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Introduction: Soil microorganisms are the key factors in elucidating the effects 
of thinning on tree growth performance, but the effects of vegetation and soil on 
the species composition and function of soil microorganisms after thinning are 
still not well elaborated.

Methods: The effects of thinning on understory vegetation diversity, soil 
physicochemical properties and soil microbial community composition were 
investigated in a thinning trial plantation of Cryptomeria japonica var. sinensis, 
including four thinning intensities (control: 0%, LIT: 20%, MIT: 30% and HIT: 40%), 
and the relationships of the microbial community structure with the understory 
vegetation diversity and soil properties were assessed.

Results: The results showed that thinning had a greater effect on the diversity 
of the shrub layer than the herb layer. The soil bulk density and the contents 
of soil organic matter, total potassium and nitrogen increased with increasing 
thinning intensities. The Shannon and Chao indices of soil bacteria and fungi 
were significantly lower in the LIT, MIT and HIT treatments than in the control. 
Thinning can significantly increase the abundance of Proteobacteria and 
Actinobacteria, and higher thinning intensities led to a higher relative abundance 
of Ascomycota and a lower relative abundance of Basidiomycota, Rozellomycota, 
and Mortierellomycota. Redundancy analysis indicated that soil physicochemical 
properties rather than understory vegetation diversity were the main drivers of 
microbial communities, and fungi were more sensitive to soil properties than 
bacteria. Functional prediction showed that thinning significantly reduced the 
potential risk of human diseases and plant pathogens, and the nitrogen fixation 
capacity of bacteria was the highest in the HIT treatment. Thinning significantly 
increased the relative abundance of cellulolysis and soil saprotrophs in bacteria 
and fungi.

Conclusion: The findings provide important insights into the effects of thinning on 
C. japonica var. sinensis plantation ecosystems, which is essential for developing 
thinning strategies to promote their ecological and economic benefits.
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1. Introduction

Soil microorganisms play a crucial role in nutrient decomposition, 
absorption, and transformation in terrestrial ecosystems (Soong et al., 
2019; Tian et al., 2019; Averill et al., 2021). The diversity and abundance 
of soil bacteria and fungi not only affect nutrient mineralization and 
cycling but are also sensitive to ecological environmental conditions, 
such as soil properties (Stark et al., 2012; Shen et al., 2013; Urbanová 
et al., 2015; Lladó et al., 2018), vegetation diversity (Liu et al., 2021; 
Shang et al., 2021), and climatic conditions (Bona et al., 2021). Soil 
properties are considered crucial factors influencing soil microbial 
activity and community structure, which have become a research 
hotspot in the field of the soil microbiome. For example, pH is 
frequently considered the main driver of microbial community 
structure in soil (Lammel et al., 2018; Ni et al., 2021; Queiroz et al., 
2021); soil moisture strongly affects the fate of soil nutrient diffusion 
(Lei et al., 2022), and is also an important factor influencing the soil 
microbial community (Goransson et al., 2013; Lei et al., 2021); and the 
composition and diversity index of bacteria are significantly correlated 
with the contents of total nitrogen, available nitrogen and available 
phosphorus in soil (Zhang et al., 2016). However, soil nutrients are one 
of the factors influencing vegetation growth. In the process of nutrient 
recycling, nutrients are taken up and utilized, partly retained in plants, 
and partly returned to the soil as litter; and then, nutrients are released 
by the decomposition of litter materials (Osman, 2013). Soil organic 
matters mainly come from litter, and their decomposition can be an 
important energy source for soil microorganisms (Yang et al., 2017; 
Phillips et al., 2019; Xu et al., 2020). Therefore, vegetation may also 
play an important role in changes in the soil microbial community.

As a traditional technique in forest management, thinning not 
only has direct effects on light transmittance and microclimate in 
forests (Son et  al., 2021) but also indirectly affects understory 
vegetation diversity (Ares et  al., 2009) and soil physicochemical 
properties (Wic Baena et al., 2013). Thinning practices influence the 
understory vegetation diversity, and affect the functions of the soil 
microorganisms (Dang et  al., 2018). It has been proven that the 
diversity and community structure of aboveground plants and 
belowground microbial communities in forest ecosystems are closely 
correlated (Chen et  al., 2015; Zhou et  al., 2020). To date, the 
relationship between soil physicochemical characteristics and 
vegetation has been widely studied. However, research on the 
relationships of soil microorganisms with understory vegetation 
diversity and soil properties under thinning is still scarce.

Cryptomeria japonica var. sinensis is an excellent fast-growing 
timber species and is one of the main plantation species in the high-
altitude subtropical areas of China (Zhang et al., 2021). In particular, 
the planting area of C. japonica var. sinensis has been nearly 200,000 
hectares in the western parts of Sichuan Province, which is located in 
the upper reaches of the Yangtze River. These C. japonica var. sinensis 
plantations are important ecological shields of the Yangtze River, and 
play an important role in economic development and environmental 
protection in this region. Due to the high density of monoculture in 
the initial planting, low stand quality and ecological benefits occur in 
the C. japonica var. sinensis forest.

To improve stand quality and promote the ecological benefits of 
these plantations, we  arranged a thinning trial in 2014 and 
investigated the understory vegetation diversity, soil physicochemical 

properties and microbial community compositions of the trial 
plantations 5 years after thinning. We hypothesized that thinning of 
C. japonica var. sinensis plantations would affect the soil microbial 
composition and diversity, which would be driven by the changes in 
understory vegetation diversity and soil properties. This study aimed 
to specifically address the following: (1) to understand the changes 
in understory vegetation diversity and soil properties after thinning 
at different intensities; (2) to explore the differences in soil 
microorganism composition and function under thinning at 
different intensities; and (3) to elucidate the relationships of soil 
bacteria and fungi with understory vegetation and soil 
physicochemical properties.

2. Materials and methods

2.1. Experimental site

The thinning trial Cryptomeria japonica var. sinensis plantation 
is located at Yangziling Forest Farm, Yaan City, Sichuan Province, 
China (29°47′37″N, 102°56′18″E). It belongs to the subtropical 
monsoon mountain climate with abundant rainfall. The annual 
mean air temperature, precipitation and humidity are 13.1°C, 
1,800 mm and 79%, respectively. The plantation was established with 
a spacing of 2.0 m × 1.5 m in April 2006 with an area of approximately 
seven hectares. The soil is yellow loam with a pH value of 4.3–4.7. 
The mean altitude of the site is 1,539 m, and the slope is 
approximately 15°.

2.2. Experimental design

The thinning trial was carried out in October 2014, and arranged 
in a randomized complete block design with three replicates and 
four thinning intensity treatments, including no thinning (control), 
light-intensity thinning (LIT: 20% of the trees removed), moderate-
intensity thinning (MIT: 30% of the trees removed) and strong-
intensity thinning (HIT: 40% of the trees removed). Each plot was 
600 m2 in size and was surrounded by buffer zones (5 m) to reduce 
potential edge effects. The stand density and height (m) and 
diameter at breast height (DBH) (cm) of each tree were measured 
for each plot just after thinning (October 2014) and October 2019. 
The tree growth performance of each treatment is presented in 
Table 1.

2.3. Understory vegetation investigation 
and diversity analysis

Four 2 m × 2 m subplots in each plot and one 1 m × 1 m quadrat in 
each subplot were established to assess the diversity of the shrub and 
herb layers, respectively. In each subplot or quadrat, the number was 
counted, and coverage and frequency were measured for each 
understory plant species in October 2019. The Shannon index and 
Pielou index were calculated (Wang G. et al., 2021), and the relative 
species abundance was calculated to indicate the species richness for 
the shrub and herb layers.
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2.4. Soil sampling and physicochemical 
analyses

 In each plot, soil profiles were excavated routinely at five points, 
and soils were sampled with a cutting ring (100 cm3) at topsoil layers 
(0–15 cm) to measure soil bulk density (SBD). Two topsoil samples 
were then collected at each point. One was placed on ice in the field 
and was then transported promptly to the laboratory and stored at 
−80°C for DNA extraction, and the other was dried at room 
temperature for physicochemical analysis. For each purpose, soils 
from five points were mixed equally as one sample for each plot before 
further treatment or analysis.

SBD was measured by the cutting ring method (Grossman and 
Reinsch, 2002), and soil moisture (SM) was determined by oven 
drying soils at 105°C for 24 h. Soil pH was measured using a pH meter 
(soil to water ratio was 1:2.5) (Kenworthy et  al., 1976). The total 
nitrogen content (TN) was measured by the Kjeldahl method using a 
2,300 Kjeltec Analyzer Unit (FOSS, Sweden) (Bremner and Mulvaney, 
1982). The contents of total phosphorus (TP) and total potassium 
(TK) were determined via the ascorbic acid colorimetric method and 
atomic absorption method, respectively. The soil organic matter 
content (SOM) was assessed using the dichromate wet combustion 
method and a visible spectrophotometer (Lefroy et al., 1993). The 
alkaline hydrolysis method, molybdenum blue colorimetric method 
(Tan et al., 2014), and a flame photometer (Lu, 2000) were used to 
measure the contents of available nitrogen (AN), available phosphorus 
(AP) and available potassium (AK), respectively.

2.5. DNA extraction, PCR amplification and 
sequencing

Soil DNA was extracted in triplicate from 0.25 g of each sample 
using an E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA, 
U.S.) following the manufacturer’s instructions. The extraction quality 
of DNA was detected by 1% agarose gel electrophoresis, and the 
concentration and purity of DNA were determined by 
a NanoDrop2000.

The V3-V4 region of the bacterial 16S RNA gene and partial 
fungal ITS regions were amplified by PCR using the primers 338F 
(5′- ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′- GGA 
CTACHVGGGTWTCTAAT-3′), and ITS1F (5’-CTTGGTCATTTA 
GAGGAAGTAA-3′) and ITS2R (5’-GCTGCGTTCTTCATCG 
ATGC-3′), respectively (Manter and Vivanco, 2007). All 
amplifications were performed in 20 μl mixtures containing 4 μl of 
5 × FastPfu Buffer, 2 μl of 2.5 mM dNTPs, 0.8 μl of each primer (5 μM), 

0.4 μl of FastPfu Polymerase and 10 ng of template DNA. The 
amplification program included initial denaturation at 95°C for 
3 min, followed by 27 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C 
for 45 s, with a final extension at 72°C for 10 min. However, the PCR 
cycle number was 35.

The PCR products were purified using an AxyPrep DNA Gel 
Extraction Kit (Axygen Biosciences, Union City, CA, USA), and were 
quantified using QuantiFluor™-ST (Promega, USA) (Zhou et  al., 
2019). Subsequently, all the PCR products were pooled with equal 
molarity. Finally, the amplicons were pair-ended sequenced on an 
Illumina MiSeq platform (Illumina, San Diego, USA) by the Majorbio 
Bio-Pharm Technology Co. Ltd. (Shanghai, China).

2.6. Sequence splicing and annotation

The raw sequences were quality-filtered and merged using Fastp1 
(version 0.19.6) and FLASH2 (version 1.2.11), respectively. Operational 
taxonomic unit (OTU) clustering and chimera removal were 
conducted using Upraise software3 (version 11) based on the 97% 
similarity threshold (Edgar, 2013). The taxonomic assignments of 16S 
rRNA and ITS sequence reads were determined using the bacterial 
SILVA reference database (Release1384) and the Unite reference 
database (Release 8.05), respectively. For both databases, the Ribosomal 
Database Project (RDP) Classifier6 (version 2.11) was used to perform 
taxonomic annotation for OTU representative sequences, and the 
confidence threshold was set to 0.7 to obtain taxonomic annotation 
results. The sample sequence was flattened according to the minimum 
number to obtain standardized data for calculation of the Shannon 
index and Chao index according to Cao et al. (2022), and compositions 
of the soil microbial community were analyzed at the phylum level.

2.7. Determination of the metabolic and 
functional prediction

The functional annotation and prediction of metabolic or other 
putative ecological functions were assessed based on the 

1 https://github.com/OpenGene/fastp

2 https://ccb.jhu.edu/software/FLASH/index.shtml

3 http://www.drive5.com/uparse/

4 http://www.arb-silva.de

5 http://unite.ut.ee/index.php

6 http://sourceforge.net/projects/rdp-classifier/

TABLE 1 Information on the thinning trial plantation.

Thinning 
intensity

Stand density 
(trees·ha−1)

Year 2014 Year 2019 Increase of each year

Mean DBH 
(cm)

Mean 
height (m)

Mean DBH 
(cm)

Mean 
height (m)

Mean DBH 
(cm)

Mean 
height (m)

Control 2,833 ± 25 11.50 ± 0.30b 6.80 ± 0.10d 14.10 ± 0.60b 11.02 ± 0.32d 0.53 ± 0.18c 0.88 ± 0.10a

LIT 2,266 ± 44 12.37 ± 1.75b 7.17 ± 0.15c 16.30 ± 1.25b 11.75 ± 0.46c 0.79 ± 0.05b 0.95 ± 0.03a

MIT 1,983 ± 85 13.27 ± 0.47ab 8.90 ± 0.30a 18.10 ± 0.66ab 13.37 ± 0.28a 1.09 ± 0.02a 0.90 ± 0.13a

HIT 1,700 ± 69 14.27 ± 0.23a 7.80 ± 0.10b 19.5 ± 0.46a 12.50 ± 0.56b 1.12 ± 0.13a 0.93 ± 0.07a

The values are the mean ± standard deviation (n = 3), followed by different letters showing significant differences in the four thinning treatments for each index at the 0.05 probability level.
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Tax4Fun-KEGG (Wang et al., 2020) and FAPROTAX databases (Lu 
et al., 2022) for bacteria. Tax4Fun converts the SILVA-based OTU 
counts into functional or metabolic profiles and computed metabolic 
reference profiles based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. The FUNGuild database (Nguyen et al., 
2016) was adopted to predict the ecological and biological functions 
of ITS genes for fungi, which is a flat database hosted by GitHub.7

2.8. Statistical analysis

One-way analysis of variance (ANOVA) and a least significant 
difference multiple range test (p < 0.05) were performed to assess the 
significance that thinning affected the assayed soil physicochemical 
properties (SM, SBD, pH, SOM, TK, TP, TN, AN, AK and AP), 
understory vegetation diversity (Shannon index, Pielou index, species 
richness), soil microbial community diversity indices (Shannon index 
and Chao index), soil microbial community compositions and the 
relative abundance of the genes associated with different functional 
categories. Partial least squares discriminant analysis (PLS-DA), a 
supervised method, was performed on OTU data to discriminate the 
microbial community profiles of the four thinning treatments (Pérez-
Enciso and Tenenhaus, 2003; Ma et al., 2017). Biomarker analysis was 
performed by linear discriminant analysis (LDA) for effect size 
(LEfSe) using the Kruskal–Wallis test and All-Against-All (more 
strict) to determine the significance of differences in soil microbial 
species among the four thinning treatments. LDA was performed to 
evaluate the difference in each microbial taxon with a threshold value 
of 3.5. Redundancy analysis (RDA) was used to test the relationships 
of microbial groups with understory vegetation and soil properties 
using Monte Carlo permutations (999 repetitions). Rarefaction 
curves, PLS-DA, correlation heatmap, and RDA were conducted with 
R 4.2.0 software.

3. Result

3.1. Understory vegetation and soil 
properties

The Shannon index, Pielou index and species richness of the 
shrub layer under the light-(LIT), moderate-(MIT) and high-(HIT) 
intensity thinning treatments were remarkably higher than those 
under the control (p < 0.05). While significant difference was absent in 
the herb layer among the four treatments (p ≥ 0.05) (Table 2).

Thinning significantly influenced the soil moisture (SM), soil bulk 
density (SBD), pH value, and contents of total nitrogen (TN), total 
potassium (TK), total phosphorus (TP), available potassium (AK) and 
available phosphorus (AP) (Table 2). The pH value, SBD and TP were 
significantly higher in the control than in the LIT, MIT and HIT 
treatments. The SM and TK in the LIT treatment were significantly 
higher than those in the control, MIT and HIT treatments. The TN 
was significantly higher in the MIT treatment than that in other 
treatments. The AP of LIT and HIT was higher than that of the control 

7 https://github.com/UMNFuN/FUNGuild

and MIT treatments. Significant differences were absent in the 
contents of soil organic matter (SOM) and available nitrogen (AN) 
among the four thinning treatments.

3.2. Soil microbial community diversity and 
composition

A total of 318,732 bacterial and 819,288 fungal sequence reads 
were obtained from the complete dataset of 12 samples and were 
clustered into 3,994 and 2,807 OTUs, respectively. The rarefaction 
curve for thinning treatments of Shannon index on OUT level had 
been well captured at the amount of randomly drawn sequencing data 
(Figure 1). The Shannon and Chao indices of the bacterial community 
under the four thinning treatments ranged from 5.677 to 6.101 and 
from 2,485 to 3,110, respectively, and both indices of the fungal 
community ranged from 3.287 to 4.571 and from 1,028 to 1,402, 
respectively (Table  3). All of them were strongly influenced 
by thinning.

The top three bacterial phyla in the bacterial community were 
Proteobacteria (relative abundance: 34.93%), Acidobacteria (21.82%), 
and Actinobacteria (19.57%) (Figure 2A). Rhizobiales (17.21%) and 
Gammaproteobacteria_Incertae_Sedis (2.1%) were the most abundant 
orders observed within the Alphaproteobacteria and 
Gammaproteobacteria classes, respectively (Supplementary Table S1). 
Significant differences were mostly absent in the relative abundances 
of Proteobacteria, Acidobacteria and Verrucomicrobiota among the 
four treatments, while the relative abundance of Actinobacteriota in 
the LIT, MIT and HIT treatments was significantly higher than that in 
the control (14.3 ± 3.25%) (Figure 2A).

Ascomycota (55.69%), Basidiomycota (14.72%), and Rozellomycota 
(11.85%) represented most of the observed fungal phyla (Figure 2B). 
The relative abundances of Ascomycota in the LIT (75.05 ± 3.89%) and 
MIT (86.46 ± 7.40%) treatments were significantly higher than those 
in the HIT (59.28 ± 2.75%) and control (20.06 ± 2.62%) treatments 
(Figure 2B). The relative abundances of Basidiomycota, Rozellomycota 
and Mortierellomycota in the control were 23.33 ± 2.05%, 24.10 ± 1.51% 
and 13.76 ± 2.89%, respectively, and were all significantly higher than 
those in the LIT, MIT and HIT treatments (Figure 2B).

The PLS-DA analysis illustrated that the bacterial communities of 
the four thinning treatments were clearly separated from each other 
(Figure 3A), and the same were the fungal communities under the 
control and HIT treatments, while those under the LIT and MIT 
treatments were clustered together (Figure 3B).

The LEfSe algorithm was used to determine the taxa in the soil 
microbial communities (Supplementary Figure S1). In total, 22 
bacterial clades presented statistically significant differences 
(LDA > 3.5, p < 0.05) in all soil samples. There were six differentially 
abundant taxa in the control (Supplementary Figure S1a), and the 
most important contribution to the control was the phylum Firmicutes, 
which accounted for 83%. The LIT treatment had the fewest 
biomarkers, with only two abundant bacterial clades. For the MIT 
treatment, the greatest contribution was made by four biomarkers, all 
of which came from the phylum Firmicutes, including the class 
Actinobacteria, with LDA scores of 4.50. The HIT treatment contained 
17 biomarkers, and the categories with the highest contribution 
were mainly Acidimicrobia, Planococcaceae, Chitinophagales, 
and Rhodospirillales.
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For fungi, 73 clades were determined by the LEfSe algorithm, 
which exhibited significant differences under four thinning treatments 
with an LDA threshold of 3.5 (Supplementary Figure S2). The control 
accounted for 72.6% of the fungal clades, while the LIT, MIT and HIT 
treatments had one, 15 and four clades, respectively. The proportion 
of the phylum Rozellomycota was highest in the control, followed by 
Basidiomycota (phylum) and Tremellomycetes (class). Specifically, the 
LIT treatment was only rich in Meripilaceae (family). The clades of the 
MIT and HIT treatments were mainly concentrated in Ascomycota.

Overall, the soil microorganisms composition was significantly 
different among the four thinning treatments, which to some extent 
reflects the impact of thinning on the soil microbial community.

3.3. Relationships of microbial 
communities with understory vegetation 
and soil properties

The Pielou index in the herb layer was positively correlated with 
microbes, especially fungi (Figure 4). The Shannon index and species 
richness in the shrub layer were significantly negatively correlated 
with the relative abundances of Zoopagomycota, Rozellomycota, 
Chytridiomycota, Basidiomycota and Mortierellomycota (Figure 4B). 
According to the redundancy analysis (RDA), the total interpretation 
degree of the understory vegetation index to the bacterial genus level 

TABLE 2 Understory vegetation and soil properties in Cryptomeria japonica var. sinensis plantations under four thinning treatments.

Control LIT MIT HIT

Herb Shannon index 1.12 ± 0.20a 0.77 ± 0.75a 1.28 ± 0.13a 0.61 ± 0.61a

Pielou index 0.87 ± 0.05a 0.45 ± 0.29a 0.74 ± 0.07a 0.45 ± 0.31a

species richness 4 ± 0.58a 5 ± 3.00a 6 ± 0.58a 3 ± 1.53a

Shrub Shannon index 0.21 ± 0.37b 1.21 ± 0.51a 1.51 ± 0.20a 1.35 ± 0.03a

Pielou index 0.31 ± 0.53a 0.97 ± 0.05a 0.95 ± 0.03a 0.97 ± 0.02a

species richness 1 ± 1.15b 4 ± 1.53a 5 ± 1.00a 4 ± 0.00a

SM (%) 0.12 ± 0.04b 0.27 ± 0.08a 0.15 ± 0.04b 0.25 ± 0.02a

SBD (g·cm−3) 1.32 ± 0.06a 1.03 ± 0.09c 1.18 ± 0.07b 1.03 ± 0.03c

pH value 4.26 ± 0.04a 4.03 ± 0.01c 4.14 ± 0.00b 4.01 ± 0.01c

SOM (g·kg−1) 32.98 ± 3.78a 34.48 ± 7.75a 41.16 ± 3.26a 40.04 ± 3.74a

TN (g·kg−1) 2.64 ± 0.00c 3.57 ± 0.01b 4.08 ± 0.24a 3.51 ± 0.00b

TK (g·kg−1) 10.81 ± 0.08b 12.14 ± 0.04a 11.92 ± 0.08a 8.21 ± 0.61c

TP (g·kg−1) 0.55 ± 0.01a 0.25 ± 0.00b 0.24 ± 0.00b 0.21 ± 0.02c

AN (mg·kg−1) 581 ± 49.00a 469.33 ± 147.00a 529.67 ± 91.34a 492.33 ± 42.19a

AK (mg·kg−1) 36.09 ± 1.52b 49.01 ± 2.29a 39.07 ± 7.05b 19.20 ± 3.19c

AP (mg·kg−1) 2.19 ± 0.09b 6.44 ± 0.64a 2.96 ± 0.18b 6.07 ± 0.49a

The values are the mean ± standard deviation (n = 3), followed by different letters showing significant differences in the four thinning treatments for each index at the 0.05 probability level. SM, 
soil moisture; SBD, soil bulk density; SOM, soil organic matter content; TN, TP, TK, AN, AK and AP, contents of total nitrogen, total phosphorus, total potassium, available nitrogen, available 
potassium, and available phosphorus, respectively.

A B

FIGURE 1

Rarefaction curve of Shannon index of bacteria (A) and fungus (B) communities at OTU level among the four thinning treatments.

https://doi.org/10.3389/fmicb.2023.1117384
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1117384

Frontiers in Microbiology 06 frontiersin.org

was 54.11% (Figure  5A), and three indicators in the shrub layer 
showed a significant correlation with fungal community composition 
(Figure 5B).

SBD and pH value were significantly and positively correlated 
with the relative abundance of Chloroflexi, while SM and AP were 
significantly and negatively correlated with it. The relative abundance 
of Firmicutes was negatively correlated with TN and SOM (Figure 4A). 
SOM and TN were significantly and positively correlated with the 
relative abundance of Ascomycota. They were significantly and 
negatively correlated with the relative abundances of Zoopagomycota, 
Rozellomycota, Chytridiomycota, Basidiomycota and Mortierellomycota, 
respectively (Figure 4B).

Figure 6A shows that the first and second ordination axes of RDA 
explained 61.32 and 16.19% of the variance in the soil bacterial 
community, respectively, and TP and TN explained the largest 
proportion of the variance. The pH value, SBD, TN, TK, TP and AP 
appeared to be the most important environmental parameters for the 
fungal community, and the variance explained by the first and second 
ordination axes was 93.73 and 2.68%, respectively (Figure 6B).

3.4. Microbial function

A total of 40 groups at level 2 of KEGG orthologs (KO) were 
detected (Supplementary Table S2). There were 6,053 KOs across all 
samples, and the most abundant functional pathways were presented 
in Supplementary Figure S3. The abundances of metabolism, 
environmental information processing and genetic information 
processing accounted for a relatively high proportion of the four 
thinning treatments, with mean values of 60.07%, 22.04%, and 
10.03%, respectively. Significant differences were found in bacterial 
functional pathways among the thinning treatments. Analysis of level 

2 metabolic pathways showed that the abundances of bacterial 
functions such as membrane transport, signal transduction, energy 
metabolism, and cell motility increased significantly with increasing 
thinning intensity.

The abundances of nucleotide metabolism, translation, replication, 
and repair were opposite to the abovementioned changes 
(Supplementary Table S2). The proportion of cellulolysis was 
significantly increased in the LIT, MIT and HIT treatments. The 
relative abundances of nitrogen fixation and phototrophy in the LIT 
and MIT treatments were lower than those in the control (Figure 7A).

Most fungi could not be classified (classification = ‘Unknown’), 
and 56.27%, 81.46%, 82.37%, and 70.91% of the relative abundance of 
fungal functional groups were unclassified in the control, LIT, MIT 
and HIT treatments, respectively (Supplementary Figure S4). The 
most abundant fungal parasite, undefined saprotrophs, had a mean 
abundance of 14.26% in the control, almost three times as much as it 
did in the LIT or MIT treatment (Supplementary Figure S4). Thinning 
significantly enhanced the abundance of soil saprotrophs and 
lichenized-undefined saprotrophs, and the abundance of soil 
saprotrophs in HIT was 5 times higher than that in the control 
(Figure  7B). The abundance of endophytes, plant pathogens and 
ectomycorrhizal fungi decreased with increasing thinning intensity.

4. Discussion

4.1. Response of understory vegetation 
diversity and soil properties to thinning 
intensities

In the present study, the Shannon index, the Pielou index and the 
species richness of the shrub layer in the HIT, MIT and LIT treatments 

TABLE 3 Diversity indices of the bacterial and fungal communities among the four thinning treatments in C. japonica var. sinensis plantations.

CK LIT MIT HIT

Bacteria Shannon 6.101 ± 0.058a 5.755 ± 0.13b 5.677 ± 0.134b 5.805 ± 0.175b

Chao 3110.6 ± 163.91a 2523.5 ± 122.54b 2485.2 ± 238.61b 2837.6 ± 230.65ab

Fungi Shannon 4.571 ± 0.05a 3.602 ± 0.103bc 3.287 ± 0.187c 3.684 ± 0.082b

Chao 1402.2 ± 142.03a 1051.7 ± 50.09bc 1028.3 ± 63.51c 1135.5 ± 19.38b

The values are the mean ± standard deviation (n = 3), followed by different letters showing significant differences in the four thinning treatments for each index at the 0.05 probability level.

A B

FIGURE 2

Relative abundance of the dominant groups of bacterial (A) and fungal (B) communities at the phylum level among the four thinning treatments.
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were notably higher than those in the control. The main reason is that 
thinning results in more or larger canopy gaps and improves 
understory light conditions, which increases plant diversity (Tamura 
and Yamane, 2017). However, the effect of thinning on the richness of 
the herb layer was not as obvious as those in previous reports (Son 
et al., 2004; Muscolo et al., 2021), and the species richness was greater 
in the shrub layer than in the herb layer. These results were presumably 
related to the fact that shrubs are taller than herbaceous plants and can 
embrace light first, as the amount of light reaching the understory is 
one of the most important limiting factors affecting the species of 

understory plants (Yu et  al., 2022). Additionally, the lack of seed 
resources of understory vegetation species in and around the plot due 
to the relatively high tree density before thinning (Ali et al., 2019b) 
and the altitude of the site might be another reason for the lower 
number of vegetation species.

Understory vegetation cover and richness increased with 
increasing thinning intensities in the present, which led to an increase 
in the amount of litter (He and Barclay, 2000; Teste et  al., 2012), 
followed by changes in soil physical attributes and nutrient cycling 
(Elliott et al., 2015; Xiao et al., 2018; Yang et al., 2019). The roots and 

A B

FIGURE 3

Partial least squares discriminant analysis (PLS-DA) of bacterial (A) and fungal (B) community composition among four thinning intensity treatment 
sites.

A B

FIGURE 4

Correlation heatmaps of the abundance of bacterial (A) and fungal (B) communities at the phylum level with understory vegetation characteristics and 
soil properties. HH, HP, HS, SH, SP and SS denote the Shannon index, Pielou index and species richness in the herb and shrub layers, respectively. SM, 
soil moisture; SBD, soil bulk density; SOM, soil organic matter content; TN, TK, TP, AN, AK and AP, contents of total nitrogen, potassium, phosphorus, 
available nitrogen, potassium and phosphorus, respectively.
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dead parts of the newly occurred herbs and shrubs are rich in lignin 
and other substances that enhance the looseness of the topsoil layer 
(Osman, 2013), which was the main reason why the soil bulk density 
decreased as the thinning intensity increased in the present study. 
Then, the humification of litter increased the contents of soil organic 
acids and organic matter (Sayer, 2006; Zou et al., 2017). The soil pH 
value difference in the present study was related to the changes in soil 
organic acid generation activity after thinning, and soil nutrients, 
especially the contents of soil organic matter (SOM) and total nitrogen 
(TN) were increased after thinning. Compared with the control, the 
SOM and TN under the high-intensity thinning treatment (HIT) 
increased by 19.87% and 35.29%, respectively (Table 2). Thus, it can 
be seen that LIT and MIT treatments were conducive to improving the 

understory vegetation diversity and soil physicochemical properties 
of young C. japonica var. sinensis plantation.

4.2. Responses of soil microbial community 
diversity and composition to thinning 
intensities

With increasing thinning intensities, the Shannon and Chao 
indices of soil bacteria and fungi first decreased and then increased 
in the C. japonica var. sinensis forest (Table 3). This was different from 
the study of Dang et al. (2018), in which the Shannon and Chao 
indices in soil bacteria and fungi did not vary significantly with 

A B

FIGURE 5

RDA of abundant bacterial (A) and fungal (B) communities at the genus level and understory vegetation characteristics for the soil samples from four 
thinning treatments in Cryptomeria japonica var. sinensis plantations. HH, HP, HS, SH, SP and SS denote the Shannon index, Pielou index and species 
richness in the herb and shrub layers, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.

A B

FIGURE 6

RDA of abundant bacterial (A) and fungal (B) communities at the genus level and soil properties for the soil samples from four different thinning 
treatments in C. japonica var. sinensis plantations. SM, soil moisture; SBD, soil bulk density; SOM, soil organic matter; TN, TK, TP, AN, AK, and AP, 
contents of total nitrogen, total potassium, total phosphorus available nitrogen, available potassium and available phosphorus, respectively. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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thinning intensities. Cai et al.’s (2020) study on the thinning of Larix 
gmelinii var. principis-rupprechtii plantation showed that the Shannon 
index of bacterial communities were higher in the medium-intensity 
than in other treatment. Lin et  al. (2016) demonstrated that soil 
fungal communities did not change significantly after 21 months of 
thinning in a Japanese cedar (Cryptomeria japonica) plantation in 
Taiwan. The reason for inconsistent results among these studies may 
be related to the difference in species composition and distribution 
pattern of the understory vegetation since microbial community 
composition varies with vegetation species (Overby et  al., 2015). 
Thinning promotes the growth of planted trees and understory 
vegetation, which is the main reason for changing the composition 
and decomposition rate of litter and therefore affects the activity of 
soil microorganisms. This was also demonstrated in a study of mature 
Pinus contorta forests, which found that the heterogeneity of 
understory plant species and their rhizosphere resources (e.g., root 
exudates, nutrients) influenced the patterns of variation in 
belowground microbial communities (McIntosh et  al., 2013). In 
addition, the changes in the soil bacterial and fungal communities 
may be related to their adaptability to the changed microenvironment 
in the stands after thinning.

Thinning significantly changed the soil bacterial community 
structure in the C. japonica var. sinensis plantation at the phylum 
level, and the relative abundances of Proteobacteria and 
Actinobacteriota increased with increasing thinning intensity 
(Figure 2A). This could be explained by the enhanced soil nitrogen 
content under thinning treatments (Table 2), as in Wang et al.’s (2018) 
study on Chinese fir (Cunninghamia lanceolata) plantations, in which 
nitrogen addition could increase the relative abundance of 
Proteobacteria and Actinobacteria. The study of Cai et  al. (2020) 
showed that these two phyla had higher abundance in the no thinning 
treatment of Larix plantations. The most reasonable explanations are 
that the bacterial composition is closely related to the soil conditions, 
climate and sampling time (Green et al., 2008), and the adaptability 
of soil microorganisms in the community to soil environmental 

changes is different (Navarrete et  al., 2015; Ren et  al., 2016). 
Accordingly, the phylum level of bacteria may respond differently to 
changes in forest density. This study found that soil bacterial 
communities at the phylum level were mainly composed of 
Proteobacteria (relative abundance 34.93%) in four treatments 
(Figure 2A), and the second dominant phylum was Acidobacteriota, 
followed by Actinobacteriota and Chloroflexi. Coincidentally, the 
LEfSe algorithm showed that Bacilli (Firmicutes) may be a potential 
biomarker of bacteria in the control (Supplementary Figure S1). With 
increasing thinning intensities, Gammaproteobacteria 
(Proteobacteria) and Acidimicrobia (Actinobacteriota) may 
be potential biomarkers for light-intensity (LIT) and high-intensity 
(HIT) thinning treatments, respectively. For moderate-(MIT) 
intensity thinning treatments, Actinobacteriota and Chloroflexi may 
be potential biomarkers. Proteobacteria show a significant positive 
correlation with the soil organic carbon concentration, indicating that 
increases in root secretions or plant litter decomposition products 
stimulate their growth (Huhe et al., 2017). Actinobacteria species are 
recognized as degraders of cellulose, chitin and other complex carbon 
compounds, which gives them a central role in the carbon cycle and 
in the turnover of organic matter (Yergeau et al., 2010; Zhou et al., 
2017). Acidobacteria and Chloroflexi also play an important role in 
the decomposition of organic matter and nutrient cycling (Bryant and 
Frigaard, 2006; Eichorst et  al., 2018). Firmicutes can reduce the 
abundance of plant pathogens (Ali et  al., 2019a), and they also 
embrace sulfate- and iron- reduction abilities (Gupta et al., 2018). 
These results demonstrate that changes in soil bacterial community 
composition are directly related to soil characteristics, especially 
changes in carbon and nitrogen.

The abundance of Ascomycota increased significantly, while 
Basidiomycota, Rozellomycota, and Mortierellomycota decreased at 
the soil fungal phylum level with increasing thinning intensities 
(Figure 2B). Ascomycota is a potential biomarker of the LIT, MIT and 
HIT treatments, and as the most abundant fungus, Ascomycota 
accounted for up to 75% (MIT treatment) of fungi in the C. japonica 

A B

FIGURE 7

Variations in the composition of bacterial (A) and fungal (B) functional groups under different thinning treatments. The bars represent standard 
deviation of the means (n = 3); different lowercase letters indicate significant differences between different thinning intensities in the same index.
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var. sinensis plantation, in which Archaeorhizomycetes had the highest 
abundance (Supplementary Table S1), and increased with increasing 
thinning intensities. Archaeorhizomycetes are a type of saprophytic 
fungi (Rosling et al., 2011) that play an important role in the cycling 
of carbon derived from living or dead roots in soil (Rosling et al., 
2013). The LEfSe algorithm showed that fungi had the most 
taxonomic groups in the control, which were 53, 3.53 and 13.25 times 
that of the LIT, MIT and HIT treatments, respectively. Rozellomycota, 
Basidiomycota, and Tremellomycetes (Basidiomycota) may be potential 
biomarkers for the control (Supplementary Figure S2). Basidiomycota 
are found in almost all terrestrial environments, and many of them 
obtain nutrients by decaying wood, leaf litter and other dead organic 
matter. Therefore, they play an indispensable role in the carbon cycle. 
C. japonica var. sinensis had dense branches with a dark and moist 
environment in the control plots, and it was easy to cause the bottom 
branches to wither away and fall down. Branches of conifer species 
are more difficult and need a longer time to be decomposed than 
shrubs and herbs, and the present study was conducted 5 years after 
thinning, which may be  the reason for the higher abundance of 
Basidiomycota in the control.

4.3. Relationships of microbial 
communities with understory vegetation 
and soil properties

The relationship of microbial community structure with 
understory vegetation and soil is one of the vital goals of microbial 
ecology (van der Heijden et al., 2008; Fu et al., 2018). In this study, the 
Pielou index of the herb layer was positively correlated with the 
abundance of Chloroflexi, Planctomycetota and Verrucomicrobiota, and 
was negatively correlated with the abundance of Actinobacteria 
(Figure 4A). The Shannon index and species richness in the herb layer 
and the Shannon index, Pielou index and species richness in the shrub 
layers were almost negatively correlated with the abundance of the 
top 10 bacterial phyla, and the bacterial community was more likely 
to be significantly correlated with the soil properties than vegetation. 
This demonstrated that soil physicochemical properties had more 
important effects on bacterial community structure than did 
understory vegetation diversity. We also found that the pH value and 
soil bulk density (SBD) were significantly positively correlated with 
the relative abundance of Chloroflexi. One study on the depth profiles 
of microbial communities in high-elevation soils demonstrated that 
soil pH was an important driver of forming soil bacterial communities 
in a given region (Chu et  al., 2016). However, Dang et  al. (2018) 
revealed that pH was not correlated with dominant members of 
bacterial communities in Pinus tabuliformis Carriere plantations. The 
SM and available phosphorus content (AP) were the main driving 
factors of the soil bacterial community structure in the C. japonica var. 
sinensis plantation; they were positively correlated with the abundance 
of Proteobacteria and negatively correlated with the abundance of 
Chloroflexi. Proteobacteria can improve soil fertility and sustainability 
(Rousk et al., 2009; Niu et al., 2020). Chloroflexi is slow-growing and 
was once classified as an oligotrophic group, and its growth and 
development may be limited by soil nutrient accumulation (Xu et al., 
2021; Zhang et al., 2022), which is why TN, AP and the content of total 
potassium (TK) were negatively correlated with the abundance 
of Chloroflexi.

The correlation heatmap of understory vegetation diversity and 
soil properties with the main phylum of fungi showed that the relative 
abundances of the main phylum fungi, except Ascomycota and 
Glomeromycota, were negatively correlated with the indices of the 
shrub layer and positively correlated with SBD, pH value and the 
content of total phosphorus (TP). RDA further confirmed that SBD, 
pH value, TK, TP, TN, AP and shrub diversity affected the abundance 
of fungal communities. Overall, soil parameters were the most 
important factors affecting the soil fungal community structure. This 
was in accordance with Adamo et al.’s (2021) study in 42 pure and 
mixed pine forests, which showed that soil chemistry significantly 
affected the variability of soil fungal communities.

Thinning had significant effects on the relative abundances of the 
dominant fungal communities rather than the dominant bacterial 
communities, which might indicate that the bacterial community has 
stronger resistance to changes in stand density than fungal 
communities (Wang C. Q. et  al., 2021). Some studies have also 
reported that fungal communities have a more obvious response to 
plant–soil feedback than bacterial communities (Dang et al., 2018; 
Hou et al., 2021). This is mainly because the bacterial community has 
a smaller ecological niche in soil and a weaker symbiotic relationship 
with plants than the fungal community (Shan et al., 2017). Therefore, 
changes in soil properties, directly or indirectly caused by the intensity 
of thinning, were less responsive to bacterial than to fungal 
community diversity.

4.4. Potential metabolic pathways in soils

Understory vegetation diversity and contents of soil nutrients in 
the C. japonica var. sinensis plantation increased with increasing 
thinning intensities. Different bacterial and fungal species had 
different strategies for adaptation to microenvironmental changes in 
the thinned plantations. Analysis of microbial function prediction 
showed that 60% of bacteria were involved in metabolic pathways, 
some of which are known to cause human disease, and the remaining 
bacteria were involved in genetic information processing, 
environmental information processing, organismal systems and 
cellular processes. The abundances of membrane transport, nucleotide 
metabolism and signal transduction in the LIT, MIT and HIT plots 
were higher than those in the control. Bacteria often have a strong 
relationship with human diseases (Geng et  al., 2020; Wang et  al., 
2020). In this study, bacterial infectious diseases accounted for the 
highest proportion of human diseases, up to 10%. Fortunately, the 
proportion of human diseases decreased with increasing thinning 
intensities. This inferred that the change in the bacterial community 
caused by thinning in the C. japonica var. sinensis plantations might 
reduce the possibility of harm to humans.

Thinning significantly increased the functional groups ‘soil 
saprotrophs’ while decreasing the functional groups ‘endophytes’ and 
‘plant saprotrophs’ in fungi. This proved that soil nutrients under the 
C. japonica var. sinensis plantation could be improved by thinning 
since the abundance of soil saprotrophs was positively correlated with 
soil fertility (Kyaschenko et al., 2017). This was further confirmed by 
RDA, from which a significant positive correlation was found between 
soil properties and the fungal community. Based on the composition 
and community function of soil bacteria and fungi, it has been 
predicted that higher thinning intensities are beneficial for soil 
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properties and soil microbial relationships in Cryptomeria japonica 
var. sinensis plantations.

5. Conclusion

This study showed that thinning enhanced the understory 
vegetation diversity and improved the soil physicochemical 
properties. In particular, thinning had a greater effect on the diversity 
of the shrub layer than the herb layer, and the soil bulk density (SBD) 
and the contents of soil organic matter (SOM) and total nitrogen 
(TN) increased with increasing thinning intensities of Cryptomeria 
japonica var. sinensis plantations. Although the Shannon and Chao 
indices of soil bacteria and fungi were significantly lower in the HIT, 
MIT and LIT treatments, the abundance of soil bacterial and fungal 
species varied significantly with different thinning intensities, the 
abundance of Actinobacteriota and Ascomycota significantly 
increased, and the abundance of Basidiomycota, Rozellomycota and 
Mortierellomycota decreased with increasing thinning intensities. The 
effects of thinning on microorganisms were mainly driven by soil 
properties such as pH value and the contents of total nitrogen and 
total phosphorus, especially for fungi. Fungi are more sensitive to 
understory vegetation than bacteria. Changes in the distribution of 
microbial function are a response to changes in the microbial 
community composition. Thinning improves membrane transport, 
signal transduction, and cellulolysis in bacteria and soil saprotrophs 
in fungi. According to the changes of understory vegetation diversity, 
soil physicochemical properties and microbial composition and 
function after thinning, LIT and MIT treatments should be adopted 
in young C. japonica var. sinensis plantations. This study illustrated 
the relationship of soil microorganisms with the understory 
vegetation and soil properties in plantations with different thinning 
densities; however, the effect of thinning on plant–soil-
microorganism interactions in plantations needs to be further studied 
to explore the interaction mechanisms among them.
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