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Introduction: The expanded granular sludge bed (EGSB) is a major form of anaerobic 
digestion system during wastewater treatment. Yet, the dynamics of microbial and 
viral communities and members functioning in nitrogen cycling along with monthly 
changing physicochemical properties have not been well elucidated.

Methods: Here, by collecting the anaerobic activated sludge samples from a 
continuously operating industrial-scale EGSB reactor, we conducted 16S rRNA gene 
amplicon sequencing and metagenome sequencing to reveal the microbial community 
structure and variation with the ever-changing physicochemical properties along 
within a year.

Results: We observed a clear monthly variation of microbial community structures, 
while COD, the ratio of volatile suspended solids (VSS) to total suspended solids (TSS) 
(VSS/TSS ratio), and temperature were predominant factors in shaping community 
dissimilarities examined by generalized boosted regression modeling (GBM) analysis. 
Meanwhile, a significant correlation was found between the changing physicochemical 
properties and microbial communities (p <0.05). The alpha diversity (Chao1 and 
Shannon) was significantly higher (p <0.05) in both winter (December, January, and 
February) and autumn (September, October, and November) with higher organic 
loading rate (OLR), higher VSS/TSS ratio, and lower temperature, resulting higher 
biogas production and nutrition removal efficiency. Further, 18 key genes covering 
nitrate reduction, denitrification, nitrification, and nitrogen fixation pathways were 
discovered, the total abundance of which was significantly associated with the 
changing environmental factors (p <0.05). Among these pathways, the dissimilatory 
nitrate reduction to ammonia (DNRA) and denitrification had the higher abundance 
contributed by the top highly abundant genes narGH, nrfABCDH, and hcp. The COD, 
OLR, and temperature were primary factors in affecting DNRA and denitrification by 
GBM evaluation. Moreover, by metagenome binning, we found the DNRA populations 
mainly belonged to Proteobacteria, Planctomycetota, and Nitrospirae, while the 
denitrifying bacteria with complete denitrification performance were all Proteobacteria. 
Besides, we detected 3,360 non-redundant viral sequences with great novelty, in which 
Siphoviridae, Podoviridae, and Myoviridae were dominant viral families. Interestingly, 
viral communities likewise depicted clear monthly variation and had significant 
associations with the recovered populations (p <0.05).

Discussion: Our work highlights the monthly variation of microbial and viral 
communities during the continuous operation of EGSB affected by the predominant 
changing COD, OLR, and temperature, while DNRA and denitrification pathways 
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dominated in this anaerobic system. The results also provide a theoretical basis for 
the optimization of the engineered system.
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1. Introduction

The bioavailable forms (e.g., ammonium and nitrate) of nitrogen is 
rare in natural environments, however, the rapid growth and 
development of human society make wastewater the largest possible 
source of nutrient (e.g., reactive nitrogen) in the environment, resulting 
in the eutrophication problems that could be experienced by receiving 
water bodies and ecosystems (Kuypers et al., 2018). Hence, reactive 
nitrogen treatment in wastewater is considered of key importance. The 
expanded granular sludge bed (EGSB) reactor is a developed anaerobic 
granular sludge technology involving the breakdown of biomass by a 
wide range of microorganisms in the anaerobic condition (Abdelgadir 
et al., 2014), which is a promising method for the treatment of various 
organic pollutants due to its energy effectiveness, limited nutrients 
requirements, and low sludge production (Xu et al., 2018). However, the 
performance of EGSB was reported to be  strongly affected by the 
environmental parameters including high loading COD concentration 
and temperature (Cruz-Salomón et al., 2019). It is key important to 
monitor the changing physicochemical properties of the anaerobic 
sludge inside of the reactor in the long-term operation of an industrial-
scale EGSB.

The microbial community in anaerobic sludge underpins wastewater 
treatment processes, from organic matter degradation and bioenergy 
generation to the removal of contaminants and recovery of nutrients 
such as nitrogen and phosphorus (Nielsen, 2017). Previous studies 
pointed out that the biological nitrogen removal-related pathways could 
be  mainly divided into several pathways: nitrate reduction, 
denitrification, nitrification, anaerobic ammonium oxidation 
(Anammox), denitrifying anaerobic methane oxidation (DAMO), and 
ammonia assimilation (Welte et al., 2016; Holmes et al., 2019; Yang et al., 
2020). The microbial taxa, which transform nitrogen compounds could 
be classified as nitrifiers, denitrifiers, diazotrophs, anaerobic ammonium 
oxidation (Anammox) microbiota, ammonia-oxidizing microbiota, or 
DAMO microbiota (Holmes et al., 2019; Madeira and de Araújo, 2021). 
For example, Nitrosomonas, Nitrosospira, and Nitrosococcus are reported 
as autotrophic ammonia-oxidizing bacteria (Anjali and Sabumon, 
2022), while Nitrobacter, Nitrospina, and Nitrotoga are capable of 
chemolithoautotrophic nitrite oxidation (Daims et  al., 2016). The 
composition and variation of the functional groups are thought to 
contribute to promoting process stability, sludge settling, and nutrient 
removal (Chen et  al., 2017). Hence, research of the species and 
functional dynamics of microbial communities in anaerobic sludge 
underlying continuous operation of an EGSB contributes to a deep 
understanding of the spontaneously gathering mechanisms, which 
further guide the optimization of the engineered systems by deciphering 
the functional members and mainly metabolism pathways that 
appeared in it.

Since the advances in deep metagenomic sequencing and 
bioinformatics, the recovery of near-complete metagenome-assembled 

genomes (MAGs) directly from in situ environment has shed light on 
the myriad of important functions of microbiota. For instance, by direct 
inoculation of the exogenous anammox pellets and metagenomics 
binning, Yang et al. identified the anammox bacteria and reconstructed 
the overall microbial nitrogen-cycling networks in aeration tanks and 
deep oxidation ditches (Yang et al., 2020). Moreover, Meng et al. recently 
recovered multiple Candidatus Brocadia species in a full-scale swine 
wastewater treatment system and deciphered their co-occurring 
mechanisms in nitrogen metabolism (Meng et al., 2023). As known, 
engineered systems harbor diverse microenvironments with ever-
changing chemical composition, exerting strong effects on population 
enrichment and co-occurrence. Previous research reported that along 
with the successive operation of wastewater treatment reactors, the 
microbial communities might occur a population shift due to niche 
overlap or nutrient consumption (Sun et al., 2021). Nevertheless, the 
research about the dynamics of functional members that participated in 
nitrogen cycling along with the long-term operation of an EGSB is 
scarcely limited.

Furthermore, studies suggested that the high biomass and sufficient 
nutrient in activated sludge formed a suitable habitat for viruses, in 
which the number of viruses might be 10 to a 1,000 times that in a 
natural aquatic ecosystem (Otawa et al., 2007). Recent research pointed 
out that viruses were widely distributed in wastewater treatment plants, 
which could lyse microbial cells or reprogram host metabolism exerting 
unknown but steady influences on the wastewater treatment processes 
(Li et al., 2021). However, research about the viral variation and the 
linkage with the host during the continuous operation of an EGSB is 
much less explored.

Here, 16S rRNA gene amplicon sequencing, high-throughput 
metagenome sequencing, and bioinformatics analysis were applied for 
anaerobic sludge collected monthly. We  aimed to (i) reveal the 
composition and monthly variation of microbial communities, and 
viruses, (ii) investigate the nitrogen-related functional potentials and 
pathways, and (iii) elucidate the co-occurring mechanisms of different 
populations and physicochemical properties during a whole year of 
continuous operation of an industrial-scale EGSB. By monitoring the 
composition, function, variation, and interaction of microbial 
communities in the EGSB, we expanded our knowledge of the dynamic 
change of key members and nitrogen-related genes in this 
anaerobic system.

2. Materials and methods

2.1. Sampling site description and sample 
collection

An industrial-scale wastewater treatment plant is located in 
Guangdong Province, China (113°34′E, 22°56′N), which is designed 
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to treating with municipal and industrial wastewater. The 
expanded  granular sludge bed (EGSB) is set as the reactor of 
anaerobic active sludge and is operated at room temperature 
(Supplementary Figure S1), in which the sewage samples were 
collected from the upper, middle, and bottom layers of the EGSB at 
the end of each month from January to December 2020. All processes 
were repeated three times and finally, 108 samples were collected and 
immediately transferred to the laboratory on dry ice and stored at 
−40°C before the subsequent DNA extraction. Meanwhile, the 
influent wastewater from the hydrolysis acidification unit and the 
effluent wastewater from the EGSB were also collected each month 
for subsequent physiochemical analysis.

2.2. Physicochemical analysis

The pH and temperature were monitored monthly using a pH meter 
(Sartorius PB-10) and a thermometer separately. The different organic 
loading rates (OLRs) were achieved by various chemical oxygen demand 
(COD) concentrations at a fixed hydraulic retention time (HRT). The 
COD, total suspended solids (TSS), and volatile suspended solids (VSS) 
were measured according to standard methods (Rice et al., 2012). Biogas 
production was monthly monitored and the CH4 percentage was 
determined by Gas Chromatography (SRI 8610 C). The ammonium 
nitrogen and total nitrogen concentration were determined by the 
SmartChem Discrete Auto Analyzer (Smartchem200, AMS-Westco, 
Italy) and Shimadzu TOC Analyzer (TOC-Vcsh; Shimadzu), 
respectively.

2.3. DNA extraction, 16S rDNA, and 
metagenomics sequencing

The 108 genomic DNA were extracted from the sewage using 
the Qiagen PowerSoil DNA Kit (Qiagen) according to the 
manufacturer’s instructions. The extracted DNA was then 
transferred on dry ice to Guangdong Magigene Biotechnology Co., 
Ltd. (Guangzhou, China) for 16S rDNA and metagenomics 
sequencing. Briefly, the universal primer set 515F/806R was used 
for targeting the V4 region of 16S rDNA according to the method 
published previously (Zheng et al., 2022). The final amplicons were 
sequenced using a 2 × 250 bp paired-end method by the Illumina 
MiSeq platform. Other DNA samples for metagenomics were 
constructed libraries (with the insert size of 350 bp) and sequenced 
using a 2 × 150 bp paired-end method by the Illumina NovaSeq 6000 
platforms. The amount of raw sequence data was ~12 Gb 
(40,828,360 paired-end sequences) per sample. The amplicon 
sequences and the metagenome sequences were deposited at NCBI 
Short Read Archive (SRA) under Bioproject accession No.: 
PRJNA896246.

2.4. Amplicon analysis, metagenome 
assembly, and annotation

The 16S raw paired-end reads were first conducted quality control 
by FASTP (Chen et al., 2018) and merged by FLASH v1.2.11 (Magoč and 
Salzberg, 2011). Then, clean sequences were analyzed according to the 
QIIME2 (Bolyen et al., 2019). Briefly, sequences were clustered into 

amplicon sequence variants (ASVs) of 100% similarity by q2-dada2.1 
The ASVs table was rarified to the lowest sequence number (53,270) 
among all samples and the SILVA123 database was used for ASVs’ 
taxonomic assignment. The alpha diversity [Chao1, phylogenetic 
distance (Faith_PD), and Shannon indices] was then calculated for each 
sample. The Bray-Curtis distance-based PCoA was calculated for 
group dissimilarities.

The raw metagenome sequences were first conducted quality 
preprocessing by Trimmomatic (Bolger et  al., 2014) for reads and 
adapter trimming with the following options: –Leading: 3 –Trailing: 3 
–Slidingwindow: 4:15 –Minlength: 100. Then, the MegaHit (Li et al., 
2015) was used for reads assembly with a k-mer of 21–99 in step of 6 and 
minimum contig length of 500 bp. Prodigal v2.6.3 (Hyatt et al., 2010) 
was used for gene prediction and a non-redundant gene set was 
constructed by CD-hit-est v4.6.6 (Fu et al., 2012) with parameters “–T 
24 –M 0 –c 0.95 –G 0 –aS 0.9 –g 1 –d 0.” KOBAS 3.0 (Bu et al., 2021) was 
used for KEGG annotation (threshold−e 10–5).

2.5. Metagenome binning, annotation, and 
phylogenetic analysis

The MetaWrap pipeline (Uritskiy et  al., 2018) invoking three 
independent packages (i.e., CONCOCT, metaBAT2, and MaxBin2) was 
applied for contigs binning, and MAGs de-replication was conducted 
according to the average nucleotide identity (ANI) > 95%, and the 
genome coverage >80%. Then, CheckM (Parks et al., 2015) was used to 
determine the genome quality, including the contamination, 
completeness, and strain heterogeneity of each obtained metagenome-
assembled genome (MAG) based on the collocated sets of genes that 
are ubiquitous and single-copy within a phylogenetic lineage. The 
taxonomic identification of each MAG was evaluated by combining 
four independent methods including CheckM, GTDB-TK (Chaumeil 
et  al., 2022), Taxator-TK (Dröge et  al., 2015), and PhyloPhlAn 3.0 
(Asnicar et al., 2020). ANI was calculated among MAGs and reference 
genomes downloaded from the NCBI RefSeq database using FastANI 
(Jain et al., 2018) by pairwise genomic comparisons, in which 95% ANI 
cutoff is the most frequently used standard for species demarcation and 
70% ANI cutoff for the genus. The genome coverage is also set as an 
aligned fraction (AF) for assessment of similarity. The Prodigal was 
applied for gene prediction of individual genomes and KOBS 3.0 was 
used for KEGG annotation (threshold -e 10–5). KEGG Mapper 
(Kanehisa and Sato, 2020) was used for mapping the gene sets to the 
KEGG pathway and we calculated the presence or absence of genes 
involved in nitrogen pathways by the local script.

2.6. Viral sequences identification and host 
prediction

Vibrant v1.2.1 (Kieft et al., 2020) was used to detect and recover viral 
contigs longer than 5 kb. The complete circular viral contigs and the high-
quality draft viral contigs were maintained. The predicted viral contigs 
were further examined by CheckV v0.8.1 (Nayfach et al., 2021) and 
removed the contigs set not determined. Cd-hit v4.7 (Fu et al., 2012) was 

1 https://github.com/qiime2/q2-dada2
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applied to remove the redundancy of viral contigs (parameter: -c 0.95 -n 
5 -g 1 -aS 0.8). Prodigal v2.6.3 (Hyatt et al., 2010) was used to predict viral 
genes. DRAMv v1.2.4 (Shaffer et  al., 2020) was used for viral gene 
annotation. The virus-host linkage analysis was done following the two 
methods previously reported (Gao et al., 2022). Briefly, viral contigs were 
compared with the recovered MAGs using BLASTn (E-value ≤ 10–3, bit 
score ≥ 50, alignment length ≥ 2.5 kb, and identity ≥ 70%). The metaCRT 
(Rho et al., 2012) was applied for CRISPR spacers recovery from MAGs 
(parameters: default), while the spacers were compared to viral contigs 
by BLASTn (E-value ≤10–10 and no mismatches).

2.7. Statistical analysis

All statistical analyses were performed by R v4.0.3. Briefly, the 
phylogenetic tree of recovered population genomes was constructed by 
PhyloPhlAn 3.0 (Asnicar et  al., 2020), and beautified by iTOL v5.5.1 
(Letunic and Bork, 2021). The principle component analysis (PCA) and 
redundancy analysis (RDA) were analyzed using the vegan package. The 
significant difference (p < 0.05) among groups was analyzed using the 
Kruskal-Wallis test. The Procrustes analysis was conducted by the Vegan R 
package to compare the congruence between two different data sets based 
on the goodness of fit (M2) p value calculated by the Procrustes test and 
verified by the Mantel test. p < 0.05 was considered a significant difference.

3. Results

3.1. Performance of EGSB during continuous 
operation

The local industrial-scale EGSB reactor was applied for treating 
esterification wastewater. The EGSB was operated monthly with 
different organic loading rate (OLR) concentrations ranging from 
17.31 to 48.16 kg COD/m3/d with the constant hydraulic retention 
time (HRT) of 64 h resulting in the biogas production ranging from 
259.27 to 456.07 l/kg COD. The percentage of methane was ranging 
from 73 to 86% of total biogas. The COD removal efficiency was 
ranging from 64.11 to 97.34% (Figure  1A) with the maximum 
efficiency achieved in February at the OLR of 45.20 kg COD/m3/d. 
Besides, the inner temperature of the reactor was ranging from 8 to 
39°C and the pH of the anaerobic activated slugged remained slightly 
alkaline (7.08 ± 0.14). The ratio of volatile suspended solids (VSS) to 
total suspended solids (TSS; VSS/TSS ratio) was ranging from 50.07 
to 65.55%. Detailed information about the operation parameter could 
be found in Table 1. Specifically, the average TN of anaerobic sludge 
was ranging from 62.67 ± 9.18 to 123 ± 6.68, with a removal rate 
ranging from 73.2 to 96.9% (Figure 1B), while the average NH3-N was 
ranging from 58 ± 8.5 to 118 ± 6.24, with the removal rate ranging 
from 75 to 98.7% (Figure 1C).

3.2. Monthly variation of microbial 
composition and diversity in 
anaerobic-activated sludge

A total of 108 samples generated 17,149,173 high-quality amplicons 
with 158,789 per sample, and samples were rarified to the same 
sequencing depth (53,270) for normalization. By clustering based on 

100% sequence similarity, 232,352 amplicon sequence variants (ASVs) 
were obtained and the average number of ASVs was 2151.41 ± 515.25 
per sample. First, based on the Bray-Curtis distance PCoA constructed 
from the ASVs table, we observed that samples could be finely clustered 
according to the same sampling month, while different sampling layers 
exhibited little effects on group dissimilarities (Figure 2A). Surprisingly, 
we noticed the obvious seasonal variation among samples, indicating the 
potential effects of the ambient temperature on EGSB.

Then, we  found that the species richness (Chao1 index) varied 
among months ranging from 1180.95 ± 147.78 to 3132.2 ± 382.2 with the 
highest value in January and the lowest in May. The whole species 
diversity (Shannon index) was ranging from 6.93 ± 0.43 to 9.06 ± 0.07 
with the highest diversity in December and the lowest in April. The 
phylogenetic diversity (Faith_PD index) was ranging from 149.85 ± 18.67 
to 428.23 ± 157.19 with the highest in December and the lowest in June 
(Figure 2B). Moreover, we examined the significant difference in alpha 
indices (Chao1, Shannon, and Faith_PD) among different seasons 
(Table  2). The result indicated that samples in winter owned the 
significantly highest species richness (Chao1) and the largest 
phylogenetic distances (Faith_PD), while the significantly lowest Chao1 
and Faith_PD appeared in summer. The Shannon was significantly 
higher in autumn and winter compared with spring and summer. 
Besides, generalized boosted regression modeling (GBM) analysis 
indicated that the OLR was the major factor in regulating both Chao1 
and Faith_PD, while VSS/TSS ratio showed the biggest influence on 
Shannon (Supplementary Figure S2).

By taxonomic classification of ASVs, we found that Proteobacteria 
(24.84% ± 5.75%), Firmicutes (12.32% ± 7.77%), Bacteroidetes (8.85% ±  
2.89%), Chloroflexi (7.35% ± 2.85%), Spirochaetes (6.31% ± 8.26%), and 
Euryarchaeota (3.97 ± 2.46%) were main abundant phyla within the 
anaerobic sludge samples (Figure 2C), while the successive variation of 
species composition was also observed along the year timeline. 
Interestingly, the abundance of Firmicutes was dramatically higher in 
August, while Spirochaetes occupied a larger proportion in April both 
compared with other months.

Further, the Procrustes analysis indicated that the alteration of 
changing physicochemical properties was significantly correlated with 
the variation of microbial communities (Figure 2D). Meanwhile, COD 
concentration, VSS/TSS ratio, CH4, and temperature explained over 70% 
of the total community variation by GBM analysis (Figure  2E). 
Moreover, by redundancy analysis (RDA), multiple factors showed 
different effects on sample variation (Figure  2F). For instance, 
temperature showed the most significant positive effects on samples in 
May, June, July, August, and September. COD and pH were significantly 
positively associated with samples in February, March, and April. The 
VSS/TSS ratio, CH4 percentage, and OLR showed significant positive 
correlations with samples from January, December, November, 
and October.

3.3. Composition and fluctuation of 
nitrogen-cycling genes

Metagenome sequencing of 36 activated sludge samples generated 
nearly 440 Gb raw data with 12 Gb data per sample. Through reads 
assembly, we  obtained 11,790,544 contigs, resulting in 8,866,059 
non-redundant genes, in which 3,439,726 genes could be successfully 
assigned to the KEGG database and 27,815 non-redundant genes could 
be  annotated into 18 key types of genes covering nitrate reduction 
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TABLE 1 The detailed information about the operation parameter of EGSB.

Month
OLR 

 a (kg COD/m3/d)
Biogas production 

b (l/kg COD)
CH4% pH

Inner temperature 
(°C)

VSS/TSS  
c (%)

Jan. 40.64 456.07 79% 6.94 8°C 62.19%

Feb. 45.20 374.35 82% 7.21 10°C 61.15%

Mar. 48.16 320.28 83% 6.95 25°C 59.19%

Apr. 27.90 275.27 80% 7.4 32°C 56.79%

May. 17.31 297.79 77% 7.23 34°C 54.91%

Jun. 23.10 259.27 73% 7.11 35°C 50.07%

Jul. 21.66 265.92 82% 6.92 38°C 63.01%

Aug. 37.34 305.91 82% 6.95 39°C 61.43%

Sep. 34.62 378.35 84% 7.11 37°C 62.11%

Oct. 38.36 313.46 86% 7.18 30°C 61.61%

Nov. 31.11 388.47 85% 6.97 28°C 65.55%

Dec. 40.25 400.65 84% 7.01 20°C 61.51%

aOrganic loading rate; ba biogas production is given in liters per kg COD eliminated for EGSB; cvolatile suspended solids (VSS)/total suspended solids (TSS). The hydraulic retention time (HRT) and 
the solid retention time (SRT) were constant and fixed at 64 h and 350 days, respectively.

pathway, denitrification pathway, nitrification pathway, and nitrogen 
fixation pathway (Figure  3A). Unfortunately, no hits for the key 
hydrazine dehydrogenase gene (hdh) and hydrazine synthase gene (hzs) 
involved in the anammox pathway were searched, which indicated the 
possible loss of such biological nitrogen removal pathway in our dataset. 
We found that the dissimilatory nitrate reduction to ammonia (DNRA), 
denitrification, and nitrification pathways were the three most abundant 
pathways in our dataset by examining the total abundance of key genes 
involved in the complete pathways (Figure 3B).

Moreover, we calculated the abundance of each nitrogen-related 
gene and analyzed the contribution and composition of the main phyla, 

which the functional genes derived from. Among these genes, the nitrate 
reductase gene (narGH) or nitrite oxidoreductase gene (nxrAB) 
functioning in the transformation of nitrate with nitrite had the highest 
abundance (181.93 ± 59.21) in samples and was significantly highest in 
both July and August and significantly lowest in both March and April 
(all p < 0.05; Figure 3C). Approximately 37.83% of total narGH/nxrAB 
was assigned to Proteobacteria, followed by 9.46% to Chloroflexi and 
9.34% to Nitrospirae. The second highly abundant nitrite reductase gene 
(nrfABCDH; 167.02 ± 21.62), functioning in the DNRA pathway, mainly 
came from Chloroflexi (20.58%), Proteobacteria (12.92%), and 
Bacteroidetes (12.22%; Figure 3D) and was significantly lowest in April 

A B

C

FIGURE 1

The changing trends and removal rate of nutrients in the expanded granular sludge bed (EGSB) reactor during 12 months. The concentration and removal 
rate (%) of (A) COD, (B) NH3-H, and (C) TN among different months.
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(p < 0.05). Besides, the following abundant genes hydroxylamine 
reductase gene (hcp; 154.06 ± 28.89), nitrogenase molybdenum-iron 
gene (nifDHK; 126.41 ± 21.76), and nitrite reductase (NADH) gene 
(nirBD; 115.70 ± 18.94) showed capacity in ammonium formation or 
nitrogen reduction and all significantly higher in April 
(Supplementary Figure S3). Proteobacteria (43.44%) and Nitrospirae 
(13.64%) were mainly responsible for nirBD, while Euryarchaeota, 
Proteobacteria, and Firmicutes were the three predominant phyla that 
contributed to nitrogen fixation by nifDHK and hydroxylamine 
reduction to ammonium or nitric oxide reduction to nitrous oxide by 
hcp. Besides, the genes involved in the denitrification pathway including 
the nitrite reductase (NO-forming) gene (nirK/nirS; 75.17 ± 21.23), 
nitric oxide reductase gene (norBC; 100.01 ± 19.41), and nitrous-oxide 
reductase gene (nosZ; 52.79 ± 14.69) ranked top 10 abundant and were 

all significantly higher in July and August (Supplementary Figure S3). 
Proteobacteria (37.77%) and Chloroflexi (33.05%) accounted for over 
70% abundance of nirK/nirS in regulating nitrite reduction to nitric 
oxide, while the compositions of main phyla were similar for norBC and 
nosZ that Proteobacteria and Bacteroidetes all contributed over 50% of 
the total abundance of them. Additionally, most of the genes 
participating in assimilatory nitrate reduction pathways were extremely 
low abundant (e.g., NR, narB, nirA, and NIT-6). Detailed information 
could be found in Table 3.

Importantly, we  observed a significant correlation between the 
changing trends of the physicochemical properties and the total 
variation of nitrogen-related genes during the operation of this EGSB 
(Figure 4A). We further applied GBM analysis to reveal the relative 
influence of physicochemical properties on each highly abundant 

A B C

D E F

FIGURE 2

Overview of the composition, diversity, and variation of microbial communities with the changing physicochemical properties during the continuous 
operation of EGSB. (A) PCoA of bacterial communities in anaerobic activated sludge based on Bray–Curtis distances. Different color represents the 
sampling month and different symbol represents the sampling layer of the reactor. (B) Distribution of alpha indices (Chao1, Shannon, and Faith_PD) over 
12 months. (C) Microbial community compositions at the phylum level across 12 months. Samples are collapsed and colored by month and clustered based 
on their Bray–Curtis distances. (D) Procrustes analysis of the changing physicochemical properties and the abundance of ASVs. Both the Procrustes test 
and the Mantel test are used for evaluating whether the association is significant and p < 0.05 is considered a significant correlation. (E) The relative 
contributions of different physicochemical properties to the group dissimilarities are determined by GBM analysis. (F) The ordination plot of redundancy 
analysis (RDA) for the microbial community. The relative variance explained by each axis was labeled in the axis title.

TABLE 2 Calculation of significant differences of alpha indices among different seasons.

Alpha indices Spring Summer Autumn Winter

Chao1 2239.04 ± 837.89 bc 2193.47 ± 483.15 c 2635.55 ± 505.98 ab 2721.94 ± 629.18 a

Faith_PD 219.11 ± 36.57 b 184.06 ± 29.02 c 205.14 ± 18.03 b 296.52 ± 133.53 a

Shannon 7.59 ± 0.55 b 7.69 ± 0.67 b 8.87 ± 0.17 a 8.72 ± 0.45 a

Values are represented as mean ± SD (n = 27).
Different lowercase letters within the same row indicate significant differences among different seasons (Kruskal-Wallis, p < 0.05).
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FIGURE 3

Overview of the key nitrogen-related genes and pathways in this anaerobic-activated sludge. (A) Key genes in the nitrogen cycling pathways. A solid box of 
genes represents the gene present and a dashed box of genes represents the gene absent in this EGSB system. (B) The stacked bar chart displays the 
proportions of the nitrogen cycling pathways represented by different months. Months are color-coded. (C,D) show the relative abundance of the most 
highly abundant genes narGH/nxrAB and nrfABCDH among each month, respectively, and their taxonomic assignment.

nitrogen-related gene. The result showed that seven environmental 
factors (COD, CH4, biogas production, VSS/TSS ratio, temperature, and 
OLR) mainly accounted for the variance of the top 10 abundance of 
nitrogen-related genes. Briefly, the concentration of COD exerted a 
predominant influence on nrfABCDH, and nirK/nirS, while OLR 
showed the biggest influence on hcp, nirDHK, and napAB. The 
temperature was the dominant factor on narGH, norBC, and nosZ.

3.4. Nitrogen-cycling-related populations

To better link the specific taxa and nitrogen function, we recovered 
172 non-redundant and high-quality MAGs (MAG1 to MAG172) with 
completeness higher than 90% and contamination lower than 5%. The 
genome size varied from 1.08 to 8.21 Mbp among these MAGs with 
3.52 ± 1.32 Mbp per MAG, while the GC content was 56.3% on average. 
Detailed information could be found in Supplementary Table S1. By 
phylogenetic placement, four MAGs could not be  classified at the 
phylum level, while 168 MAGs could be successfully classified into 29 
phyla (Supplementary Figure S4), mainly including Proteobacteria (31 
MAGs), Bacteroidetes (26 MAGs), and Planctomycetes (20 MAGs). 
Specifically, 11 MAGs were annotated as Archaea. Moreover, the result 
of the ANI calculation by FastANI indicated that most of the MAGs 

showed a divergent phylogenetic distance from the known reference 
genomes (Supplementary Table S2), indicating that the majority of the 
MAGs recovered from the anaerobic-activated sludge seemed to be new 
with a high degree of novelty. By gene prediction and functional 
annotation, 171 MAGs contained one or more functional nitrogen-
related genes (Supplementary Table S3), and multi-MAGs owned full 
genes in regulating the nitrate reduction to ammonium, denitrification, 
and nitrogen fixation pathways.

Briefly, 24 MAGs owned nasA and 11 MAGs owned nirA, the two 
key genes in the assimilatory nitrate reduction pathway. For the DNRA 
pathway successively catalyzed by narG and nirBD or by napA and 
nrfAH, 26 MAGs had the narG and 48 MAGs owned nirBD, while 19 
MAGs annotated the napA gene and 48 MAGs annotated the nrf. Five 
MAGs and 18 MAGs had full capacities in the assimilatory nitrate 
reduction and DNRA pathways, respectively. In keeping with the 
functional taxonomic assignment at the gene level, MAGs belonging to 
Planctomycetota, Proteobacteria, Acidobacteria, and Nitrospirae could 
conduct nitrate reduction directly to ammonium (Figure 5). Most of the 
MAGs belonging to Planctomycetota were significantly higher in spring 
(March, April, and May) and winter (December, January, and February), 
but dramatically lower in summer (June, July, and August). MAGs 
belonging to Acidobacteria significantly downregulated in the colder 
month (spring and winter) compared with the warmer month (summer 
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and autumn). The phylum Nitrospirae MAG102 and MAG103 showed 
the highest abundance in autumn (September, October, and November). 
The phyla Proteobacteria contained seven MAGs, which varied 
disorderedly among four seasons, however, most of their abundance 
showed a decrease in the latter half of the year. The Firmicutes MAG96 
(Sporomusa sp.) was significantly lower in autumn, while the Caldiserica 
MAG50 (Cryosericum sp.) showed no significant difference among the 
four seasons.

Five MAGs had full capacities in denitrification pathways by directly 
catalyzing nitrite to nitrogen, which all belonged to the phyla 
Proteobacteria (Supplementary Figure S5). They were complete 
denitrifiers, whereas they showed different trends among seasons. 
Briefly, MAG126 (Pinisolibacter sp.) and MAG147 (Rhizobiales 
bacterium) had a similar abundance pattern along with 12 months, 
while MAG149 (Thauera sp. K11) and MAG134 (Rhodobacteraceae 
bacterium) were much closer. Besides, among the 172 MAGs, 26 MAGs 
could conduct nitrogen fixation, including nine Proteobacteria, six 
Firmicutes, six Euryarchaeota, two thermoplasmatota, one 
Bacteroidetes, one Fusobacteria, and one Elusimicrobia. MAGs showed 
different patterns within a year and no obvious trends were found 
between MAGs belonging to the same phylum (Supplementary Figure S6).

Another essential process in nitrogen cycling in this dataset reflected 
by gene level was the nitrification pathway. Only MAG161 (unclassified 
Thaumarchaeota) owned amo gene to catalyze ammonia to 
hydroxylamine, while MAG132 (Nitrosomonas nitrosa) and MAG72 
(Elusimicrobia bacterium) had the hao gene to catalyze the 
hydroxylamine to nitrite. A total of 27 MAGs (excluding MAG161, 
MAG132, and MAG72) could conduct nitrite oxidation with the nxrAB 
gene. However, none was identified as complete ammonia oxidizes 

(Comammox) owning all three key enzymes in this anaerobic 
active sludge.

3.5. Composition and variation of viral 
communities in anaerobic active sludge

A total of 3,360 non-redundant putative viral sequences with lengths 
ranging from 5 to 505 kb were finally obtained in this dataset, while 
Siphoviridae (35.91 ± 7.84%), Podoviridae (13.35 ± 4.54%), and 
Myoviridae (10.44 ± 2.54%) were three main viral families all belonged 
to the order Caudovirales (Figure 6A). Specifically, we found that the 
viral family Siphoviridae was significantly higher in the colder months 
(spring and winter). The Podoviridae was significantly lower in autumn 
and winter, while the Myoviridae showed the opposite trend 
(Supplementary Figure S7).

Besides, T4virus (4.74 ± 2.41%), P22virus (2.94 ± 1.45%), 
Lambdavirus (2.63 ± 0.68%), and P12024virus (2.21 ± 0.40%) were the 
main classifiable viral genera (Figure 6A), whereas the majority of the 
viruses remained unknown. Protein sequences of 227 terminase large 
subunits (terL) were extracted from the viral set followed by constructing 
the phylogenetic tree (Figure  6B); indicating a great diversity and 
novelty of the viruses compared with the known reference proteins from 
NCBI RefSeq. Then, we  examined the distribution patterns of viral 
populations among 36 samples by PCA. Interestingly, the result was 
consistent with the distribution trends of microbial communities. 
Briefly, samples from the same month shared similar viral compositions 
and were separated clearly along with the different seasons (Figure 6C), 
whereas no obvious trends in different layers of the tank were found.

TABLE 3 Abundance of the nitrogen-related genes within 36 metagenomes.

Nitrogen-related genes Abbreviation Mean ± SD (TPM)

Nitrate reductase/Nitrite oxidoreductase narGH/NxrAB 181.93 ± 59.21

Nitrite reductase (cytochrome c-552) nrfABCDH 167.02 ± 21.62

Hydroxylamine reductase hcp 154.06 ± 28.89

Nitrogenase molybdenum-iron protein nifDHK 126.41 ± 21.76

Nitrite reductase (NADH) nirBD 115.70 ± 18.94

Nitric oxide reductase norBC 100.01 ± 19.41

Nitrate reductase molybdenum cofactor assembly chaperone narIJ 85.79 ± 17.57

Nitrite reductase (NO-forming) nirK/nirS 75.17 ± 21.23

Nitrous-oxide reductase nosZ 52.79 ± 14.69

Nitrate reductase (cytochrome) napAB 45.12 ± 10.30

Assimilatory nitrate reductase nasAB 32.39 ± 12.07

Methane/ammonia monooxygenase amoABC 13.20 ± 13.53

Ferredoxin-nitrite reductase nirA 7.71 ± 5.53

Hydroxylamine dehydrogenase hao 5.64 ± 3.16

Nitrogenase delta subunit AnfG 1.10 ± 1.00

Nitrate reductase (NAD(P)H) NR 0.96 ± 0.85

Ferredoxin-nitrate reductase narB 0.66 ± 0.41

Nitrite reductase (NAD(P)H) NIT-6 0.25 ± 0.17

Hydrazine dehydrogenase hdh 0

Hydrazine synthase hzs 0

Values are represented as mean ± SD (n = 36).
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FIGURE 4

Correlation between the physicochemical properties and the nitrogen-related genes. (A) Procrustes analysis of the changing physicochemical properties 
and the abundance of nitrogen-related genes. Both the Procrustes test and the Mantel test are used for evaluating whether the association is significant 
and p < 0.05 is considered a significant correlation. (B) The relative contributions of different physicochemical properties to the top 10 highly abundant 
genes are determined by GBM analysis.

3.6. Linkages between the viral contigs and 
the MAGs

The viral abundances showed a significantly positive correlation with 
the abundance of 172 MAGs within 36 samples determined both by 
Procrustes (M2 = 0.66, p = 0.001) and the Mantel test (r = 0.96, p = 0.001; 
Figure 7A), indicating that the coupling between the viral communities 
and the recovered MAGs in active sludge is significantly strong in different 
seasons throughout the year. To reveal the potential viral-host linkages, 
we detected the CRISPR-Cas spacers in host genomes, while 30 spacers 
were found in 12 MAGs (Supplementary Table S4). The 172 high-quality 
MAGs were also conducted for genomic alignment with viral sequences. 
As a result, 198 viral sequences were successfully linked to 72 MAGs 
forming 206 linkages, among which six viral sequences could match two 

different loci on the same host separately (Supplementary Table S5). The 
hosts spanned 19 phyla mainly including Proteobacteria (20 MAGs), 
Planctomycetes (15 MAGs), Firmicutes (seven MAGs), Chloroflexi (seven 
MAGs), and Acidobacteria (four MAGs), while the viruses contained 33 
known different types of viral genera belonging to six known viral families 
with a big proportion of unclassified Caudovirales (Figure 7B).

Importantly, the predicted viral genes were annotated against the 
eggNOG database, in which the genes in categories C, E, F, G, H, I, 
and P were broadly considered auxiliary metabolic genes (AMGs; 
Chen et  al., 2021). We  filtered four viruses-owned genes that 
contributed to nitrogen metabolism. Briefly, U_ctg467926 
(Cd119virus) had an hcp gene in reducing ammonium hydroxide to 
ammonium, which could interact with MAG89 (Peptococcaceae 
bacterium). U_ctg7461252 (unclassified Myoviridae) had a nifU 
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gene  related to nitrogen fixation and had a linkage with 
MAG68  (Cyanobacteria bacterium). U_ctg6130193 (unclassified 
Caudovirales) had an npd gene for nitronate monooxygenase and can 
interact with MAG134 (Rhodobacteraceae bacterium). U_ctg1124074 
(unclassified Caudovirales) had an uncharacterized protein involved 
in response to NO and can interact with MAG126 (Pinisolibacter sp.).

4. Discussion

Anaerobic activated sludge system, a unique artificial microbial 
ecosystem with abundant diversity and high biomass concentration, 
efficiently aggregates the functional microbial groups to guarantee 
stable and good performance of biological wastewater treatment, in 
which the functional groups play key roles in the ecological 
biogeochemical cycle and elements energy flow (Saunders et al., 
2016; Zhang and Zhang, 2022). The expanded granular sludge bed 
(EGSB) reactor has been widely applied in wastewater treatment, 
which is deemed to be low energy consumption and a type of clean 
energy producer (Castrillón Cano et al., 2020). In the present study, 
an industrial-scale EGSB reactor was set at room temperature and 
continuously running for a year dealing with the esterification 
wastewater, which generated methane-rich biogas monthly 
(Table 1).

By 16S rRNA gene sequencing, we observed a clear monthly and 
seasonal variation of microbial communities (Figure 2A). In line with 
our result, previous studies suggested that ambient temperature was an 
important driver for microbial diversity patterns including population 
synchrony and shifts in broad phylogenetic abundance (Griffin and 
Wells 2017), and revealed the seasonal dynamics of the microbial 
communities in activated sludge, especially between the warmer and 
colder months (Cai et al., 2020; Sun et al., 2021). Although, the sludge 
flocs contain a heterogeneous structure (Han et  al., 2020) and 
laboratory-scale research previously reported the distributions of 

microbial communities among different sampling sections of the 
anaerobic reactor (Ambuchi et al., 2016), no obvious clustering patterns 
existed among different layers of the EGSB tank in this study.

Further, we found that the changing physicochemical properties had 
significant associations with the variations of microbial communities; 
especially the COD, VSS/TSS ratio, and temperature were predominant 
factors in shaping community dissimilarities among months 
(Figures 2D,E). Specifically, microbial diversity (Chao1 and Shannon) 
was significantly higher in winter (December, January, and February) 
and autumn (September, October, and November; Figure 2B; Table 2). 
Most months from winter and autumn had higher biogas production, 
COD removal efficiency, and nitrogen removal efficiency (Table  1; 
Figure 1), which were accompanied by relatively higher OLR, higher 
VSS/TSS ratio, and lower temperature. The result was similar to the 
previous report (Maleki et al., 2018). GBM analysis revealed the major 
influences of OLR on Chao1 and PD (Supplementary Figure S2), 
especially in samples from winter determined by RDA analysis 
(Figure 2F), while the organic loading rate (OLR) is deemed to play a 
pivotal role in the removal of nutrients from wastewater (Al Ali et al., 
2020). Further increased OLR showed positive effects on microbial 
diversity of the EGSB reactor (Huang et al., 2019; Zhao et al., 2019), and 
the biodegradable organics could stimulate the proliferation of 
heterotrophic bacteria under anoxic conditions, which would degrade 
the toxic organic compounds and improve the nitrogen removal 
efficiency in the long-term operation of wastewater reactors (Li 
et al., 2020).

Besides, by taxonomic classification of ASVs, Proteobacteria, 
Firmicutes, and Bacteroidetes were highly abundant phyla across samples 
in this anaerobic-activated sludge, which were reported as the popular 
dominant phyla in the anaerobic digestion and are responsible for 
complex organic matter degradation and fermentation (Resende et al., 
2016; Zhao et al., 2019), providing favorable substrates for methanogenic 
processes (Pu et al., 2022). The formation of microbial communities in 
this system was highly diverse in different months. Specifically, Firmicutes 

FIGURE 5

Phylogenetic tree of the recovered MAGs in nitrate reduction to ammonium and significant difference among the four seasons of each MAG. Different 
lowercase letters indicate significant differences among different seasons (Kruskal-Wallis test, p < 0.05).
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FIGURE 6

Overview of the viral communities in the EGSB. (A) Composition of the viral community-based at family and genus level. Samples are collapsed and colored 
by month and clustered based on their Bray–Curtis distances. (B) Phylogenetic tree based on the terL gene of Caudovirales. The Viral family-specific 
protein marker terL gene is used to construct phylogenetic trees with references downloaded from viral RefSeq for Caudovirales. Light yellow, light blue, 
light pink, and gray nodes and circles outside represent Myoviridae, Siphoviridae, Podoviridae, and unclassified Caudovirales, respectively. The branches of 
undetermined viruses are colored red. (C) PCoA of viral communities in anaerobic activated sludge based on Bray–Curtis distances. Different color 
represents the sampling month and different symbol represents the sampling layer of the reactor.

and the less abundant Spirochaetes occupied larger proportions in August 
and April compared with the other months, respectively (Figure 2C). 
Nevertheless, the species richness (Chao1) was similar in April and 
August, while a dramatic reduction of Shannon happened in April 
(Figure 2B). The microbial communities of samples in April seemed to 
be more influenced by the maldistribution of the dominant phyla than in 
August. Moreover, the result of RDA indicated that temperature was the 
major factor in shaping the microbial community structure of samples 
from August (owning the highest temperature: 39°C), while pH 
significantly contributed to the formation of microbial composition in 
April (owning the highest pH value: 7.4; Figure 2F). By the previous 
research, higher temperatures caused the transition from Bacteroidetes/
Proteobacteria to Firmicutes (Hupfauf et al., 2018), while Spirochaetes 
seemed to prefer weakly basic conditions (Lee et al., 2013).

It is noteworthy that nitrogen removal underlying the anaerobic 
system is important for wastewater treatment, especially metabolic 
pathways with energy efficiency and environmentally friendly. The 
traditional biological reactive nitrogen treatment processes including 
the DNRA and denitrification primarily appeared in this anaerobic 
digestion system, which were two competing microbial 

nitrate-reduction processes. Previous research suggested that the DNRA 
bacteria generally appeared in anoxia and electron donor-rich 
environments (Van Den Berg et  al., 2015), while the denitrifying 
bacteria often showed stronger competition for substrates in activated 
sludge than them (Wang et al., 2020b). Studies reported the spontaneous 
enrichment of anammox bacteria in the engineered systems and the 
frequent co-existing of the DNRA and anammox pathways during the 
anaerobic degradation (Han et al., 2020; Sui et al., 2021; Meng et al., 
2023), however, the key genes underlying this ammonium consumption 
pathway were completely absent in our dataset (Table 3). It might be due 
to a shortage of anammox inoculum or inhibitory effects in activated 
sludge on the ANAMMOX process (e.g., substrate, pH, and temperature; 
Jianlong and Jing, 2005).

The enriched DNRA pathway in EGSB was mainly contributed by 
the highly abundant key genes involved in it, including narGH, 
nrfABCDH, and nirBD, which mainly originated from Proteobacteria, 
Chloroflexi, Nitrospirae, and Bacteroidetes (Figures 3A,B). Previous 
research suggested that the same functional groups may occupy different 
niches with different combinations of functional enzymes (Lee and 
Francis, 2017). We observed that the narGH and nrfABCDH involved in 
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the DNRA pathway were significantly lower in April (Figures 3C,D), 
whereas the nirBD coupled to narGHIJ in DNRA (Stolz and Basu, 2002) 
were significantly higher in April (Supplementary Figure S3). Moreover, 
the species with similar genomes (functional capacities) will tend to 
occupy the same ecological niche, exist in substrate competition, and 
hence compete with each other (Aristide and Morlon, 2019). In the 
present study, compared with the highly enriched DNRA pathway, the 
abundances of most genes participating in assimilatory nitrate reduction 
pathways were extremely low.

The gene hcp was ranked the top three highly abundant genes in this 
EGSB, which is commonly deemed to participate in hydroxylamine 
reduction (Tu et al., 2019). However, the abundances of the key genes 
(amoABC and hao) in the nitrification pathway were extremely low 
(Table 3), which resulted in less formation of the substrate hydroxylamine 
for hcp. Interestingly, it is also considered a high-affinity NO reductase 
participating in the denitrification pathway (Yu et al., 2020), especially 
under nitrosative (Balasiny et al., 2018) and oxidative stress (Almeida 
et al., 2006), which meant in this study, the gene hcp mainly participated 
in the denitrification pathway (Supplementary Figure S3).

A significant positive correlation between the total variation of 
nitrogen-related genes and the physicochemical properties existed 
among samples (Figure  4A). The concentration of COD and OLR 
showed the main influence on genes in the DNRA and denitrification 
pathways (Figure 4B), while previous research pointed out that both 
DNRA bacteria and denitrifies could use the organic carbon substances 
from removed COD as electron donors (Zhou et al., 2022).

Having abundant microbial communities, activated sludge is the 
residence of “microbial dark matters” (MDMs), which play necessary 
ecological roles but is restricted to being isolated (Zhang and Zhang, 
2022). To better determine the composition and nitrogen cycling 
potential, we conducted metagenome binning and successfully isolated 
172 high-quality species genomes covering the reported primary phyla 
(e.g., Proteobacteria, Planctomycetes, and Bacteroidetes; 
Supplementary Figure S4). Consistent with gene annotation, the number 

of MAGs functioning in the DNRA was more than in the assimilatory 
nitrate reduction pathway, while the MAGs were mainly classified into 
six phyla (Figure 5). The phylum Planctomycetota were significantly 
higher in the colder month (spring and winter), while Acidobacteria 
showed the opposite trend. Two DNRA bacteria belonging to 
Nitrospirae were significantly higher in autumn. Ali et al. previously 
reported that in the wastewater treatment plants, populations from the 
Planctomycetes and Bacteroidetes were enriched during the colder, 
while Chloroflexi and Nitrospirae had enriched during the warmer 
months (Al Ali et al., 2020). We found that six denitrifying bacteria 
recovered in this EGSB all belonged to Proteobacteria 
(Supplementary Figure S5), which was the predominant denitrifier in 
different types of wastewater treatment plants (Heylen et al., 2006). 
Meanwhile, MAG126 (Pinisolibacter sp.) was significantly lower in 
summer, while MAG147 (Rhizobiales bacterium) was significantly 
higher in colder months. A previous study also observed that the 
Rhizobiales were especially enriched in cold seasons (Shi et al., 2022b) 
indicating they might be psychrophilic bacteria. In addition, dinitrogen 
can be converted to ammonia by nitrogen fixation microbes in activated 
sludge (Rose et al., 2021), while we found 26 MAGs were diazotrophs 
with anfG or nifDHK, in which eight were archaea. No obvious 
distribution patterns of each phylum were found among seasons 
(Supplementary Figure S6).

The majority of underexplored viruses have been recovered from 
wastewater treatment systems (Shi et al., 2022a), which could affect 
functional microbiota in nutrient removal and element cycle (Chen 
et al., 2021). We obtained 3,360 non-redundant putative viral sequences 
from the anaerobic activated sludge and found the Siphoviridae, 
Podoviridae, and Myoviridae were the three main viral families, which 
was consistent with the previous studies (Jankowski et al., 2022; Lin 
et  al., 2022). Great diversity and novelty were observed in viral 
communities, while their variation among different seasons showed a 
similar pattern to the microbial communities (Figure 6). Wang et al. also 
observed the viral regular variations among seasons in wastewater 

A B

FIGURE 7

Correlation between the viruses and recovered MAGs. (A) Procrustes analysis shows the correlation between the abundance of viral community and the 
abundance of nitrogen-related genes. Both the Procrustes test and the Mantel test are used for evaluating whether the association is significant and p < 0.05 
is considered a significant correlation. (B) Sankey diagram shows the linkages of viral sequences and the hosts based on CRISPR-Cas and genomic similarity 
blasting with MAGs.
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treatment plants (Wang et al., 2020a). The previous study suggested the 
far more important roles of viruses in the dynamics of the engineered 
system (Brown et al., 2019). In this study, we confirmed the strongly 
significant associations between the abundance of recovered populations 
and viral communities among months, meanwhile, the significant 
correlations of specific functional members with viral compositions 
between the colder and warmer months were observed (Figure 7A). 
However, the viruses and hosts underlying the host-virus linkages were 
mostly unidentified (Figure  7B), which may lead to the extremely 
complex and difficult phage-bacterial host system prediction in activated 
sludge (Du et al., 2021).

5. Conclusion

In summary, our study demonstrated that the environmental factors 
and operation parameters including ambient temperature, COD, OLR, 
and VSS/TSS ratio mainly contributed to the monthly and seasonal 
variation of total microbial communities in composition and function. 
The higher alpha diversity combined with higher VSS/TSS ratio and 
OLR in relatively low temperatures often leads to higher biogas 
production and nitrogen removal efficiency. DNRA and denitrification 
pathways were prime nitrogen removal pathways in this dataset, which 
were mainly exerted by Proteobacteria, Planctomycetota, and 
Nitrospirae with great novelty. Besides, the great diversity and novelty 
of viral communities were also detected in EGSB, which had similar 
monthly and seasonal abundant variation. Further research should focus 
on the active populations and active nitrogen cycling genes to better 
depict the real interactions during changing properties. Meanwhile, the 
absence of an energy-conserving anammox pathway in the present study 
should be considered in the future for optimization of the EGSB system.
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Glossary

EGSB Expanded granular sludge bed

VSS Volatile suspended solids

TSS Total suspended solids

VSS/TSS ratio The ratio of volatile suspended solids (VSS) to total suspended solids (TSS)

OLR Organic loading rate

COD Chemical oxygen demand

HRT Hydraulic retention time

ASVs Amplicon sequence variants

GBM Generalized boosted regression modeling

RDA Redundancy analysis

PCA Principle component analysis

MAGs Metagenome-assembled genomes

AMGs Auxiliary metabolic genes

AF Aligned fraction

DNRA Dissimilatory nitrate reduction to ammonia

Anammox Anaerobic ammonium oxidation

hdh Hydrazine dehydrogenase gene

hzs Hydrazine synthase gene

narGH/nxrAB Nitrate reductase/nitrite oxidoreductase gene

nrfABCDH Nitrite reductase gene

nifDHK Nitrogenase molybdenum-iron gene

hcp Hydroxylamine reductase gene

nirBD Nitrite reductase (NADH) gene

nirK/nirS Nitrite reductase (NO-forming) gene

norBC Nitric oxide reductase gene

nosZ Nitrous-oxide reductase gene

narIJ Nitrate reductase molybdenum cofactor assembly chaperone

napAB Nitrate reductase (cytochrome)

nasAB Assimilatory nitrate reductase

amoABC Ammonia monooxygenase

nirA Ferredoxin-nitrite reductase

hao Hydroxylamine dehydrogenase

AnfG Nitrogenase delta subunit

NR Nitrate reductase (NAD(P)H)

narB Ferredoxin-nitrate reductase

NIT-6 Nitrite reductase (NAD(P)H)

terL Terminase large subunits
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