.04) 3.95E-03

MR Egger 0.009(−0.029,0.048) 6.40E-01

Weighted 

median

0.017(−0.005,0.039) 1.21E-01

Weighted 

mode

0.005(−0.036,0.046) 8.06E-01

nSNP, number of the SNP used as the IVs for the MR analyses; 95% CI, 95% confidence interval; PHeterogeneity, p-value of the heterogeneity test; PPleiotropy, p-value of the intercept of the MR Egger; PGlobal 

test, p-value of the MR-PRESSO global test.
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showed that phylum Actinobacteria is causally related to LDL-C, 
genus Terrisporobacter is responsible for higher LDL-C and TC 
levels, and phylum Actinobacteria and genus Oscillospira are 
associated with lower TG levels. These findings strengthen our 
knowledge of the associations between gut microbiota with blood 
lipids, which may provide novel insights into the strategies for 
dyslipidemia prevention.
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(genus)–TC. Forest plots of leave-one-out sensitivity analysis: (C) Terrisporobacter (genus)–LDL-C. (D) Oscillospira (genus)–TC.

https://doi.org/10.3389/fmicb.2023.1113334
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://mibiogen.gcc.rug.nl/menu/main/home/
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/


Guo et al. 10.3389/fmicb.2023.1113334

Frontiers in Microbiology 11 frontiersin.org

manuscript. YL and ZW performed the data analysis and revised the 
manuscript. GX performed the data analysis. XW and FL collected and 
cleaned the data. WL performed the replication analysis and helped 
revise the manuscript. QZ and XX assisted in carrying out the study and 
critically revised the manuscript. SZ designed the study, led the study, 
and revised the manuscript. All authors reviewed and approved the 
final manuscript.

Funding

This study was funded by the National Natural Science 
Foundation of China (Nos. 82274016, 81872934, 81903652, and 
81673514), the Science and Technology Planning Project of 
Guangdong Province, China (No. 2017B030314041), Science and 
Technology Development Projects of Guangzhou (No. 202201011424), 
the Guangdong Provincial Key Laboratory of Coronary Heart Disease 
Prevention (No. Y0120220151), and Science and Technology 
Development Projects of Guangzhou, Guangdong, China (No. 
202002030415).

Conflict of interest

The authors declare that the research was conducted in the absence 
of any commercial or financial relationships that could be construed as 
a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or 
those of the publisher, the editors and the reviewers. Any product that 
may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1113334/full#
supplementary-material

References
Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mendelian randomization with 

invalid instruments: effect estimation and bias detection through egger regression. Int. J. 
Epidemiol. 44, 512–525. doi: 10.1093/ije/dyv080

Bowden, J., Davey Smith, G., Haycock, P. C., and Burgess, S. (2016). Consistent 
estimation in Mendelian randomization with some invalid instruments using a weighted 
median estimator. Genet. Epidemiol. 40, 304–314. doi: 10.1002/gepi.21965

Bowden, J., Spiller, W., Del Greco, M. F., Sheehan, N., Thompson, J., Minelli, C., et al. 
(2018). Improving the visualization, interpretation and analysis of two-sample summary 
data Mendelian randomization via the radial plot and radial regression. Int. J. Epidemiol. 
47, 1264–1278. doi: 10.1093/ije/dyy101

Burgess, S. (2014). Sample size and power calculations in Mendelian randomization with 
a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929. doi: 
10.1093/ije/dyu005

Burgess, S., Butterworth, A., and Thompson, S. G. (2013). Mendelian randomization 
analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 
658–665. doi: 10.1002/gepi.21758

Burgess, S., and Thompson, S. G.CRP CHD Genetics Collaboration (2011). Avoiding 
bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 
755–764. doi: 10.1093/ije/dyr036

Burgess, S., Timpson, N. J., Ebrahim, S., and Davey, S. G. (2015). Mendelian 
randomization: where are we now and where are we going? Int. J. Epidemiol. 44, 379–388. 
doi: 10.1093/ije/dyv108

Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., et al. 
(2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-
induced diabetes in mice through a mechanism associated with endotoxaemia. 
Diabetologia 50, 2374–2383. doi: 10.1007/s00125-007-0791-0

Davey Smith, G., and Hemani, G. (2014). Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98. doi: 10.1093/hmg/ddu328

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., et al. 
(2010). Impact of diet in shaping gut microbiota revealed by a comparative study in 
children from Europe and rural Africa. Proc. Natl. Acad. Sci. 107, 14691–14696. doi: 
10.1073/pnas.1005963107

Donova, M. V. (2007). Transformation of steroids by actinobacteria: a review. Appl. 
Biochem. Microbiol. 43, 1–14. doi: 10.1134/S0003683807010012

Fu, J., Bonder, M. J., Cenit, M. C., Tigchelaar, E. F., Maatman, A., Dekens, J. A. M., et al. 
(2015). The gut microbiome contributes to a substantial proportion of the variation in 
blood lipids. Circ. Res. 117, 817–824. doi: 10.1161/CIRCRESAHA.115.306807

Ghazalpour, A., Cespedes, I., Bennett, B. J., and Allayee, H. (2016). Expanding role of 
gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 27, 141–147. doi: 10.1097/
MOL.0000000000000278

Graham, S. E., Clarke, S. L., Wu, K. H. H., Kanoni, S., Zajac, G. J., Ramdas, S., et al. 
(2022). The power of genetic diversity in genome-wide association studies of lipids. Nature 
600, 675–679. doi: 10.1038/s41586-021-04064-3

Hartwig, F. P., Davey Smith, G., and Bowden, J. (2017). Robust inference in summary 
data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 
46, 1985–1998. doi: 10.1093/ije/dyx102

Henderson, F., Johnston, H. R., Badrock, A. P., Jones, E. A., Forster, D., Nagaraju, R. T., 
et al. (2019). Enhanced fatty acid scavenging and glycerophospholipid metabolism 
accompany melanocyte neoplasia progression in zebrafish. Cancer Res. 79, 2136–2151. doi: 
10.1158/0008-5472.CAN-18-2409

Ho, J., Nicolucci, A. C., Virtanen, H., Schick, A., Meddings, J., Reimer, R. A., et al. (2019). 
Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children 
with type 1 diabetes. J. Clin. Endocrinol. Metabol. 104, 4427–4440. doi: 10.1210/
jc.2019-00481

Ji, J., Zhang, S., Yuan, M., Zhang, M., Tang, L., Wang, P., et al. (2022). Fermented Rosa 
roxburghii Tratt juice alleviates high-fat diet-induced hyperlipidemia in rats by modulating 
gut microbiota and metabolites. Front. Pharmacol. 13:883629. doi: 10.3389/
fphar.2022.883629

Jin, Y., Wu, S., Zeng, Z., and Fu, Z. (2017). Effects of environmental pollutants on gut 
microbiota. Environ. Pollut. 222, 1–9. doi: 10.1016/j.envpol.2016.11.045

Ke, J., An, Y., Cao, B., Lang, J., Wu, N., and Zhao, D. (2020). Orlistat-induced gut 
microbiota modification in obese mice. Evid. Based Complement. Alternat. Med. 2020, 1–9. 
doi: 10.1155/2020/9818349

Kopin, L., and Lowenstein, C. J. (2017). Dyslipidemia. Ann. Intern. Med. 167, ITC81–
ITC96. doi: 10.7326/AITC201712050

Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., 
Demirkan, A., et al. (2021). Large-scale association analyses identify host factors 
influencing human gut microbiome composition. Nat. Genet. 53, 156–165. doi: 10.1038/
s41588-020-00763-1

Lee, S. H., You, H. S., Kang, H. G., Kang, S. S., and Hyun, S. H. (2020). Association 
between altered blood parameters and gut microbiota after synbiotic intake in healthy, 
elderly Korean women. Nutrients 12:3112. doi: 10.3390/nu12103112

Li, T., and Chiang, J. Y. L. (2015). Bile acids as metabolic regulators. Curr. Opin. 
Gastroenterol. 31, 159–165. doi: 10.1097/MOG.0000000000000156

Li, Y., Ma, Q., Wang, J., Li, P., Cheng, L., An, Y., et al. (2020). Relationship between 
hyperlipidemia and the gut microbiome of rats, characterized using high-throughput 
sequencing. J. Trad. Chin. Med. Sci. 7, 154–161. doi: 10.1016/j.jtcms.2020.04.006

Li, H., Shang, Z., Liu, X., Qiao, Y., Wang, K., and Qiao, J. (2021). Clostridium butyricum 
alleviates enterotoxigenic Escherichia coli K88-induced oxidative damage through 
regulating the p62-Keap1-Nrf2 signaling pathway and remodeling the cecal microbial 
community. Front. Immunol. 12:771826. doi: 10.3389/fimmu.2021.771826

Lopera-Maya, E. A., Kurilshikov, A., van der Graaf, A., Hu, S., Andreu-Sánchez, S., 
Chen, L., et al. (2022). Effect of host genetics on the gut microbiome in 7,738 participants 
of the Dutch microbiome project. Nat. Genet. 54, 143–151. doi: 10.1038/
s41588-021-00992-y

Miyajima, Y., Karashima, S., Ogai, K., Taniguchi, K., Ogura, K., Kawakami, M., et al. 
(2022). Impact of gut microbiome on dyslipidemia in Japanese adults: assessment of the 
Shika-machi super preventive health examination results for causal inference. Front. Cell. 
Infect. Microbiol. 12:908997. doi: 10.3389/fcimb.2022.908997

Piccioni, A., de Cunzo, T., Valletta, F., Covino, M., Rinninella, E., Raoul, P., et al. (2021). 
Gut microbiota and environment in coronary artery disease. Int. J. Environ. Res. Public 
Health 18:4242. doi: 10.3390/ijerph18084242

https://doi.org/10.3389/fmicb.2023.1113334
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1113334/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1113334/full#supplementary-material
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyy101
https://doi.org/10.1093/ije/dyu005
https://doi.org/10.1002/gepi.21758
https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1093/ije/dyv108
https://doi.org/10.1007/s00125-007-0791-0
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1073/pnas.1005963107
https://doi.org/10.1134/S0003683807010012
https://doi.org/10.1161/CIRCRESAHA.115.306807
https://doi.org/10.1097/MOL.0000000000000278
https://doi.org/10.1097/MOL.0000000000000278
https://doi.org/10.1038/s41586-021-04064-3
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.1158/0008-5472.CAN-18-2409
https://doi.org/10.1210/jc.2019-00481
https://doi.org/10.1210/jc.2019-00481
https://doi.org/10.3389/fphar.2022.883629
https://doi.org/10.3389/fphar.2022.883629
https://doi.org/10.1016/j.envpol.2016.11.045
https://doi.org/10.1155/2020/9818349
https://doi.org/10.7326/AITC201712050
https://doi.org/10.1038/s41588-020-00763-1
https://doi.org/10.1038/s41588-020-00763-1
https://doi.org/10.3390/nu12103112
https://doi.org/10.1097/MOG.0000000000000156
https://doi.org/10.1016/j.jtcms.2020.04.006
https://doi.org/10.3389/fimmu.2021.771826
https://doi.org/10.1038/s41588-021-00992-y
https://doi.org/10.1038/s41588-021-00992-y
https://doi.org/10.3389/fcimb.2022.908997
https://doi.org/10.3390/ijerph18084242


Guo et al. 10.3389/fmicb.2023.1113334

Frontiers in Microbiology 12 frontiersin.org

Pierce, B. L., and Burgess, S. (2013). Efficient design for Mendelian randomization 
studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 178, 
1177–1184. doi: 10.1093/aje/kwt084

Qin, Y. (2022). Combined effects of host genetics and diet on human gut microbiota and 
incident disease in a single population cohort. Nat. Genet. 54, 134–142. doi: 10.1038/
s41588-021-00991-z

Ran, C. Y., Min, Z. H., Xia, Z. G., Lan, C. F., Dan, C. L., and Cong, Y. Z. (2020). 
High Oscillospira abundance indicates constipation and low BMI in the Guangdong gut 
microbiome project. Sci. Rep. 10:9364. doi: 10.1038/s41598-020-66369-z

Schoeler, M., and Caesar, R. (2019). Dietary lipids, gut microbiota and lipid 
metabolism. Rev. Endocr. Metab. Disord. 20, 461–472. doi: 10.1007/s11154-019-09512-0

Shim, H., Chasman, D. I., Smith, J. D., Mora, S., Ridker, P. M., Nickerson, D. A., et al. 
(2015). A multivariate genome-wide association analysis of 10 LDL subfractions, and their 
response to statin treatment, in 1868 Caucasians. PLoS One 10:e0120758. doi: 10.1371/
journal.pone.0120758

Sweeney, T. E., and Morton, J. M. (2013). The human gut microbiome: a review of the 
effect of obesity and surgically induced weight loss. JAMA Surg. 148, 563–569. doi: 10.1001/
jamasurg.2013.5

Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., et al. (2019). 
Differences in gut microbiota associated with age, sex, and stool consistency in healthy 
Japanese subjects. J. Gastroenterol. 54, 53–63. doi: 10.1007/s00535-018-1488-5

The 1000 genomes project consortium (2012). An integrated map of genetic variation 
from 1,092 human genomes. Nature 491, 56–65. doi: 10.1038/nature11632

The Human Microbiome Project Consortium (2012). Structure, function and diversity 
of the healthy human microbiome. Nature 486, 207–214. doi: 10.1038/nature11234

Verbanck, M., Chen, C. Y., Neale, B., and Do, R. (2018). Detection of widespread horizontal 
pleiotropy in causal relationships inferred from Mendelian randomization between complex 
traits and diseases. Nat. Genet. 50, 693–698. doi: 10.1038/s41588-018-0099-7

Visconti, A., Le Roy, C. I., Rosa, F., Rossi, N., Martin, T. C., Mohney, R. P., et al. (2019). 
Interplay between the human gut microbiome and host metabolism. Nat. Commun. 
10:4505. doi: 10.1038/s41467-019-12476-z

Wieland, A., Frank, D. N., Harnke, B., and Bambha, K. (2015). Systematic review: 
microbial dysbiosis and nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 42, 
1051–1063. doi: 10.1111/apt.13376

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., et al. 
(2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 
105–108. doi: 10.1126/science.1208344

Xiao, Y., Yang, C., Xu, H., Wu, Q., Zhou, Y., Zhou, X., et al. (2020). Procyanidin B2 
prevents dyslipidemia via modulation of gut microbiome and related metabolites in high-
fat diet fed mice. J. Funct. Foods 75:104285. doi: 10.1016/j.jff.2020.104285

Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., and Huang, H. (2021). Oscillospira – a 
candidate for the next-generation probiotics. Gut Microbes 13:1987783. doi: 10.1080/ 
19490976.2021.1987783

https://doi.org/10.3389/fmicb.2023.1113334
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1093/aje/kwt084
https://doi.org/10.1038/s41588-021-00991-z
https://doi.org/10.1038/s41588-021-00991-z
https://doi.org/10.1038/s41598-020-66369-z
https://doi.org/10.1007/s11154-019-09512-0
https://doi.org/10.1371/journal.pone.0120758
https://doi.org/10.1371/journal.pone.0120758
https://doi.org/10.1001/jamasurg.2013.5
https://doi.org/10.1001/jamasurg.2013.5
https://doi.org/10.1007/s00535-018-1488-5
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41467-019-12476-z
https://doi.org/10.1111/apt.13376
https://doi.org/10.1126/science.1208344
https://doi.org/10.1016/j.jff.2020.104285
https://doi.org/10.1080/19490976.2021.1987783
https://doi.org/10.1080/19490976.2021.1987783

	Exploring the causal effects of the gut microbiome on serum lipid levels: A two-sample Mendelian randomization analysis
	1. Introduction
	2. Materials and methods
	2.1. Data sources
	2.2. Selection of instrumental variables
	2.3. MR estimates
	2.4. Sensitivity analysis
	2.5. Bidirectional MR analysis
	2.6. Tools

	3. Results
	3.1. Selection of instrumental variables
	3.2. MR analysis
	3.3. Sensitivity analysis
	3.4. Replication analysis

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material

	﻿References

