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Streptococcus pneumoniae causes significant morbidity and mortality among older 
adults. Detection of pneumococcal carriage is an accepted endpoint in pneumococcal 
conjugate vaccine studies. However, low sensitivity of culture-based approaches 
and nasopharyngeal samples have hampered adult S. pneumoniae carriage studies 
in the past. In contrast, detection of adult S. pneumoniae carriers with qPCR-based 
approaches can achieve high sensitivity and specificity and qPCR-based testing of oral 
samples improves accuracy of adult carriage detection. In this Viewpoint we outline 
a strategy for accurate qPCR-based testing. We recommend a dual-target approach 
for S. pneumoniae qPCR detection as no genetic target is universally present among 
or solely unique to it. Furthermore, we  advise the evaluation of concordance 
among quantified qPCR targets to improve the accuracy of S. pneumoniae testing 
and qPCR-based serotyping. We do not recommend omission of qPCR-based oral 
sample testing as it will likely result in an underestimation of true adult carrier rates.
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Introduction

Streptococcus pneumoniae is a leading cause of infectious diseases across the globe and a major 
disease burden of older adults (Bogaert et al., 2004; Collaborators, 2017). While 165 countries have 
implemented pneumococcal conjugate vaccines in infant immunization programs, fewer have 
classified old age as high-risk condition for pneumococcal disease. Until now, 54 have issued 
recommendations for adult immunization (Grant et al., 2021).

Pneumococcal conjugate vaccines (PCVs) target a subset of the known 101 capsular types and 
are protective against disease as well as pneumococcal colonization (Bentley et al., 2006; Ganaie 
et al., 2021b). As such, carriage is an accepted endpoint in vaccination studies (Auranen et al., 2013; 
Nzenze et al., 2017).

The World Health Organization (WHO) Pneumococcal Carriage Working Group published 
updated recommendations for standard methods for pneumococcal carriage studies in 2013 (Satzke 
et al., 2013). These guidelines have been used frequently worldwide (Turner et al., 2022). Carriage 
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studies are particularly useful in populations where S. pneumoniae 
carriage is prevalent and occurs at high pneumococcal density, as is the 
case for nasopharyngeal colonization among young children (Bosch 
et al., 2016; Nunes et al., 2016; Félix et al., 2021). Very briefly, following 
the guidelines, nasopharyngeal swabs are obtained and inoculated onto 
selective agar medium. After incubation, presumptive pneumococcal 
colonies can be easily isolated, cultivated, and further characterized 
(Satzke et  al., 2013). For adult studies, the additional use of 
oropharyngeal swabs has been recommended by the WHO (Satzke 
et  al., 2013). However, a strictly culture-based approach to detect 
pneumococci in carriage samples from adults has repeatedly 
demonstrated insufficient sensitivity, resulting in low prevalence 
estimates (Almeida et al., 2014; Bosch et al., 2016; Southern et al., 2018; 
Arguedas et al., 2020).

In the last decade, there has been growing consensus that molecular 
methods are needed to avoid underestimation of adult pneumococcal 
carriage rates (Carvalho Mda et al., 2007; Satzke et al., 2013; Trzcinski 
et al., 2013; Krone et al., 2015; Van Deursen et al., 2016; Wyllie et al., 
2016; Almeida et  al., 2020, 2021). In this Viewpoint, we  propose a 
strategy for accurate detection of S. pneumoniae carriage in adults based 
on quantitative PCR (qPCR).

One hundred forty years of 
pneumococcal carriage studies

Pneumococci were first independently isolated by Louis Pasteur and 
George Sternberg in 1881 from saliva of asymptomatic carriers (Pasteur, 
1881; Sternberg, 1881). By the early 1900’s, not only the role of 
S. pneumoniae as the main cause of bacterial pneumonia was firmly 
established, but “it was clear that pneumococci could be obtained from 
the mouths of 45–60 per cent on normal persons” (Heffron, 1939). 
Importantly, with lower carriage prevalence rates observed in children, 
a preponderance of those early studies on pneumococcal carriage have 
been conducted in adults using exclusively oral samples (Heffron, 1939). 
Of note, these early investigators also recorded that adults were more 
frequently found to carry S. pneumoniae in the throat than in the nasal 
passages (Heffron, 1939).

Until the mid-20th century, pneumococcal carriage was studied by 
resorting to animal inoculation as the gold standard in colonization 
detection (Rosenau et al., 1926; Heffron, 1939; Mackenzie, 1941). These 
early studies investigated transmission of virulent serotypes during 
outbreaks of pneumococcal pneumonia in crowded settings or described 
pneumococcal epidemiology for the general population with the 
purpose of improving pneumococcal pneumonia diagnostics (Heffron, 
1939). The interest in carriage studies declined with the advent of 
antibiotics, only to rise again with the emergence and global spread of 
multidrug-resistant clones (Sá-Leão et al., 2000, 2002). The development 
and increased use of selective culture media has understandably led to 
abandonment of laboratory animal inoculation to detect human 
pneumococcal carriage (Converse and Dillon, 1977).

Research on pneumococcal carriage accelerated with the 
introduction of PCVs in the early 2000’s (Bogaert et al., 2004). Since 
PCVs protect vaccinees not only against disease but also against carriage 
of strains targeted by the vaccine (vaccine serotypes, VTs), carriage of 
S. pneumoniae became an endpoint in vaccine effectiveness studies 
(Auranen et al., 2013; Nzenze et al., 2017). This included randomized 
controlled trials on PCVs’ direct effects in children (Dagan et al., 1997; 
van Gils et al., 2009) and surveillance of carriage to complement studies 

on PCVs’ impact on pneumococcal disease (IPD) (Nunes et al., 2016; 
Lewnard et al., 2020; Félix et al., 2021).

Why study pneumococcal carriage in 
adults?

For the past two decades, pneumococcal carriage studies in adults 
have been relatively scarce due to the assumption that adult carrier rates 
are very low. With the increasing availability of PCVs for adult use, and 
their ongoing incorporation in adult immunization plans, studies on 
carriage in non-pediatric populations are gaining importance as they 
can be quite informative as highlighted in Table 1.

Strategies based on culture alone are 
often insufficient for sensitive 
pneumococcal carriage detection in 
adults

As oral samples are highly polymicrobial, and pneumococci are 
generally present at low absolute and relative abundances (Miellet et al., 

TABLE 1 Potential outcomes of pneumococcal carriage studies.

Outcomes References1

Direct effects of vaccine Kandasamy et al. (2019) and Félix et al. 

(2021)

Replacement of vaccine serotype (VT) 

strains by non-vaccine serotype (NVT) 

strains

Kandasamy et al. (2019) and Félix et al. 

(2021)

Secular trends and impact of PCVs on 

pneumococcal diversity

Paulo and Sá-Leão (2017, 2021)

Estimation of serotype-associated 

invasive disease potential

Balsells et al. (2018)

Surveillance of changes occurring in 

virulence and antimicrobial resistance

Almeida et al. (2014) and Tin Tin Htar 

et al. (2019)

Identification of risk factors associated 

with adult carriage

Krone et al. (2015), Wyllie et al. (2016), 

Almeida et al. (2020, 2021), and Miellet 

et al. (2021)

Tracking of asymptomatic transmission 

in the general population and during 

outbreaks of pneumococcal disease

Amin-Chowdhury et al. (2019)

Determination of colonization 

parameters (rates of strain acquisition 

and clearance, duration of carriage, R0, 

etc.)

Tigoi et al. (2012) and Almeida et al. 

(2021)

Interactions between pneumococci and 

other microorganisms (including 

viruses) sharing the same niche

Miellet et al. (2021) and Lewnard et al. 

(2022)

Evaluation of the potential of non-

pharmaceutical interventions to prevent 

transmission

Danino et al. (2022)

Improvement of diagnostics of 

pneumococcal pneumonia

Carr et al. (2022)

1Cited studies, whenever possible, included adult populations.
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2021, 2022), isolation of viable pneumococci from oropharyngeal and 
saliva samples is often very difficult, if not nearly impossible (Carvalho 
Mda et al., 2013; Wyllie et al., 2014; Krone et al., 2015; Simões et al., 
2016; Wyllie et al., 2016). By contrast in the nasopharynx, particularly 
in children, pneumococci tend to be  present at high density and 
isolation of viable pneumococci is straightforward (Levine et al., 2012; 
Arguedas et al., 2020; Almeida et al., 2021). Consequently, with the 
increased use of selective culture media, the nasopharynx became the 
preferential site to sample for pneumococci, and the focus in carriage 
studies shifted almost entirely toward children.

In fact, studies in adults based solely on cultivation of 
nasopharyngeal and or oropharyngeal samples on selective agar media 
have mostly documented very low pneumococcal carriage rates (<5%) 
(Regev-Yochay et al., 2004; Flamaing et al., 2010; Almeida et al., 2014; 
Miellet et al., 2022). This may have led to the erroneous notion that adult 
pneumococcal carriage is rare. Poor sensitivity of conventional culture 
when applied to oral fluids and oropharyngeal swabs is a limitation that, 
nowadays, can be overcome with molecular diagnostic methods. The 
latter are also useful for the detection of multiple serotype carriage 
events which is challenging with culture-based approaches (Huebner 
et al., 2000; Valente et al., 2013). This can be particularly useful, for 
example, to unmask potential carriage of minor serotypes, such as 
vaccine types in settings where PCVs have been widely used (Valente 
et al., 2016).

A proposal for accurate sensitive 
detection of adult pneumococcal 
carriage based on selective culture and 
qPCR

Available molecular methods, mostly based on qPCR, can be used 
for the detection of pneumococci with high sensitivity and specificity 
(Carvalho Mda et al., 2007; Azzari et al., 2010; Trzcinski et al., 2013; 
Wyllie et al., 2017). Among those, detection of lytA and piaB, and more 
recently, SP2020, are increasingly used (Carvalho Mda et  al., 2007; 
Trzcinski et al., 2013; Tavares et al., 2019).

With high accuracy and mirroring pneumococcal prevalence rates 
observed with historical methods, advances in molecular methods have 
made adult carriage studies again feasible. There is, however, the need 
to have a robust experimental strategy to maintain high specificity while 
achieving high sensitivity of pneumococcal detection in 
polymicrobial samples.

In the next sections we  outline key factors of an experimental 
protocol for accurate identification of pneumococcal carriage using 
qPCR-based approaches (Figure  1). This should allow for routine 
detection of adult pneumococcal carriage and serotype assignment and 
is particularly suited for studies using oral samples. For a detailed 
experimental protocol see also the Supplementary Text.

As supplementary material, we advise on procedures, in particular 
statistical methods, complementing the qPCR-based protocol which 
allow for increased accuracy of carriage detection 
(Supplementary Figure S1). The latter strategy (i) improves the 
specificity of qPCR-based detection by reducing impact of relic DNA 
using data-driven Cq cut-offs, (ii) improves sensitivity of culture by using 
qPCR-guided culturing, (iii) helps to classify serogroup/serotype-
specific qPCR assays as reliable or non-reliable using Bland–Altman 
plots (Supplementary File), (iv) improves comparison of methods 
(culture vs. qPCR), and (v) allows accurate comparison of sample types. 

Hence, this information may be of interest for researchers willing to 
accommodate extra scrutiny into their studies or using novel approaches 
for pneumococcal carriage detection.

Accurate identification of 
pneumococcal carriage using 
qPCR-based approaches: Key issues

Sampling, transport and storage

While for children there is a consensus that sampling of the 
nasopharynx is adequate for pneumococcal carriage detection, for 
adults this matter is debated. Recent comparative studies in adults show 
that rates of carriage detected with qPCR in oropharyngeal samples are 
higher than in nasopharyngeal swabs (Krone et al., 2015; Wyllie et al., 
2016; Almeida et  al., 2021; Miellet et  al., 2022). The qPCR-guided 
culturing also rendered oropharyngeal samples to be more sensitive 
than nasopharyngeal samples (Supplementary Text; Wyllie et al., 2014, 
2016; Miellet et al., 2022). Of interest, a study conducted among healthy 
adults in Portugal (Almeida et al., 2021) did not find saliva samples to 
be superior for S. pneumoniae detection unlike Dutch studies where 
saliva testing with qPCR outperformed nasopharyngeal and 
oropharyngeal swabs (Krone et al., 2015; Wyllie et al., 2016). Importantly, 
these studies indicate that sampling multiple sites may be beneficial and 
that the use of qPCR-based methods is of advantage to study 
pneumococcal carriage as it increases the sensitivity of carriage detection 
(Trzcinski et al., 2013; Wyllie et al., 2016; Almeida et al., 2020, 2021; 
Miellet et al., 2022).

When choosing a sample type to be  collected and tested for 
pneumococcal carriage, both the accuracy and practical use of the 
approach need to be  considered. While nasopharyngeal and 
oropharyngeal swabs need to be  collected by a trained health 
professional (Satzke et al., 2013), saliva can be self-collected by either 
spitting or using a sponge-made device (Supplementary Text; Wyllie 
et  al., 2014; Krone et  al., 2015; Almeida et  al., 2021). Unlike 
nasopharyngeal and oropharyngeal swabs, saliva does not require a 
transport medium (e.g., STGG or Amies) (van Gils et al., 2009), but it 
does need a ‘cold chain’: transport on dry-ice (after supplementing with 
glycerol) or, if cultured upon arrival in the lab, transport on wet ice 
(Krone et al., 2015; Almeida et al., 2021). To preserve viable pneumococci 
during storage at ≤70°C, a sample needs to contain 10–20% glycerol.

Alternatively, studies focusing exclusively on molecular detection of 
pneumococci (with no intention of culturing viable cells), can resort to 
widely used transport media that preserve nucleic acids (such as those 
containing guanidine isothiocyanate).

Culture-enrichment and DNA extraction

Culture-enrichment should be conducted to enhance the sensitivity 
of molecular detection and reduce the presence of other microorganisms 
(and hence non-pneumococcal DNA) within a sample. In addition, 
culture-enrichment also contributes to reducing relic DNA in samples 
(Wyllie et  al., 2014; Lennon et  al., 2018; Miellet et  al., 2021, 2022).  
A commonly used medium for pneumococcal culture-enrichment is 
defibrinated blood agar supplemented with gentamicin (Satzke et al., 
2013). As absolute and relative pneumococcal abundances are often 
greatly reduced in oral when compared to nasopharyngeal samples 
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(Miellet et al., 2022), for oral samples, processing a larger volume is 
advised to maintain sufficient sensitivity of detection.

DNA extraction of pneumococcal culture-enriched samples should 
be  carried out in conditions that prevent in-house contamination. 
Culture-enriched frozen stocks should be opened in a laminar flow 
cabinet under sterile conditions to prepare aliquots (typically of 200 μl) 
for DNA extraction. DNA extraction should be carried out in a separate 
clean room preferably using a closed automated system. To avoid 
potential batch effects, when processing samples, one should avoid 
separating samples by study groups. However, separation of minimally 
processed samples from culture-enriched samples, and separation of 
culture-enriched samples by specimen type (e.g., process culture-
enriched nasopharyngeal samples separately from culture-enriched 
saliva), may be appropriate. Immediately prior to extraction of DNA 
from culture-enriched saliva samples, potential PCR inhibitory 
compounds should be  inactivated via a heating step (e.g., 15 min at 
95°C). For each batch of DNA extraction, as a negative control, ultrapure 
water should be  processed in parallel with the samples 
under investigation.

qPCR-based detection in culture-enriched 
sample

For qPCR detection of S. pneumoniae, at least two genetic 
determinants should be targeted using validated primers and probes. 
We recommend the combined use of lytA (Carvalho Mda et al., 2007) 
and piaB (Trzcinski et al., 2013) or, alternatively, lytA and SP2020 (bguR) 
(Tavares et al., 2019). Of note, individually, none of these targets are 
ideal, i.e., none is universally present in S. pneumoniae and universally 
absent in other bacterial species (Wyllie et al., 2017; Tavares et al., 2019). 
Still, when used in combination (Figures 2A–C), very high sensitivity 

and specificity for pneumococcal detection are obtained (Tavares et al., 
2019; Miellet et  al., 2022). Two-step and multi-step bacteriological 
identification procedures have long been part of the standard practice 
for clinical microbiological laboratories (Mundy et al., 1998); qPCR-
based techniques are no exception, in particular for promiscuous 
bacteria such as S. pneumoniae.

A key factor when using this dual-target approach is to inspect 
qPCR results for agreement (correlation without bias) between Cq values 
obtained for each of the targets (for further information see 
Supplementary Text). As lytA, piaB, and SP2020 rarely occur in multiple 
copies in the pneumococcal genome, and the qPCR assays targeting 
these genes are highly efficient, for each pneumococcal culture, 
concordant Cqs are expected. In other words, if a sample is found to 
provide concordant Cqs for both targets, there is high confidence in that 
it contains pneumococci (Trzcinski et  al., 2013; Wyllie et  al., 2016; 
Almeida et al., 2020, 2021; Miellet et al., 2022). As a rule of thumb, 
we define concordance between Cqs from different targets as a difference 
of 2 Cqs or less (for example, |Cq lytA – Cq piaB| ≤2). As pneumococci 
occasionally lack piaB (mostly non-encapsulated strains, but also some 
specific encapsulated lineages), Cq of lytA can be >2Cq lower (hence the 
signal stronger) compared to Cq of piaB. If relevant, one should consider 
testing such samples for SP2020. Notably, we have never identified a 
pneumococcus simultaneously missing two of these three targets. 
We advocate publishing figures displaying the degree of concordance in 
pneumococcal quantification (either Cqs, DNA concentrations or 
number of genome copies) with complementary qPCRs (e.g., lytA vs. 
piaB, lytA or piaB vs. serotype).

To reduce interlaboratory variation and improve the specificity of 
detection by reducing detection of relic DNA, a study-specific and 
non-arbitrary Cq cut-off can be considered (see Supplementary Text).

As a positive control for samples undergoing culture enrichment, 
DNA extraction and qPCR-based detection of pneumococci, an 

FIGURE 1

Visual summary of the “good” protocol. A nasopharyngeal, oropharyngeal or saliva sample is collected from a study participant and transported in medium 
supplemented with 10% glycerol. The sample is cultured on defibrinated sheep blood agar supplemented with gentamicin. Presumptive S. pneumoniae 
colonies are isolated for detection by conventional culture. Then, all microbial growth on the culture plate is harvested with a 10 μl inoculation loop or by 
washing the plate with a liguid medium and the cells suspension is stored in medium supplemented with 10% glycerol. DNA extraction is performed on the 
culture-enriched harvest and molecular detection is conducted using a dual-target approach with lytA and piaB or lytA and SP2020 (bguR). Concordance 
between quantified qPCR targets is evaluated and samples are classified as positive or negative by qPCR. Samples negative for S. pneumoniae by qPCR are 
pooled by ten and positive samples are pooled by five. Pools are tested with serotype/serogroup-specific qPCR assays. The specificity of serotype/
serogroup-specific assays is evaluated using pools from negative samples. Pools from positive samples are tested for serotype/serogroup-specific qPCR 
assays, when a pool is positive for a particular assay all samples from that pool are individually tested. The figure was made in BioRender.
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aliquot of respiratory sample spiked with S. pneumoniae can 
be used. For this, respiratory samples from multiple volunteers can 
be pooled to generate enough aliquots to be used throughout the 
whole study.

Positive and negative controls should be included for all steps as 
described before (Carvalho Mda et al., 2007; CDC, 2016; Almeida et al., 
2021). In each batch of qPCR reactions, positive (for example, 
S. pneumoniae TIGR4), negative (for example, S. pseudopneumoniae 
strain ATCC BAA-960), and non-template (ultrapure water) controls 
should be included. For further information regarding optimization of 
qPCR assays, see Supplementary Text.

qPCR-based serotyping

A major endpoint of vaccine studies is assessing vaccine-
serotype prevalence rates in carriage. Serotyping by qPCR is a 
culture-independent method wherein samples positive for 
S. pneumoniae by piaB and lytA specific qPCRs are subjected to 
serotype-specific qPCRs.

In case of individual serotype carriage, serotype-specific Cqs should 
be  concordant with piaB and lytA Cqs (differing in 2 Cqs or less) 
(Figures 2E,F). Samples containing multiple serotypes will exhibit lower 
serotype-specific signal (higher Cq) when compared with piaB and lytA.

1 Miellet, W. R., and Trzciński, K. (2022). A Spitting Image: Molecular Diagnostics Applied to Saliva Enhance Detection of Streptococcus pneumoniae and Pneumococcal 

Serogroup/Serotype Carriage. [Submitted].

A B C

D E F

FIGURE 2

Detection of Streptococcus pneumoniae and pneumococcal serotypes with molecular methods in nasopharyngeal, oropharyngeal and saliva samples 
collected in 2014/2015 from asymptomatic individuals in The Netherlands (Miellet et al., 2022; Submitted).  The top three panels depict scatter plots of piaB 
and lytA qPCR cycle threshold (Cq) values for nasopharyngeal (A), oropharyngeal (B), and saliva (C) samples collected from n = 322 adults. In all six panels, 
each symbol represents an individual sample. The three bottom panels depict scatter plots of pneumococcus-specific qPCR (here piaB, X-axis) and 
serotype-specific qPCR (Y-axis) cycle threshold (Cq) values for assays targeting serotypes 23B (D), 19A (E), and 5 (F) applied to n = 975 saliva samples 
collected in the same study from n = 322 adults and n = 653 children aged 2–4  years. Samples with a Cq > 40 in serotype-specific qPCR (D–F), hence negative 
for a serotype are not shown. Here, green dots represent saliva samples from individuals from whom a strain of the corresponding serotype was cultured: 
in case of children either nasopharyngeal or saliva sample, in case of adults either nasopharyngeal, oropharyngeal or saliva sample. Remaining dots 
represent samples from individuals for whom no viable S. pneumoniae of the corresponding serotype could be recovered via culture. (D) Depicts results for 
serotype-specific assays considered highly reliable based on the absence of samples with a signal for serotype stronger than that for S. pneumoniae, hence 
classified as “the good.” (E) Depicts results for serotype-specific assays of reduced specificity based on the occurrence of a serotype signal stronger than 
the one obtained for the S. pneumoniae specific gene, hence classified as “the ugly.” Here, despite the reduced specificity of the serotype-specific assay, 
samples of Cq for a serotype closely matching the Cq for S. pneumoniae represent reliable positive results. (F) Depicts results for serotype-specific assays 
deemed unreliable based on the positivity of samples classified as negative for S. pneumoniae, hence classified as “the bad.” Consequently, the samples 
positive for piaB and lytA were not tested with qPCR for that serotype.

1
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Careful interpretation of any test result is important as a negative 
nasopharyngeal sample does not necessarily preclude a positive 
oropharyngeal sample, and vice versa. Hence, lack of positive results in 
serotype-specific qPCRs (of validated schemes) should be interpreted as 
absence of that serotype exclusively in that tested sample.

We suggest that in all studies, samples negative for S. pneumoniae 
should be tested in parallel with positive samples, to evaluate the specificity 
of serotype-specific qPCRs. A serotype-specific qPCR assay should 
be considered non-reliable when a considerable number of S. pneumoniae 
negative samples are positive for a serotype-specific assay. Poor specificity 
in qPCR assays has been found for serotypes 4, 5, 9A/N/V, 12A/B/F, 22A/F, 
23A, and 35B (Carvalho Mda et al., 2013; Krone et al., 2015; Wyllie et al., 
2016; Almeida et al., 2020, 2021). Insufficient specificity can occur when 
non-pneumococcal streptococci carry homologues of pneumococcal 
capsular genes and thus are source of false positives (Carvalho Mda et al., 
2012, 2013; Skov Sørensen et al., 2016; Wyllie et al., 2017; Lessa et al., 2018; 
Pimenta et al., 2018; Nahm et al., 2020; Ganaie et al., 2021a; Gertz et al., 
2021). Specificity of serotype-specific qPCRs can be evaluated using Bland–
Altman analysis (Supplementary Text). To overcome specificity problems 
whole genome sequencing analysis of pneumococcal and 
non-pneumococcal strains can be used to design alternative primers and/
or probes (Velusamy et al., 2020).

To avoid testing a substantial number of samples for multiple 
serotype-specific qPCRs, samples can be  pooled. For example, 
S. pneumoniae positive samples can be  pooled by five and negative 
samples pooled by ten (Wyllie et al., 2016; Almeida et al., 2021; Miellet 
et al., 2022). Using this approach, once a positive signal is obtained for 
a given serotype, individual samples are re-tested for that serotype. 
Alternatively, serotype-specific assays can be  multiplexed (Pimenta 
et al., 2013).

When concordant Cqs for lytA, piaB, and a specific serotype are 
obtained for a given sample, there is a high confidence in that it contains 
pneumococci (Trzcinski et al., 2013; Wyllie et al., 2016; Almeida et al., 
2020, 2021).

Important limitations of qPCR-based serotyping are lack of 
serotype-discrimination for several serogroups and presence of various 
capsular genes among non-pneumococcal Streptococci, and in oral 
samples in particular. The latter may hamper interpretation of results 
(Carvalho Mda et al., 2012, 2013; Pimenta et al., 2018) and even render 
certain serotype-specific qPCR assays unreliable 
(Supplementary Figure S2). Importantly, this limitation is not unique to 
qPCR-based serotyping as it has also been observed with urinary 
antigen tests and when using serotype-specific antisera (Austrian, 1973; 
Stralin et  al., 2004). For the latter, however, as a cultured sample is 
needed, additional tests can be done for species assignment.

Notably, in Portuguese studies looking at multiple sample sites, 
whenever a pneumococcal culture was obtained from one site (for 
example, nasopharynx), and positive qPCR-based results were obtained 
from another site (for example, oropharynx or saliva), there was 
concordance in the serotypes determined (Almeida et al., 2020, 2021).

Conclusion

Since there is a growing interest in Streptococcus pneumoniae carriage 
studies in adults we identified a number key points to be considered 
(Table 2). To summarize, poor sensitivity of culture-based approaches 
and nasopharyngeal swabs have most likely underestimated true adult 
carriages rates in the past while the presence of pneumococcal genes 

among non-pneumococcal streptococcal species in oral samples have 
discouraged some from using qPCR-based approaches. When faced with 
these two key issues that hinder informative adult pneumococcal carriage 
studies, we regard the latter issue to be the lesser of two evils and one that 
is surmountable with a robust experimental strategy. Molecular 
approaches, particularly those based on qPCR, are highly suited for adult 
pneumococcal carriage detection and can produce accurate and sensitive 
results. We hope that this Viewpoint contributes to clarify key aspects of 
sample preparation, testing and results interpretation.
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TABLE 2 Key points for Streptococcus pneumoniae adult carriage studies.

Key points

Pneumococcal carriage is an accepted endpoint in vaccination studies.

Culture-based approaches and nasopharyngeal samples often display insufficient 

sensitivity for detection of adult S. pneumoniae carriers.

Testing of multiple sampling sites improves accuracy of carriage detection.

Adult S. pneumoniae carriers can be detected with high sensitivity and specificity with 

qPCR-based approaches.

Testing of oral samples with qPCR-based methods improves sensitivity of adult S. 

pneumoniae carriers.

No genetic target is universally present in or unique for S. pneumoniae.

A dual-target approach should be applied to qPCR-based detection of S. pneumoniae 

to maintain high accuracy of detection.

The evaluation of concordance in qPCR quantification can improve accuracy of 

pneumococcal detection and qPCR-based serotyping.

Omission of qPCR-based oral sample testing results in an underestimation of true 

adult carriage rates.
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