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Background: The Enterobacterales are a group of Gram-negative bacteria frequently 
exhibiting extended antimicrobial resistance (AMR) and involved in the transmission 
of resistance genes to other bacterial species present in the same environment. Due 
to their impact on human health and the paucity of new antibiotics, the World Health 
Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. 
Enterobacterales are ubiquitous and the role of the environment in the transmission of 
AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling 
AMR in both humans and animals under the one health approach. Animal manure 
is recognized as an important source of AMR bacteria entering the environment, in 
which resistant genes can accumulate.

Methods: To gain a better understanding of the dissemination of third generation 
cephalosporin and fluoroquinolone resistance genes between isolates in the 
environment, we applied whole genome sequencing (WGS) to Enterobacterales 
(79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter 
gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) 
treatment by integrated constructed wetlands (ICWs). DNA was extracted using 
the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed 
by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 
chemistry as 300-cycle paired-end runs. AMR genes and point mutations were 
identified and compared to the phenotypic results for better understanding of the 
mechanisms of resistance and resistance transmission.

Results: A wide variety of cephalosporin and fluoroquinolone resistance genes 
(mobile genetic elements (MGEs) and chromosomal mutations) were identified 
among isolates that mostly explained the phenotypic AMR patterns. A total of 31 
plasmid replicon types were identified among the 82 isolates, with a subset of 
them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined 
to the Enterobacter cloacae isolate and two were confined to the Klebsiella 
pneumoniae isolate. Virulence genes associated with functions including stress, 
survival, regulation, iron uptake secretion systems, invasion, adherence and toxin 
production were identified.

Conclusion: Our study showed that antimicrobial resistant organisms (AROs) can 
persist even following wastewater treatment and could transmit AMR of clinical 
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relevance to the environment and ultimately pose a risk to human or animal 
health.
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environment, whole genome sequencing

Introduction

The Enterobacterales are a group of ubiquitous Gram-negative 
bacteria of increasing concern since they are human pathogens and 
can also transfer AMR genes to other pathogenic bacteria of the 
same and differing species via MGEs (Meek et al., 2015; Ruh et al., 
2019; Arnold et al., 2022). Notably, transmissible resistance to the 
third generation cephalosporins has become a significant issue due 
to mounting levels of resistance in hospitals and community 
settings, which in turn can lead to severe infection and death 
(Jeanvoine et al., 2020).

WHO recognized and prioritized AMR bacteria into critical, 
high and medium based on the urgency and need for new antibiotics 
(WHO, 2019). Ireland, like many other countries has adopted a one 
health approach to address the challenge of AMR and published the 
second revision of Ireland’s National Action Plan on AMR in 2021 
(Government of Ireland, 2021).

Although limited attention has been given to AMR in isolates 
from the environment in the past (Singer et al., 2016; Ramovic et al., 
2020), EFSA recently produced a scientific opinion on the role played 
by the environment in the emergence and spread of AMR through the 
food chain, which identified a large number of data gaps in relation to 
the sources of contamination, relevance of transmission routes and 
effectiveness of mitigation measures (EFSA Biological Hazards 
(BIOHAZ) panel, 2021). It was concluded that there is insufficient data 
available to support a specific assessment of the quantitative impact 
that the production environment has on the contamination of foods 
or on public health due to limited studies on the efficiency of 
mitigation options for resistant organisms and elimination of 
resistance genes (EFSA Biological Hazards (BIOHAZ) panel et al., 
2021). Antimicrobial resistant organisms (AROs) and MGEs can 
spread through several different pathways in the environment and 
have been previously reported in surface waters, soils, animal and 
human wastewater and foods (Graham et  al., 2019). Molecular 
mechanisms for resistance can be either chromosomal or plasmid 
mediated, and this impacts on the transmissibility of the genes. The 
spread of AMR via MGEs such as plasmids, insertion sequences, 
integrons and transposons plays an important role in antibiotic 
resistance (Partridge et al., 2018). Among the molecular mechanisms 
for resistance to extended spectrum cephalosporins (alone or in 
various combinations) are the presence of genes encoding for TEM, 
ACT, CMY, SHV, OXA and CTX-M type β-lactamases (De Angelis 
et  al., 2020; Hussain et  al., 2021). Molecular mechanisms for 
chromosomal fluoroquinolone resistance involve mutations in target 
genes of the quinolone resistance-determining regions (QRDR) such 
as DNA gyrase (gyrA) or topoisomerase IV (parC or parE) or 
acquisition of plasmid mediated resistance such as the qnr gene and 
oqxAB, a quinolone efflux pump (Perez et al., 2013; Azargun et al., 
2020; Chen et al., 2020). Characterization of AMR genes by PCR, 
WGS and a combination of PCR and metagenomics has previously 

been successfully applied to E. coli isolates from hospital wastewater, 
grassland soils and fecal samples, manure pits on dairy farms and from 
the environment and feces on broiler farms (Chandran et al., 2014; 
Yang et al., 2020; Massé et al., 2021; Byrne et al., 2022). The study of 
Massé et al. (2021) examined E. coli isolated from fecal samples from 
calves, cows and manure pits at 101 diary farms in Canada and 
reported that 85% of farms had at least one AmpC and ESBL 
producing E. coli and that blaCMY-2 and blaCTX-M were the genes, 
respectively, responsible for these phenotypes. The study of Byrne 
et al. (2022) investigated the prevalence and frequency of ESBL/AmpC 
producing E. coli isolated from the environment and fecal samples 
from broiler farms in Ireland and reported that 13% of E. coli isolates 
from broiler farms harbored the blaCMY-2 gene and that hatcheries may 
be a reservoir and major contributor to the transmission of AMR.

Animal waste can be an important source of AMR bacteria 
entering the environment, especially if spread on soils where 
resistance genes can accumulate (Xu et  al., 2020; Yang et  al., 
2020). We  recently reported the identification of critically 
important Enterobacterales in wastewater from pig, cattle and 
poultry farms, both before and after treatment using ICWs 
(Prendergast et al., 2022a). Here, we report on the characterization 
of the isolates collected from farm wastewater before and after 
ICW treatment, AMR genes, pathotypes, phylogroups, plasmid 
replicons and virulotypes, and on the relatedness of the E. coli 
isolates, in order to enhance our understanding of the significance 
of farm effluents and ICW-treated water as a source of AROs to 
the environment in Ireland.

Materials and methods

Selection of isolates

All isolates collected from pre and post water treatment by 
ICWs in a previous study (Prendergast et  al., 2022a) were 
sequenced. They included 72 that were isolated directly from the 
farm effluent at four farms, i.e., beef (120 sucklers; farm 1), dairy 
(100 lactating cows; farm 2), dairy and poultry (100 lactating 
cows and 8,000 broilers; farm 3) and piggery (1,590 sows; farm 
4) and 10 from the ICW treated water (one isolate from farm 2 
and nine from farm 3). All four farms were located in the 
southeast region of Ireland (Co. Waterford). Isolates were 
obtained using selective media to screen for the presence of 
carbapenem, cefotaxime (ESBL/pAmpC) and fluoroquinolone 
resistant organisms as described previously (Prendergast et al., 
2022a). Among these isolates, the majority (n = 79) were 
identified as E. coli. The remaining three were Citrobacter gillenii, 
Enterobacter cloacae, and Klebsiella pneumoniae. Isolates were 
stored at −80°C in Protect beads (Langanbach services Ltd., 
Wicklow, Ireland) pending WGS.
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Whole genome sequencing (WGS)

Isolates were recovered on Columbia Agar supplemented with 
horse blood (E & O Laboratories LTD, Scotland, United Kingdom) 
and incubated at 37°C for 18–24 h. Using a 1 μL inoculation loop, a 
loopful of pure culture was taken from the plate and re-suspended in 
100 μL nuclease free water and DNA was extracted and quality 
checked as previously described using the MagNA Pure 96 system 
(Roche Diagnostics, Rotkreuz, Switzerland) (Prendergast et al., 2022b).

Sample libraries for all isolates were prepared using the Illumina 
DNA Prep kit (Illumina, Eindhoven, Netherlands) The library was 
amplified by 5 PCR cycles and normalization, denaturing and 
sequencing of libraries was as previously described (Prendergast et al., 
2022b). The isolates included in this study were distributed over eight 
sequencing runs on a MiSeq (Illumina).

Analysis of WGS data

The following run metrics were used to check that the run passed 
basic quality metrics for raw sequence data, i.e., >70% bases higher 
than Q30 at 2 × 300 bp and cluster density of 1,100–1,400 k/mm2. In 
addition, the percentage of reads that aligned to the phiX was also 
checked to ensure that the starting concentration of the libraries were 
not over or under-estimated. The generated raw sequence reads 
(FASTQ files) were imported directly from Illumina BaseSpace to 
BioNumerics (Version 8.1; Applied Maths NV, a BioMérieux company, 
Sint-Martens-Letem, Belgium). FASTQ files were assembled using the 
SPAdes assembler within the BioNumerics software via its integrated 
calculation engine as previously described (Prendergast et al., 2022b). 
The FASTQ files were submitted to the BioNumerics wgMLST scheme 
for assembly-free calling and assembled genomes were submitted to 
the scheme for assembly-based allele calling. The sequence quality of 
each individual genome was evaluated using BioNumerics to include 
the following information: Number of contigs, N50, coverage, genome 
length, and core genome (%).

All genomes passed the basic quality metrics for raw sequence 
data from the Miseq. On average, a cluster density of 1,123 (K/mm2) 
was achieved with 91.23% of clusters passing filter (PF) specifications. 
Over the eight runs, the average number of reads, yield and error rate 
was 25,164,438 reads PF, 14.56 Gbp and 2.58% error, respectively. In 
each run, the index reads were evenly distributed across all samples.

A number of different knowledgebases within the E. coli plugin 
(V2021.04.12) in BioNumerics, were used to obtain data on acquired 
resistance, mutational resistance, acquired virulence, predicted 
pathotype and plasmids (ori-identity). The rules used in defining 
particular pathotypes and virulence within BioNumerics were as 
previously described (EFSA Biological Hazards (BIOHAZ) panel 
et al., 2020; Malberg Tetzschner et al., 2020). The plugin detected the 
pathotype based on the presence of certain marker genes as defined 
by the National Reference Laboratory at the Statens Serum Institute, 
Denmark. Possible pathotypes were enteropathogenic E. coli (EPEC), 
enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), 
enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), 
enteroinvasive E. coli (EIEC), uropathogenic E. coli (UPEC), and 
neonatal meningitis E. coli (NMEC). APEC pathotypes were identified 
when isolates had three or more of the virulence genes iss, iroN, hlyF, 
ompT, and uitA (Johnson et  al., 2008). E. coli phylotyping was 

performed in silico by exporting Fasta files from BioNumercs and then 
uploading them to the CleroTyping research center1 without adjusting 
the settings (Beghain et al., 2018; Clermont et al., 2019).

The sequence types (STs) of the E. coli isolates were determined 
following the MLST scheme of Achtman, i.e., the 7 gene allele profile 
was determined from the sequence. In addition to the 7 housekeeping 
genes, BioNumerics enabled the analysis of the entire core genome 
(cgMLST) and phylogeny was inferred by creating a dendrogram with 
a scaling factor of 1 using the single linkage algorithm within 
BioNumerics. In the context of the diversity amongst the isolates 
examined, clusters, or matches by cgMLST were defined as a distance 
measure of ≤8 alleles. To determine the MLST of non-E. coli isolates, 
FASTQ were uploaded to the Center for Genomic Epidemiology 
(CGE)2 to extract information on MLST using MLST 2.0 (Larsen 
et al., 2012). Dendrograms of cgMLST were created in BioNumerics 
using the single linkage algorithm with the allele calls considered 
categorical data.

Results

The de novo assemblies consisted of an average of 142 contigs 
(range 56–373 bp) with an average N50 of 162,544 bp (range 66,468–
406,961 bp). The average coverage was 88X (range 40–135 X) and core 
% ranged from 98.8–100 with a mean core percent of 99.8%.

Genotypic confirmation of AMR 
phenotypic results

Genotypic findings largely corresponded with phenotypic AMR 
results. Amongst the 48 isolates phenotypically identified as 
cefotaxime (CTX) resistant, 45 harbored genes encoding CTX-M-14 
(n = 19), CTX-M-15 (n = 9), CMY-2 (n = 6), CTX-M-65 (n = 1) or 
SHV-12 (n = 1) or carried a mutation in the ampC promotor at 
position 12 (n = 9) and were therefore confirmed through WGS 
(Table 1). The E. cloacae isolate which was phenotypically described 
as ceftazidime (CAZ) resistant and CTX susceptible (MIC = 2 μg/mL) 
harbored blaACT-14 and blaSHV-12 genes.

Phenotypic resistance to ciprofloxacin (CIP) was confirmed by 
WGS in all relevant isolates (n = 52). The five isolates phenotypically 
described as CTX and CIP resistant all harbored qnrS1 in addition to 
genes encoding CTX-M-15 (n = 3), CTX-M-65 (n = 1) and SHV-12 
(n = 1). The 47 E. coli isolates phenotypically identified as CIP and 
nalidixc acid (NAL) resistant harbored double mutations in gyrA and 
all had at least one mutation in parC and 20 of these also had at least 
one mutation in parE (Table 1). In addition, qnrS1 was identified in 
two E. coli isolates from farm 2 with CIP and NAL resistance 
phenotype (MIC value of 8 μg/mL for CIP and > 128 μg/mL for NAL) 
which also harbored point mutations in gyrA and parC and in gyrA, 
parC and parE, respectively.

In a few cases WGS identified resistance genes in isolates that 
did not display the corresponding phenotypic resistance. 

1 http://clermontyping.iame-research.center/

2 https://cge.cbs.dtu.dk/services/MLST/
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TABLE 1 Distribution of genes associated with cefotaxime/ceftazidime and fluoroquinolone resistance amongst isolates from wastewater from four Irish farms.

ESBL/ampC resistance Fluoroquinolone resistance

Mobile genetic element AmpC 
promoter

Mobine genetic element Mutational resistance identifiers

Farm Phenotypic 
AMR results

No. 
Isolates

bla 
ACT- 14

bla 
CMY- 2

bla 
CTX-M- 14

bla 
CTX- M-15

bla 
CTX- M-65

bla 
SHV-12

53bp_
dC12T

oqxB qnrB1 qnrB2 qnrS1 gyrA_ 
pS83L

gyrA_ 
pD87N

parC_ 
pA56T

parC_ 
pS80I

parC_ 
pE84G

parC_ 
pE84K

parE_ 
pL416F

parE_ 
pS458T

parE_ 
pS458A

1 CTX 8 0 0 3 3 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0

CTX / CIP 2 0 0 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0

CTX / 

CIP + NAL 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

CIP + NAL 11 0 0 0 0 0 0 0 0 0 0 0 11 11 3 7 2 4 0 0 2

2 CTX 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CTX / CIP 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

CTX / 

CIP + NAL 3 0 0 0 1 0 0 0 0 0 0 1 3 3 0 3 0 0 0 0 3

CIP + NAL 4 0 0 0 0 0 0 0 0 0 0 1 4 4 2 4 0 0 0 0 2

3 CTX 3 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

CTX / CIP 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

CTX / 

CIP + NAL

6 0 0 0 0 0 0 5 0 0 0 0 6 6 1 6 0 0 0 0 4

CIP + NAL 12 0 0 0 0 0 0 0 0 0 0 0 12 12 2 12 0 0 2 0 1

4 CTX 16 1 2 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAZ 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

CTX / 

CIP + NAL

4 0 3 1 0 0 0 0 0 0 0 0 4 4 0 4 0 0 0 3 0

CIP + NAL 6 0 0 0 0 0 0 0 0 0 0 0 6 6 1 6 0 0 2 0 0

Four 

farms

CTX 29 1 2 17 5 0 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0

CAZ 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

CTX / CIP 5 0 0 0 3 1 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0

CTX / 

CIP + NAL

14 0 4 1 1 0 0 5 0 0 0 1 14 14 1 14 0 0 0 4 7

CIP + NAL 33 0 0 0 0 0 0 0 0 0 0 1 33 33 8 29 2 4 4 0 5

Total 82 1 6 18 9 1 2 9 1 1 1 7 47 47 9 43 2 4 4 4 12

CTX, Cefotaxime; CAZ, Ceftazidime; CIP, Ciprofloxacin; NAL, Nalidixic acid.
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K. pneumoniae and E. cloacae were not phenotypically CIP resistant 
(MIC = 0.12 μg/mL for both) but carried qnrB1 and qnrB2 genes, 
respectively.

Less frequently, the resistance phenotype was not confirmed 
molecularly, as it was in the case of three CTX resistant isolates that 
did not contain corresponding resistance genes.

A total of 19 of all E. coli isolates showed co-resistance to 
cephalosporins plus fluoroquinolones. Eleven of these carried MGEs 
containing ESBL encoding genes, with 6 of the 11 also containing 
qnrS1 genes (Table 1). They originated from all four farms, mainly 
from farm wastewater, but four of them were from ICW treated 
water samples from farm 4.

Identification of plasmid replicon types

A total of 31 plasmid replicon types were identified amongst the 
82 isolates with 24 identified in the 79 E. coli isolates (Figure 1). 
Multiple types were observed in the same isolate, with six plasmid 
replicon types identified in one E. coli isolate from farm 1 effluent 
and five identified in 11 different E. coli isolates originating from all 
four farm types including one from ICW-treated water. Among the 
10 isolates from ICW-treated water samples, nine harbored between 
1 and 5 plasmid replicon types. In contrast, there was one E. coli 
isolated from farm 3 ICW-treated water with a phenotypic AMR 
profile of CIP and NAL resistance, that did not harbor any 
plasmid replicon.

The most prevalent plasmid replicon type identified amongst the 
82 isolates was IncFIB(AP001918), which was present in 41 (50%) 
of isolates. Four plasmid replicon types were only detected once 
which included two phage plasmids, i.e., IncFIB(pLF82-
PhagePlasmid) and IncFIB(H89-PhagePlasmid) present in isolates 
from samples from two different farms (farms 3 and 4).

The most common replicon type amongst the isolates carrying 
blaCTX-M-14 was IncFII (present in 18/19 isolates) while the most 
common amongst isolates with genes encoding CTX-M-15 was IncY 
(present in 6/9 isolates). All six isolates harboring blaCMY-2 carried the 
IncFII plasmid replicon type; with four also carrying the IncX1 and 
IncFIB(AP001918) and the other two carrying IncFII(pCoo). The 
most abundant plasmid replicon types amongst the identified qnr 
positive isolates were IncY, IncR and IIncFIA(HI1), identified in 4, 
3 and 3 isolates, respectively.

IncFII was more prevalent amongst the isolates identified as 
CTX/CAZ resistant but NAL sensitive, (80%) when compared 
with the isolates resistant to both CIP and NAL (3%). 
IncFIB(AP001918) prevalence was similar for both groups of 
isolates (43.3 and 60.5%).

Five plasmid replicon types were only detected in the E. cloacae 
isolate [IncHI2, IncHI2A, IncFIB(pECLA), IncFII(pECLA) and 
Col(pHAD28)], and two were confined to the K. pneumoniae isolate 
[IncFII(K) and IncFIA(HI1)].

Identification of E. coli pathotypes within 
BioNumerics

Following analysis of the WGS data from the 79 E. coli, only 
two predicted pathotypes were identified amongst the eight 

possible pathotypes, i.e., 19 ExPEC and six UPEC as previously 
described (Malberg Tetzschner et al., 2020). While ExPEC was 
isolated from all four farms, the majority were isolated from farm 
1 (7 isolates) followed by farms 3, 4 and 2 with five, four and two 
isolates, respectively. UPEC was isolated from farms 1, 3 and 4 
only with three, two and one isolates, respectively. One of these 
isolates was defined as a hybrid of both ExPEC and UPEC and this 
was isolated from farm 3 (Figure 1).

In silico and core genome (cg)MLST

In silico MLST typing yielded 22 different STs amongst the 79 
E. coli, with ST10 the most common, identified in 20 isolates 
(Figure 1). Nineteen isolates of ST10 were from farm effluent 
samples from farm 1 (n = 6), farm 3 (n = 2) and farm 4 (n = 11), 
with only one of them from a ICW-treated sample (farm 3). 
ST744 was the next most common sequence type, identified in 
nine isolates from all four farms and two of these were isolated 
from ICW-treated water samples from farms 2 and 3 (Figure 1). 
Other sequence types identified in order of frequency were 
ST1431, ST162, ST69, ST1079, ST44, ST88, and ST48. In 
addition, two isolates classified as unknown STs were obtained 
from farm 2 farm effluent on two separate occasions during June 
and August 2019 (Figure  1). Each of the two unknown STs 
harbored blaCTX-M-15 and qnrS1 genes and both were identified as 
the same ST by the Pasteur and Whitman MLST schemes within 
BioNumerics, i.e., ST716 and ST872, respectively (data not 
shown). The 10 E. coli directly isolated from ICW-treated water 
samples were of 9 different STs with two of ST744 and others 
ST10, ST1011, ST1079, ST1431, ST2608, ST683, ST69, and ST88 
(Figure 1).

When cgMLST was applied to the same 79 E. coli isolates, 
clusters both within and between farms were identified (Figure 1). 
Six of the 24 clusters had isolates from all four farms and all six had 
a difference of one or two plasmid replicon types (Figure 1). For 
example, isolates Id. 10 and 33 of ST744 were isolated from farms 1 
and 2, respectively 6 months apart, both carried qnrS1 with one allele 
difference from each other by cgMLST but one carried an additional 
plasmid (IncX1).

In another cluster we observed isolates Id. 6 and 3 of ST69 
from different sampling dates from farm 1 and isolate Id. 42 from 
farm 3, all the three were indistinguishable from each other and 
were shown to harbor blaCTX-M-14 and to carry the IncFII plamid. 
Another isolate (Id. 4) of the same ST was recovered from farm 1 
that was 2 allele different and also differed by harboring the blaCTX-

M-15 gene in addition to qnrS1 and by carrying the IncY plasmid 
(Figure 1).

Determination of E. coli phylogroups 
(ClermonTyping)

The 79 E. coli isolates were grouped into six phylogroups, i.e., A, 
B1, C, D, E and G with the majority (43 isolates) belonging to 
phylogroup A (Figures  1, 2) and these were mainly of ST10 (20 
isolates) followed by ST744 (nine isolates). Phylogroup B1 was 
identified in 22 isolates and spread across eight different STs. Four 
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phylogroups (A, B1, C and G) were identified among the 18 ExPEC 
(six different STs) and the five UPEC were all confined to phylogroup 
D and all were of ST69. The one isolate identified as ExPEC/UPEC was 
of phylogroup G (ST117). While phylogroup A and D were identified 

at all four farms, the majority of A originated from Farm 4 with no 
difference observed between farms for phylogroup D (Figure  2). 
Phylogroup C was confined to Farms 2 and 3 and phylogroups E and 
G were confined to Farm 3 (Figure 2).

FIGURE 1

Dendrogram generated through cgMLST analysis with a scaling bar representing a phylogenic difference of 1 allele. The different color codes represent 
different clusters of highly related isolates (≤8 alleles). Also shown are the main acquired resistance genes, plasmids, pathoptyes and phylogroups 
identified. CTX, Cefotaxime; CIP, Ciprofloxacin; NAL, Nalidixic acid.
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Identification of virulence genes and APEC 
pathotype

A total of 53 virulence genes were identified amongst the 79 
E. coli isolates (Figure 3). The tellurium ion resistance protein 
encoding gene (terC) was identified in all E. coli, followed by 
genes encoding for outer membrane protein complement 
resistance (traT), increased serum survival (iss), iron transport 
protein (sitA), long polar fimbriae (lpfA), outer membrane 

protease (protein protease 7; ompT), ferric aerobactin receptor 
(iucC), aerobactin synthetase (iutA), high molecular weight 
protein 2 non-ribosomal peptide synthetase (irp2) and 
siderophore receptor (fyuA), identified in 56, 38, 37, 34, 31, 29, 
29, 27, and 27 isolates, respectively. The maximum number of 
virulence genes identified in one isolate was 25, and the minimum 
was one, with an average of 9 virulence genes per isolate. 
Common patterns of virulence gene distribution were observed 
in isolates from the same ST with 13 virulence genes confined to 
one particular ST, i.e., tsh [serine protease autotransporters of 
Enterobacteriaceae (SPATE), neuC (polysialic acid capsule 
biosynthesis protein), plasmid-encoded catalase peroxidase 
(katP), Endonuclease colicin E2 (celb), and aaiC (type VI 
secretion protein)] were identified in isolates of ST10 only. The 
genes kpsMIII_K96 and kpsMIII_K10 (ABC-type polysaccharide/
polyol phosphate export systems permease; Group  3 capsule) 
were confined to isolates of ST69 only, vat and pic [serine 
protease autotransporters of Enterobacteriaceae (SPATE) to 
isolates of ST117 and the major pilin subunit F48 (papA_F48), 
cytolethal distending toxin B (cdtB), colicin B (cba) and putative 
exoprotein precursor (espP)] were identified in one particular ST 
only, i.e., ST162, ST1011, ST683 and ST88 accounting for 5, 2, 1 
and one isolates, respectively (Figure 3). The APEC pathotype 
was identified when isolates had three or more of the virulence 
genes iss, iroN, hlyF, ompT, and uitA (Johnson et al., 2008).

FIGURE 2

Distribution of different E. coli phylogroups amongst the four farms.

FIGURE 3

Distribution of virulence genes amongst the different ST of E. coli isolated from effluent and ICW-treated farm waste water. terC, Tellurium ion 
resistance protein; traT, Outer membrane protein complement resistance; iss, Increased serum survival; hra, Heat-resistant agglutinin; sitA, Iron 
transport protein; lpfA, Long polar fimbriae; ompT, Outer membrane protease (protein protease 7); iutA, Ferric aerobactin receptor; iucC, Aerobactin 
synthetase; irp2, High molecular weight protein 2 non-ribosomal peptide synthetase; fyuA, Siderophore receptor; hra, Heat-resistant agglutinin; iroN, 
Enterobactin siderophore receptor protein; papC, Outer membrane usher P fimbriae; hlyF, Hemolysin F; etsC, Putative type I secretion outer 
membrane protein; mchF, ABC transporter protein MchF; cvaC, Microcin C; ireA, Siderophore receptor; cib, Colicin ib.; papA_F11, Major pilin subunit 
F11; mcmA, Microcin M part of colicin H; kpsE, Capsule polysaccharide export inner-membrane protein; chuA, Outer membrane hemin receptor; eilA, 
Salmonella HilA homolog; cea, Colicin E1; capU, Hexosyltransferase homolog; astA, EAST-1 heat-stable toxin; air, Enteroaggregative immunoglobulin 
repeat protein; gad, Glutamate decarboxylase; f17G, Adhesin subunit of F17 fimbriae; f17A, Subunit A of F17 fimbrial protein; papA_F48, Major pilin 
subunit F48; kpsMII, Polysialic acid transport protein; Group 2 capsule; afaE8, Adhesin protein; afaD, Afimbrial adhesion; afaC, Outer membrane usher 
protein; afaB, Periplasmic chaperone; afaA, Transcriptional regulator; kpsMIII_K96, ABC-type polysaccharide/polyol phosphate export systems 
permease; Group 3 capsule; iha, Adherence protein; katP, Plasmid-encoded catalase peroxidase; cma, Colicin M; celb, Endonuclease colicin E2; cdtB, 
Cytolethal distending toxin B; aaiC, Type VI secretion protein; vat, serine protease autotransporters of Enterobacteriaceae (SPATE); tsh, serine protease 
autotransporters of Enterobacteriaceae (SPATE); pic, serine protease autotransporters of Enterobacteriaceae (SPATE); neuC Polysialic acid capsule 
biosynthesis protein; kpsMIII_K10, ABC-type polysaccharide/polyol phosphate export systems permease; Group 3 capsule; espP, Putative exoprotein 
precursor; cba, Colicin B.
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Discussion

Dissemination of AMR genes in the Irish environment has been 
largely unknown to date. Our previous study reported the presence of 
AROs in farm effluents and how ICWs were able to reduce the load of 
AROs in farm effluent. In this paper WGS results confirmed the 
mechanisms of resistance to cephalosporins and fluoroquinolones 
identified phenotypically in most of those isolates. Regarding class A 
β-lactamase genes, 28 of 30 (93%) presumptive ESBL genomes 
possessed at least one CTX-M type β-lactamase encoding gene, with 
blaCTX-M-14 and blaCTX-M-15 most prevalent. These results are significant 
considering the most frequently encountered CTX-M variants in 
clinical isolates in Europe are CTX-M-14 and CTX-M-15 (Livermore 
and Hawkey, 2005; Canton et al., 2012; Irrgang et al., 2017; Sarno et al., 
2021). The isolates encoding these blaCTX-M genes were isolated from 
both farm effluent and ICW treated water, with blaCTX-M-14 mostly 
associated with the piggery (15/19) and blaCTX-M-15 with the dairy 
farm (5/9).

We identified six presumptive E. coli AmpC producers and all of 
them carried the blaCMY-2 gene, five of which were recovered from the 
pig farm and one from the beef farm. The increase in prevalence of 
blaCMY-2 conferring resistance to ceftiofur in pigs receiving a feed 
medicated with chlortetracycline and penicillin has been shown 
previously (Jahanbakhsh et al., 2015) and a recent study suggests that 
plasmid mediated rather than clonal spread likely play an important 
role for the emergence and transmission of blaCMY-2 between animals 
and humans (Ewers et  al., 2021). While no E. coli isolates were 
identified as harboring the blaCMY-2 gene in the 22 isolates from farm 
3, a recent study in Ireland reported that 13% of E. coli isolates from 
broiler farms harbored this gene (Byrne et al., 2022). While it was 
reassuring that no carbapenem resistance genes were found in any 
isolate in this study, it has been reported that AmpC enzymes promote 
carbapenem resistance in isolates with ESBL or defects in permeability 
(Mirsalehian et al., 2014; van Boxtel et al., 2016).

In the livestock and animal sectors, CTX-M-1, CTX-M-14 and 
CTX-M-15 ESBL types have frequently been detected in a number of 
different countries in Europe (Day et al., 2016; Ewers et al., 2021), as 
well as the United States (Afema et al., 2018), Canada (Cormier et al., 
2019), and New Zealand (Collis et al., 2022). Agersø et al. (2011) also 
reported blaCTX-M-14 and blaCTX-M-15 in Danish pigs and pork with the 
highest prevalence was for blaCTX-M-1, in contrast with our results. The 
isolates from the study of Agersø et al. were further characterized 
(Hammerum et al., 2012) and they reported that pigs and pork can 
be  a reservoir of ExPEC CTX-M-14-producing E. coli. We  also 
identified ExPEC carrying blaCTX-M-14 in this study. Ewers et al. (2021) 
conducted a large-scale surveillance which included nine European 
countries, but not Ireland, where 2,993 commensal Escherichia spp. 
isolates were recovered from randomly collected fecal samples of 
healthy cattle, pigs and chickens in various abattoirs. By analyzing 99 
isolates using WGS they identified blaSHV–12 (32.3%), blaCTX–M–1 
(24.2%), and blaCMY–2 (22.2%) as the predominant ESBL/pAmpC types 
(Ewers et al., 2021). It is generally accepted that it is very difficult to 
compare countries and farms unless all studies are conducted the 
same, i.e., variations such as sample size, animal age, health status, 
variation in farming systems between countries, sample matrices and 
culture selection methods are all important variations to consider 
when comparing studies (Collis et al., 2022). This is why EFSA has 
recommended a joint European approach in order to address this 

knowledge gap (EFSA Biological Hazards (BIOHAZ) panel 
et al., 2021).

Although only encountered in one sample, the blaCTX-M-65 carrying 
E. coli isolate is of interest since it was from an ICW-treated water 
sample, and therefore it had the potential to enter waterways and the 
environment. CTX-M-65 has been previously referred to as a hybrid 
enzyme of both CTX-M-14 and CTX-M-15 with enhanced ESBL 
activity (He et al., 2015), and our isolate, in addition, also harbored 
qnrS1. A study in Bolivia showed that in the absence of selective 
pressure from antimicrobials, plasmid transfer of blaCTX-M-65 to other 
pathogens occurs frequently and is stable (Riccobono et al., 2015). In 
Europe, blaCTX-M-65 has also been reported in S. Infantis isolated from 
broilers and humans in Italy (Franco et al., 2015), in E. coli from cattle 
in the Netherlands (Dantas Palmeira and Ferreira, 2020) and more 
recently from beef and pork samples collected at retail in Portugal 
(Leão et  al., 2021) and in S. Infantis from human cases in Spain 
(Vázquez et al., 2022). To the best of the authors’ knowledge, this is the 
first reported case of a blaCTX-M-65 isolated from the environment 
in Ireland.

While no carbapenemase or colistin resistant isolates were 
identified phenotypically, all isolates were screened for carbapenemase 
and colistin resistance genes and none were identified with the 
exception of the multidrug resistant (MDR) presumptive AmpC 
producing, and fluoroquinolone resistant E. cloacae isolated from the 
piggery that harbored an mcr-9 gene (data not shown) in addition to 
blaACT-14, blaSHV-12, blaTEM-1B and qnrB2. The dissemination of MDR 
E. cloacae throughout the UK and Ireland has been previously 
reported and is now recognized as the third major nosocomial 
infection after E. coli and K. pneumoniae (Moradigaravand et  al., 
2016). The blaACT-14 gene has been previously observed in E. cloacae 
isolates from dogs and wild birds (Literak et al., 2014; Boehmer et al., 
2018). Our isolate also harbored the IncHI2-ST1 plasmid replicon; the 
family of IncHI2 plasmids often carry MDR genes that can 
be transferred horizontally along the food chain (Diaconu et al., 2021).

Plasmids encoding ESBLs and pAmpCs frequently harbor 
additional resistance genes and so can present a significant therapeutic 
challenge (Gupta and Bhadelia, 2014) and since some groups of 
antibiotics may persist in the environment for a very long time, i.e., 
fluoroquinolones have the lowest rate of degradation and highest 
resistance forming potential within the environment (Department of 
Health (DOH), 2017), it would be of interest to determine if the use 
of fluoroquinolones at farm level could increase the risk or persistence 
of resistant organisms and/or their resistance genes. Unfortunately, 
we did not have access to information on antimicrobial usage on any 
of the farms for this study. Lack of knowledge of antimicrobial usage 
at farm levels in Ireland has been previously highlighted (Martin et al., 
2020) but will hopefully be the focus of future studies in our laboratory 
where we aim to examine the relationship between the use of on farm 
antibiotics and AMR. However, studies in the Netherlands and 
New Zealand (Hordijk et al., 2019; Collis et al., 2022) reported that 
antimicrobial usage only partially explained ESBL and AmpC positive 
samples and highlighted that factors other than antimicrobial usage 
may contribute to the transmission of AMR in the farm environment.

WGS also confirmed the phenotypic fluoroquinolone resistance 
observed and whether it was chromosomal, or plasmid mediated. 
While the presence of plasmid mediated genes has an additive effect 
and pose a higher risk of AMR dissemination, the low numbers of qnr 
genes in comparison to chromosomal resistance observed in this 
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study is in agreement with other studies (Jacoby et al., 2003, 2006; 
Strahilevitz et al., 2009). Among isolates phenotypically resistant to 
CIP only and considered therefore presumptive plasmid mediated 
quinolone resistant isolates (Prendergast et  al., 2022a), the most 
common gene found was qnrS1, present in seven isolates compared to 
qnrB1, qnrB2 and oqxB, which were each encountered in one instance 
only. Similar results were also observed in a study that reported qnrS 
followed by qnrB to be  the most prevalent genes in E. coli from 
livestock and food in Germany (Juraschek et al., 2021). The oqxB gene 
was only observed in our study in the K. pneumoniae isolate 
phenotypically described as an ESBL producer susceptible to 
quinolones. While both qnr and oqx genes are plasmid mediated, oqx 
genes are members of the resistance-nodulation-division (RDN) efflux 
pump that have been shown to confer resistance to numerous 
antibiotics in addition to quinolones, including nitrofurantoin, 
quinoxalines, tigecycline, chloramphenicol, detergents, and 
disinfectants (Bharatham et al., 2021) and their presence has been 
shown to accelerate the development of fluoroquinolone resistance in 
S. Typhimurium (Wong et al., 2014).

All of the 47 presumptive chromosomal fluoroquinolone resistant 
isolates (resistant to both CIP and NAL) had multiple mutations in 
gyrA and/or parC, which have been associated with the expression of 
high-level fluoroquinolone resistance in clinical isolates (Ruiz et al., 
1995; Minarini and Darini, 2012). In our previous study the MIC 
values were high, i.e., all 47 isolates displayed MIC values >128 μg/mL 
for NAL and ≥ 8 μg/mL for CIP. About one quarter of all isolates 
showed co-resistance to cephalosporins plus fluoroquinolones, which 
can be attributable to chromosomal mutation or acquisition of genes 
by horizontal transfer as explained by Tacão et  al. (2014). Other 
researchers have shown that qnr genes can co-exist with the blaTEM and 
blaSHV alleles in clinical isolates and is most likely plasmid mediated 
(Jiang et al., 2008; Mood et al., 2015). Plasmid mediated resistance was 
observed in two isolates in our study with E. cloacae isolated from 
farm 4 effluent harboring blaSHV-12, blaTEM-1B and qnrB2 (data not 
shown for TEM) and an E. coli isolate from farm 1 effluent that 
harbored blaSHV-12, blaTEM-1B and qnrS1.

Amongst the 10 E. coli isolated from ICW-treated water, 
we identified blaCTX-M-14 in one isolate, qnrS and blaCTX-M-65 in another 
isolate and three isolates carried mutations in the AmpC promoter 
region in addition to mutations in gyrA and parC. In addition, double 
mutations in gyrA were identified in five of the isolates as well as single 
or double mutations in parC. The E. coli harboring blaCTX-M-14 was of 
predicted pathotype UPEC and one E. coli that carried a mutation in 
the AmpC promotor in addition to double mutations in gyrA and a 
single mutation in parC was of predicted pathotype ExPEC. The 
finding of AMR Enterobacterales along with MGEs from the 
ICW-treated water is concerning considering wildlife, arthropods, air 
and dust can act as vectors for short and long-distance environmental 
transmission of AMR contamination (EFSA Biological Hazards 
(BIOHAZ) panel et al., 2021). Resistant organisms and ARGs can 
enter groundwater through infiltration or bank filtration from surface 
water or leaching from the soil. This is of additional concern 
considering ground water is frequently used as a source of drinking 
water (Felis et al., 2020) and could also be absorbed by food crops, 
further contributing to exposure to and persistence of these 
contaminants (Department of Health (DOH), 2017).

The majority (54%) of our E. coli isolates grouped into phylogroup 
A, which was previously reported as the group where most human 

commensal strains worldwide belong to (Stoppe et al., 2017; Newman 
et al., 2021). The second most common phylogroup in our study was 
B1 (28%). No clear association between farms and phylogroups could 
be concluded, except for the isolates represented by phylogroup E 
which were confined to poultry, and this agrees with the study of 
Logue et al. (2017). Differences in phylogroup distribution have been 
observed previously and may be attributed to different circumstances 
such as geographical and climate location. A higher frequency of 
groups A and D from raw wastewater samples in Brazil was previously 
reported (Stoppe et al., 2017) whereas other studies of waste, ground 
and recreational waters reported higher frequencies of groups B2 
followed by D in Australia (Anastasi et al., 2010), D followed by A in 
Poland (Mokracka et al., 2011) and A followed by B1  in Portugal 
(Figueira et al., 2011), the latter much the same as our results.

All five isolates identified as UPEC were grouped into phylogroup 
D and isolates within this group are considered of risk to public health 
(Orsi et al., 2007; Vázquez-Villanueva et al., 2023). While other studies 
reported that the predominant phylogroup in UPEC isolated from 
Europe and elsewhere is B2, followed by D (Dubois et al., 2010; Ejrnæs 
et  al., 2011; Halaji et  al., 2022), no isolate of phylogroup B2 was 
identified in this study. Since E. coli ST131 is considered an important 
emerging pathogen among phylogroup B2 strains harboring multiple 
AMR and virulence genes (Halaji et al., 2022), it was reassuring to 
note that there was no isolate of phylogroup B2 or ST131 identified in 
this study.

Isolates identified as ExPEC were not confined to one phylogroup, 
i.e., groups A (7 isolates), B1 (7 isolates) and C (four isolates). These 
findings therefore do not fully agree with Dale and Woodford (2015) 
and Sarowska et al. (2019), that indicated that the E. coli responsible 
for intestinal infections represent phylogenetic groups A, B1 or D and 
extraintestinal infections represent groups B2 and D.

Analysis of the MLST data revealed an association of certain STs 
with different farms, i.e., ST44 and ST48 were commonly associated 
with the piggery, ST58, ST156 and ST4385 with the beef farm, ST744 
with the dairy and poultry farm and the two isolates recovered from 
the dairy farm were ST720. E. coli ST10 is recognized as an important 
human pathogen (Manges and Johnson, 2012) and have been 
previously isolated from poultry and pig sources (Bergeron et al., 
2012). Among the 20 ST10 isolates in this study, 7 were of predicted 
ExPEC pathotype and this pathotype was also identified among E. coli 
isolates of ST88, ST162, ST58 and ST117. When the distribution of the 
major STs (ST10 and ST744) were compared between poultry and 
non-poultry farms, neither STs appeared to be overrepresented in a 
particular type of farms, although there was a larger proportion of 
ST744 among poultry vs. non-poultry farms than ST10. However, due 
to small numbers of isolates, i.e., 20 isolates of ST10 (3 poultry; 17 
non-poultry) and nine isolates of ST744 (3 poultry and 6 non-poultry) 
it is difficult to make definitive conclusions, and this should be the 
focus of future studies.

ExPEC pathotypes were identified in all four farm types with the 
highest number identified in the beef farm (7 isolates) and the lowest 
in the dairy farm (3 isolates). This is concerning since ExPEC is a 
leading cause of urinary tract infections and responsible for the death 
of thousands of people every year especially young children (Munhoz 
et al., 2021). UPEC is the most common pathotype causing urinary 
tract infections (Guglietta, 2017; Rezatofighi et al., 2021; Hasan et al., 
2022) and this pathotype was identified in six isolates and in three of 
the four farms with the highest number in the beef farm (3 isolates). 
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ExPEC and UPEC can easily acquire MGEs and virulence factors from 
related bacteria and usually contain multiple pathogenicity islands 
(Johnson and Russo, 2005). Of interest to note was a ST117 isolate that 
was identified as a hybrid (ExPEC/UPEC) E. coli strain from the dairy 
and poultry farm which warrants further investigation regarding 
pathogenicity as they are considered to be more virulent (Santos et al., 
2020; Munhoz et al., 2021). Of additional concern is that this isolate 
was grouped into phylogroup G. Isolates of this phylogroup have been 
identified as a poultry lineage with high virulence and antibiotic 
resistance potential and previous epidemiological data on 4,524 
French and Australian strains suggested that phylogroup G of ST117 
can also establish in humans and cause extra-intestinal diseases 
(Clermont et al., 2019). The APEC pathotype (presence of three or 
more of the genes iss, iroN, hlyF, ompT, and uitA) was identified in 17 
isolates with the majority identified at farm 4, piggery, (five isolates) 
with four isolates identified as APEC at each of the other three farms.

Plasmids play a critical role in the mobilization of AMR genes 
between bacteria and are one of the main reasons for resistance among 
Gram-negative bacteria (Li et al., 2019). In our study differences in 
plasmid replicon types in E. coli isolates from the same cluster that 
originated from different farms or from different sampling dates 
suggests local/regional transmission of plasmid replicons. We were 
however unable to confirm with the short-read sequencing that was 
used in this study if resistance genes were transferred by particular 
plasmids. More research is needed to decipher the role of particular 
plasmids in the transmission of AMR in the environment by 
undertaking full length sequencing of plasmids, and to better 
understand the ExPEC population and its role in AMR in the Irish 
farm environment.

More than 50 genes encoding virulence determinants, were 
identified, at different frequencies; terC encodes a protein that 
functions in tellurium ion resistance and was identified in all 79 
E. coli isolates, whereas other virulence genes were present in only 
one isolate. These virulence genes were associated with functions 
including stress, survival, regulation, iron uptake secretion systems, 
invasion, adherence and toxin production. The abundance of the 
tellurium ion resistance gene was surprising, as other studies have 
not reported such a high prevalence. A recent study of 167 E. coli 
genomes from human and animal environments circulating in 40 
Brazilian cities identified all isolates as negative for terC (Fuga et al., 
2022). Other authors found that tellurium ion genes are mostly 
associated with STEC belonging to serotypes such as O26, O103, 
O111 O121, O145, and O45 (Lewis et al., 2018; Nguyen et al., 2021) 
none of which were isolated in our study (serotype data not shown). 
The gene traT whose protein functions in outer membrane protein 
complement resistance, was the next most common virulence gene 
and was identified in 71% of isolates. It has been suggested that this 
gene may have a role in the pathogenesis of mastitis (Agüero et al., 
1984), cystitis (Hasan et al., 2022) and pyelonephritis (Firoozeh 
et  al., 2014). The serum survival gene iss and the sitA gene 
responsible for iron uptake, were identified in 46.7 and 43% of 
E. coli isolates, respectively, and they have been previously reported 
to be highly prevalent among avian pathogenic E. coli (Johnson 
et al., 2008; De Carli et al., 2015; Lima et al., 2019). In this study 
both of these genes were identified in isolates from all four farms 
without significant differences among them. In terms of 
pathogenicity, isolates identified as ExPEC, UPEC or hybrid 
(ExPEC and UPEC) had a larger prevalence of sitA and iss genes 

(alone or in combination) only in the beef farm (identified in 78.6% 
of isolates from the beef farm and 44.4, 40 and 41.6% at the dairy, 
dairy and poultry and pig farms respectively). No other association 
was observed in this study between STs, pathotypes, AMR types or 
species pathotypes and virulence genes.

In conclusion, to the best of the authors’ knowledge, this is the first 
study to provide insights into the prevalence of ESBL, AmpC and qnr 
genes in Enterobacterales collected from untreated and treated farm 
wastewater in Ireland. Our study shows that low levels of antimicrobial 
resistant Enterobacterales, persist even following wastewater treatment 
and that they are equipped with plasmids to transmit resistance genes 
of clinical relevance to the environment. This could ultimately lead to 
the contamination of drinking water or irrigation water used in crops. 
Further investigation on the role of plasmids in multiple antibiotic 
transfer mechanisms will be  the focus of future studies in 
our laboratory.
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