
Frontiers in Microbiology 01 frontiersin.org

Ecotin: A versatile protease inhibitor 
of bacteria and eukaryotes
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Serine protease inhibitors are a large family of proteins involved in important 
pathways and processes, such as inflammatory responses and blood clotting. Most 
are characterized by a precise mode of action, thereby targeting a narrow range 
of protease substrates. However, the serine-protease inhibitor ecotin is able to 
inhibit a broad range of serine proteases that display a wide range of specificities. 
This specificity is driven by special structural features which allow unique flexibility 
upon binding to targets. Although frequently observed in many human/animal-
associated bacteria, ecotin homologs may also be  found in plant-associated taxa 
and environmental species. The purpose of this review is to provide an update on 
the biological importance, role in host–microbe interactions, and evolutionary 
relationship between ecotin orthologs isolated from Eukaryotic and Prokaryotic 
species across the Tree of Life.
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Introduction

Serine-protease inhibitors (serpins) are a large family of protease inhibitors with members in 
bacteria, fungi, plants, and humans (Silverman et al., 2001; Spence et al., 2021). Serpins are primarily 
known for playing a role in controlling serine protease activity in biological processes (Gettins, 2002). 
Targets of serine proteases, in turn, participate in the regulation of a wide variety of complex 
physiological pathways, such as inflammation, fibrinolysis, and blood coagulation (Stein and Carrell, 
1995). The structural mechanism by which serpins inhibit their protease substrates is well understood 
(Huntington et al., 2000). Target proteases interact with serpins, cleaving a reactive center loop (RCL) 
which protrudes from the serpin body. Following cleavage, but before hydrolysis of the acyl enzyme 
intermediate, the RCL inserts into the center of the serpin body, effectively trapping the protease. 
Through conformational changes, involving major reorganization of exposed protease recognition 
loops, serpins form a noncovalent complex upon binding (Gettins, 2000). Serpin protease inhibitors 
usually display high specificity (Gettins and Ofson, 2009), but some serpins are capable of inhibiting 
a broad range of serine proteases (Ksiazek et al., 2015).

Ecotin (Escherichia coli trypsin inhibitor) is a member of the serpin superfamily and a potent 
inhibitor of serine proteases, first isolated from E. coli (Chung et al., 1983). Its 16 kDa structure 
consists of a monomer that includes a 20 amino acid signal peptide which targets the protein to the 
periplasm (McGrath et  al., 1991). High-resolution crystal structures revealed that two ecotin 
monomers assemble into a contralateral dimer which binds to two target protease molecules at 
opposite ends to form a heterotetramer (Pál et al., 1996; Yang et al., 1998). Each ecotin monomer 
inhibits its respective target via binding at two different surface contact sites: a primary and a 
secondary site (McGrath et al., 1994; Yang et al., 1998). This 1:1 stoichiometric configuration of two 
ecotin monomers for two protease units is unique among all the known structures and mechanisms 
of serine-protease inhibitor complexes (Figure 1A; Yang et al., 1998). Therefore, ecotin does not 
belong to one of the already established serpin families and has been classified in the MEROPS 
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database as inhibitor family I11, clan IN (Rawlings et  al., 2018). 
Interestingly, ecotin does not target endogenous E. coli proteases, and is 
therefore unlikely to be involved in the regulation of protease activity in 
this organism (Eggers et al., 2004). Rather, ecotin likely plays a role in 
protection against exogenous proteolytic attacks in environments such 
as the mammalian gastrointestinal tract (Chung et al., 1983; Seymour 
et  al., 1994). In keeping with this hypothesis, ecotin is a reversible 
inhibitor of a wide range of mammalian and human derived serine 
proteases including trypsin, chymotrypsin, neutrophil elastase (NE), 
cathepsin G, granzyme B, and mannan-binding lectin-associated serine 
proteases (MASPs; Chung et  al., 1983; Waugh et  al., 2000; Nagy 
et al., 2019).

The structure and substrate binding properties of ecotin have been 
analyzed by X-ray crystallography and protease-binding assays 
(McGrath et al., 1994; Shin et al., 1996; Perona et al., 1997; Wang et al., 
2001, 2003; Clark et al., 2011; Gaboriaud et al., 2013). These studies have 
primarily focused on the E. coli ecotin protein, but homologs from other 
taxa (e.g., Yersinia pestis) display similar protein quaternary structure 
and binding partners despite considerable primary sequence divergence 
(Clark et  al., 2011). However, it is increasingly recognized that the 
genomes of diverse bacterial and eukaryotic taxa encode homologs of 
ecotin, which play various biological and functional roles (Eggers et al., 
2004; Ireland et al., 2014; Verma et al., 2018; Nagy et al., 2019). This 
review aims at giving an update on the biological importance, role in 
host–microbe interactions, and evolutionary relationship between 
ecotin orthologs isolated from prokaryotic and eukaryotic species across 
the Tree of Life, as well as its potential in medical biotechnology.

Taxonomic distribution of ecotin

Ecotin has been studied for nearly four decades (Chung et al., 1983), 
and more than 600 protein homologs have since been discovered across 
the Bacterial and Eukaryotic kingdoms (Figure 2; Eschenlauer et al., 
2009; Ireland et al., 2014; Nagy et al., 2019; Garcia et al., 2020). Ecotin 
sequences diverge along the major taxonomic lineages, indicating that 
homologs were present in the ancestors of Proteobacteria (Figure 2C). 
Interestingly, sequences from other phyla (e.g., Bacteroidetes) are nested 
within Proteobacteria clusters, indicating that ecotin-like proteins were 
acquired via horizontal gene transfer (Figure 2C).

Ecotin homologs are widespread among Bacteria, particularly 
within the Gammaproteobacteria (Nagy et al., 2019). Among these, the 
genomes of several human pathogenic species such as Yersinia pestis, 
Klebsiella oxytoca, Salmonella enterica, Citrobacter rodentium, 
Pseudomonas aeruginosa, and Burkholderia pseudomallei and several 
species of Enterobacter encode ecotin homologs (Darby et al., 2014; 
Ireland et al., 2014; Tseng et al., 2018; Nagy et al., 2019; Salimiyan Rizi 
et al., 2019; Subramaniam et al., 2019; Vogt et al., 2019). Also in the 
Gammaproteobacteria, most genomes of Xenorhabdus species encode 
ecotin. Although this bacterial genus is known for symbiotic associations 
with nematodes, some members are also pathogenic to insects (Chaston 
et  al., 2011). In addition, ecotin homologs have recently been 
characterized in pathogenic strains of Campylobacter rectus and 
Campylobacter showae (Epsilonproteobacteria), which reside in the oral 
cavity (Thomas et al., 2020).

Although mostly studied in the context of infection, ecotin 
proteins are not exclusive to animal pathogens. For instance, ecotin 
homologs are common in members of the genus Pseudomonas, which 
includes species without known pathogenic strains such as 

Pseudomonas fluorescens or Pseudomonas protegens (Figure  2A). 
Pseudomonas species are known for their metabolic diversity and 
ability to colonize a wide range of environmental niches (Spiers et al., 
2000; Vartapetian et al., 2011), as well as the pathogenic Pseudomonas 
aeruginosa. Several other genera with few known pathogenic members 
encode ecotin homologs, including Chryseobacterium (more than 50 
species) and Shewanella (more than 30 species). Although 
Chryseobacterium species have been isolated from diseased fish and 
human wounds, their main habitat is freshwater and soil (Gallego 
et al., 2006; Zhou et al., 2007; Cho et al., 2010). Similarly, Shewanella 
species are aquatic microorganisms with a worldwide distribution, 
with species adapted to extreme environments and are rarely host-
associated (Abboud et al., 2005; Hau and Gralnick, 2007). Interestingly, 
ecotin homologs are also found in a few, taxonomically diverse plant-
associated taxa. Tamlana fucoidanivorans, Elizabethkingia 
argenteiflava, and Sphingobacterium nematocida have been isolated 
from the endosphere or from plant surfaces (Liu et al., 2012; Li et al., 
2020; Hwang et al., 2021). Furthermore, some of these species have a 
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FIGURE 1

Binding sites of ecotin and ecotin-like proteins to their substrates. 
(A) Structure of a homodimeric ecotin in complex with trypsin 
protease. Ecotin (in orange and cyan) forms a stable homodimer, which 
binds two trypsin proteases simultaneously (in gray). The ecotin dimer 
contains two distinct protease-binding sites, each composed of two 
loops. The primary binding site (red) is composed of the 80s loop and 
the 50s loop, while the secondary binding site is composed of the 60s 
and 100 s loops (shown in green). Figure is adapted from Gillmor et al. 
(2000), using Protein Database (PDB) entry 1EZU. (B) Sequence 
alignment of ecotin orthologs primary binding site. Ecotin ortholog 
protein sequences were aligned, using MUSCLE (Edgar, 2004) in 
MEGA11 (Tamura et al., 2021). Residue position numbering is according 
to E. coli ecotin. The P1 position from the 80s loop (the primary 
specificity determinant) is designated by a upward arrow. UniProt or 
NCBI GenBank accession numbers are mentioned for each bacterial 
ecotin sequence.
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plant-pathogenic lifestyle. For example, Pseudomonas fuscovaginae, 
Burkholderia glumae, and Burkholderia plantarii are important 
pathogens of rice, while Ganoderma boninense and Gibbsiella 
quercinecans cause stem rot of oil palm and acute oak decline, 
respectively (Brady et al., 2016; Isha et al., 2020).

The genomes of several Eukaryotes also encode ecotin orthologs, 
especially within the phylum Euglenozoa, which contains the insect-
borne parasitic genera Trypanosoma and Leishmania (Peña et al., 2017; 

Verma et al., 2017, 2018; Garcia et al., 2020; Levy et al., 2021). These 
genera contain species such as Trypanosoma cruzi, which causes 
Chagas disease (Brener, 1973), Leishmania major causing zoonotic 
cutaneous leishmaniasis (El-On et al., 1984), and Leishmania donovani 
the causative agent of visceral leishmaniasis, traditionally known as 
kala-azar (“black fever”; van Griensven and Diro, 2012). In contrast to 
prokaryotes which usually encode only 1 ortholog of ecotin, the 
eukaryotic unicellular Leishmania pathogens harbor three distinct 
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FIGURE 2

Taxonomic distribution of organisms containing ecotin orthologs. (A) More than six hundred species are present throughout the Tree of Life and encode at 
least one ecotin homolog. Protein sequences were extracted from InterPro (query: IPR036198) and validated as belonging to the same orthogroup with 
eggNOG-Mapper (E-value: 0.0001, minimum bit score: 60, % identity >40, query coverage >20%; Blum et al., 2021; Cantalapiedra et al., 2021). Orthology 
assignments were double checked in EggNOG database using EggNOG OGs. Remaining protein sequences were checked by the presence of ecotin 
domains as predicted by Pfam using eggNOG-Mapper (Mistry et al., 2021). One sequence for each species was retained, after which they were further 
aligned based on their amino acid sequence using MUSCLE (Edgar, 2004) in MEGA11 (Tamura et al., 2021). (A) Among Bacteria, the class of Proteobacteria 
(502 species) represents the majority of ecotin-expressing species. Note that this analysis is not comprehensive and homologs may have been missed due 
to biases in database representation and/or search parameters. (B) Among the Eukaryotes, both the Trypanosoma and Leishmania species, belonging to the 
Kinetoplastida class, contain over 10 species that are causative agents of several and widespread infectious diseases. The figure was made using KronaTools 
2.7.1 (Ondov et al., 2011). (C) Unrooted phylogenetic tree of ecotin orthologs. Only one representative sequence per identified EggNOG OG was retained. 
Sequences were aligned based on their amino acid sequences using MUSCLE (Edgar, 2004) in MEGA11 (Tamura et al., 2021). A phylogenetic tree was 
constructed using the Maximum Likelihood (ML) method and LG + G4 substitution model in IQ-TREE (Minh et al., 2020). The SH-aLRT support (%) and the 
percentage of replicate trees in which the associated taxa cluster together in the bootstrap test (1,000 replicates) are shown next to the branches. The scale 
bar indicates the number of substitutions per site. Additional annotations are presented showing which taxa contain animal pathogenic (orange squares), 
plant-associated (green squares), and environmental (blue squares) strains.
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paralogs, named ISP1, ISP2 and ISP3 (Eschenlauer et  al., 2009; 
Morrison et  al., 2012). In L. major, ISP1 is located on the same 
transcription unit upstream to ISP2 and ISP3 (Eschenlauer et  al., 
2009). ISP1 and ISP2 encode proteins of around 17 kDa, which is 
comparable to the 16 kDa mature form isolated from E. coli ecotin. 
ISP3, on the other hand, encodes a protein which is more than double 
the size (41.8 kDa), with an ecotin-like N-terminal domain, and a 
C-terminal domain of unknown function (Eschenlauer et al., 2009). 
Ecotin proteins of Euglenozoa form a distinct phylogenetic clade, 
nested within proteins of Gamma- and Betaproteobacteria (Figure 2C). 
Thus, ecotin proteins in these lineages seem to have evolved from a 
single ancestor, perhaps acquired from Proteobacteria via horizontal 
gene transfer. Interestingly, protease contact residues and substrate-like 
loops of Leishmania and Trypanosoma ecotin proteins display low 
identity to residues from bacterial homologs, indicating functional 
divergence (Peña et al., 2017).

Function of ecotin in 
animal-associated microorganisms

Although the molecular structure and protease targets of ecotin 
are well characterized for a few organisms, its precise ecological 
function remains unclear. In E. coli, ecotin may play a role in 
protecting the cell against host proteases. Ecotin is translocated to the 
periplasmic space, where it can protect the cell against NE that may 
have permeated through the damaged outer cell membrane of Gram-
negative bacteria (Eggers et al., 2004). Aside from a role in protection 
against the host immune system, ecotin from E. coli may play a role 
in microbe-microbe interactions, with E. coli ecotin knock-out strains 
more susceptible to T6SS-mediated killing by Vibrio cholerae (Myint 
et  al., 2021). However, the precise mode of action remains to 
be elucidated. In P. aeruginosa, ecotin was shown to be released into 
the extracellular milieu via cell lysis during biofilm formation (Webb 
et al., 2003; Wang et al., 2013; Tseng et al., 2018). Ecotin homologs 
from P. aeruginosa and Y. pestis also inhibit NE (Eggers et al., 2001; 
Clark et  al., 2011; Tseng et  al., 2018). Similarly, ecotin of 
B. pseudomallei is essential for intracellular survival in murine 
macrophages, probably by inhibiting host proteases of the early 
endosome (Ireland et al., 2014). P. aeruginosa as well as B. cepacia are 
two major pathogens causing chronic infections in adult cystic 
fibrosis (CF) patients, both of which possess ecotin homologs (Govan 
and Deretic, 1996; Rajan and Saiman, 2002). Interestingly, 
P. aeruginosa and B. cepacia are opportunistic human pathogens that 
thrive in the lung environment as biofilms, and as such are not 
exposed to digestive or plasma proteases (Lavoie et al., 2011; Yaghi 
et al., 2020). However, pulmonary infections are mostly associated 
with increased numbers of degranulating neutrophils, and therefore 
by high concentrations of NE (Schaaf et al., 2000). A similar situation 
is also observed in CF, where there is an influx of neutrophils 
(Goldstein and Doring, 1986; Birrer et al., 1994; Witko-Sarsat et al., 
1999). P. aeruginosa ecotin, released to the extracellular milieu via 
cell lysis during biofilm formation, directly binds to Psl, a component 
of the biofilm exopolysaccharide matrix (Tseng et al., 2018). Ecotin 
might therefore protect the biofilm from antimicrobial effectors and 
proteolytic degradation (Tseng et al., 2018; Nagy et al., 2019). This 
may represent a novel mechanism of protection for biofilms to 
increase their tolerance against the innate immune response. 
Interestingly, P. aeruginosa ecotin, together with the human protease 

inhibitor SERPINB1, has recently been proposed to act as a barrier to 
SARS-CoV-2 infection in CF lungs by inhibiting priming of the S 
protein by TMPRSS2 (Stanton et  al., 2020). Although this role of 
ecotin as a protective layer may have intriguing consequences for the 
host, this remains to be proven experimentally.

The main function of the ecotin-like homologs ISP1, ISP2, and 
ISP3 of eukaryotic parasites T. cruzi and L. major is likely protection 
against intestinal proteases, such as neutrophil elastase in the gut of 
an insect vector (Lima and Mottram, 2010; Alam et al., 2016; Verma 
et al., 2017). However, a potential role for these proteins in survival 
inside the insect vector remains to be tested. Protozoan metacaspases 
(MCAs) of Leishmania species can be inhibited by the peptide ecotin-
like ISP3 inhibitor from L. amazonensis and L. major. ISP3 interferes 
with the trypsin-like activity, resulting in significantly reduced 
parasite cell death (Peña et al., 2017; Shadab et al., 2017). In addition, 
serine proteases with MCA activity also play a role in the programmed 
cell death (PCD) in Leishmania donovani (Das et  al., 2014), 
Trypanosoma brucei (T. brucei; Szallies et  al., 2002), and other 
Leishmania species (Lee et  al., 2007; Khademvatan et  al., 2011; 
Castanys-Muñoz et al., 2012). Ecotin-like protein ISP2 of L. major 
inhibits mannan-binding lectin (MBL)-associated serine protease 
(MASP)-2  in addition to NE in the host cell (Verma et al., 2018). 
MASP-2 is involved in the cleavage of proteins in the complement 
system as well as in the coagulation cascade through cleavage of 
prothrombin to thrombin (Thiel et al., 1997; Krarup et al., 2007). In 
addition to L. major, E. coli, Y. pestis, and P. aeruginosa homologs 
also display inhibition of MASP2, but also of MASP1 and MASP3 
with Ki values ranging from 10−5 to 10−9 (Cortesio and Jiang, 2006; 
Gaboriaud et  al., 2013; Nagy et  al., 2019). MASP1, MASP2, and 
MASP3 participate to the lectin pathway of the complement system, 
an essential part of the innate immune system that acts as the first line 
of defense against pathogens (Héja et al., 2012; Dobó et al., 2016). This 
function of ecotin seems surprisingly conserved, as endogenous 
ecotin also protects E. coli against attack from the lectin pathway 
(Nagy et  al., 2019). Most recently, ISP2 from T. brucei has been 
identified as a virulence factor, contributing to the reduction of 
NO-producing myeloid cells and of IFN-γ-producing NK-cells: Mice 
infected with ΔISP2 mutants strains displayed lower blood 
parasitemia, delayed symptoms, and survived longer (Levy et  al., 
2021). Moreover, ISP2 of T. cruzi contributes to evasion and 
replication in macrophages (Garcia et  al., 2020). These findings 
indicate that ISP2 is a virulence factor in mice and attenuates the 
inflammatory response during early infection. One of the major roles 
of ecotin in animal pathogens may be to inactivate key proteases of 
the immune system.

The role of ecotin in 
plant-associated bacteria

Although the role of ecotin in protecting pathogens or parasites 
against the mammalian innate immunity is relatively clear, there is a 
dearth of data about the targets of ecotin outside mammal systems. 
Some notorious plant pathogens encode ecotin homologs, for example 
Burkholderia plantarii, Burkholderia glumae, Pseudomonas 
fuscovaginae, or Tatumella citrea (Ta. citrea). So far, a single study by 
Eggers et al. analyzed the contribution of ecotin to virulence of the 
plant pathogen Ta. citrea (Eggers et al., 2001). Interestingly, ecotin from 
Ta. citrea, the phytopathogen responsible for pink disease in pineapples 
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(Cha et  al., 1997), displayed 1,000-fold weaker inhibition against 
human NE compared to proteins of E. coli, Y. pestis, or P. aeruginosa 
(Eggers et al., 2004). Despite this lower anti-NE activity, ecotin from 
Ta. citrea maintains inhibitory activity against trypsin, and may thus 
protect the bacteria against digestive proteases in an animal vector 
(Eggers et al., 2004). The first line of defense of plants is drastically 
different from the mammalian immune system. For example, NE is 
known to be involved in the non-oxidative pathway of innate defense 
which represents the first line of defense against invading 
microorganisms in mammals (Burg and Pillinger, 2001; Hargaden and 
Singer, 2012; Juul-Madsen et al., 2013), but there is no equivalent in 
plants (Thomas et  al., 1988). Plants have developed various other 
mechanisms to protect themselves from pathogens. After the first 
contact with a pathogen, plant cells react by releasing reactive oxygen 
intermediates, salicylic acid, nitric oxide, ethylene, and/or jasmonic 
acid (Conrath et  al., 2002). These signals orchestrate different 
downstream responses like the activation of cell wall reinforcement 
proteins or synthesis of antimicrobial peptides and phenolics, 
depending on the nature of the injury or infection (Jones and Dangl, 
2006). Perhaps because of this divergence of targets, ecotin proteins in 
animal pathogens commonly display aliphatic methionine (M) or 
leucine (L) residues in the ecotin contact binding loop, whereas plant 
pathogens like Ta. citrea and B. glumae display conserved cationic 
arginine (R) and lysine (K) residues, respectively. Accordingly, ecotin 
of Ta. citrea only weakly inhibited mammalian thrombin, indicating 
the importance of other contact residues in the selectivity and binding 
specificity of the target (Eggers et al., 2004). Interestingly, an R residue 
is also present in the ecotin contact binding loop of all Rhizobium and 
some Tatumella species such as Ta. morbirosei, Ta. ptyseos, and Ta. 
Saanichensis (Figure 1B).

Serine proteases are abundant in plants, participating in numerous 
crucial processes such as plant immunity (reviewed in Figueiredo 
et al., 2018). Plant subtilases, a large family of plant serine proteases 
(MEROPS subfamily S8A), have a broad range of biological functions 
in plant development, but also in response to biotic and abiotic stresses 
(Schaller et al., 2012). Interestingly, some plant subtilases are key to the 
response to pathogen attack and PCD (Ryan and Pearce, 2003; 
Huffaker et  al., 2006; Huffaker and Ryan, 2007; Vartapetian et  al., 
2011). As a countermeasure, some pathogens secrete inhibitors that 
target extracellular subtilases to avoid recognition. For example, 
tomato apoplastic S8 subtilases, P69B and P69C, are PR proteins that 
play a role in response to Phytophthora infestans and Phytophthora 
syringae infection (Jordá et al., 1999; Jorda et al., 2000). Kazal-like 
inhibitors EPI1 and EPI10 from Phytophthora infestans inactivate 
P69B, suggesting that protease inhibition is an important strategy for 
plant pathogens (Tian et al., 2004, 2005). Moreover, there are several 
other serine protease involved in different steps during plant immunity 
(Figueiredo et al., 2014; Van Der Hoorn & Klemenčič, 2021), but also 
in other processes during in plant defense activated through abiotic 
stimuli (Figueiredo et al., 2018). Metacaspases, for example, are also 
possible candidate targets as they are orthologs of metazoan caspases, 
restricted to fungi, protozoa and plants (Uren, 2000). Caspases are a 
family of cysteine proteases (C14), with a catalytic cysteine and 
histidine dyad essential for enzyme activity, playing a crucial role in 
PCD in plants (Del Pozo and Lam, 1998). Cysteine proteases have a 
distinct catalytic mechanism from serine proteases, and are important 
hubs in plant immunity (Misas-Villamil et al., 2016). Although there 
are no documented ecotin targets in plant immunity-related processes, 
the ecotin-like protein ISP3 from L. amazonensis has recently been 

suggested to also inhibit cysteine proteases such as MCAs (Peña et al., 
2017). The presence of ecotin in the proteomes of plant pathogens is 
therefore intriguing, and could indicate a role in circumventing or 
preventing plant defenses. However, prediction of potential ecotin 
targets is difficult, and in addition several of the plant pathogens 
mentioned above are related to clinical pathogens that cause severe 
infections in humans. For instance, there are reports of B. glumae 
clinical infections (Weinberg et al., 2007), Tatumella ptyseos is known 
as a foodborne opportunistic pathogen and Ta. saanichensis has been 
isolated from a CF patient (Mardaneh et al., 2014; Tracz et al., 2015; 
Bourlond et al., 2019). Whether ecotin plays an adaptive role in plant 
pathogenicity or is rather a vestige from ancestral animal-associated 
lifestyles remains unanswered.

Conclusion

Although ecotin homologs are widespread in the Bacterial and 
Eukaryotic kingdoms with diverse host-associated or environmental 
lifestyles, only a handful potential targets have been identified. Exploring 
and characterizing new ecotin targets could therefore be of importance 
in understanding several poorly studied pathways or protease reaction 
cascade mechanisms. Characterizing ecotin targets in new systems, 
especially plants, may provide novel insights into host immunity, and 
perhaps new ways to manage infections.
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