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Cyanobacteria are prokaryotic organisms that capture energy from sunlight 
using oxygenic photosynthesis and transform CO2 into products of interest such 
as fatty acids. Synechococcus elongatus PCC 7942 is a model cyanobacterium 
efficiently engineered to accumulate high levels of omega-3 fatty acids. However, 
its exploitation as a microbial cell factory requires a better knowledge of its 
metabolism, which can be approached by using systems biology tools. To fulfill 
this objective, we worked out an updated, more comprehensive, and functional 
genome-scale model of this freshwater cyanobacterium, which was termed 
iMS837. The model includes 837 genes, 887 reactions, and 801 metabolites. 
When compared with previous models of S. elongatus PCC 7942, iMS837 is more 
complete in key physiological and biotechnologically relevant metabolic hubs, 
such as fatty acid biosynthesis, oxidative phosphorylation, photosynthesis, and 
transport, among others. iMS837 shows high accuracy when predicting growth 
performance and gene essentiality. The validated model was further used as a 
test-bed for the assessment of suitable metabolic engineering strategies, yielding 
superior production of non-native omega-3 fatty acids such as α-linolenic acid 
(ALA). As previously reported, the computational analysis demonstrated that 
fabF overexpression is a feasible metabolic target to increase ALA production, 
whereas deletion and overexpression of fabH cannot be used for this purpose. 
Flux scanning based on enforced objective flux, a strain-design algorithm, 
allowed us to identify not only previously known gene overexpression targets that 
improve fatty acid synthesis, such as Acetyl-CoA carboxylase and β-ketoacyl-
ACP synthase I, but also novel potential targets that might lead to higher ALA 
yields. Systematic sampling of the metabolic space contained in iMS837 identified 
a set of ten additional knockout metabolic targets that resulted in higher ALA 
productions. In silico simulations under photomixotrophic conditions with 
acetate or glucose as a carbon source boosted ALA production levels, indicating 
that photomixotrophic nutritional regimens could be potentially exploited in vivo 
to improve fatty acid production in cyanobacteria. Overall, we show that iMS837 
is a powerful computational platform that proposes new metabolic engineering 
strategies to produce biotechnologically relevant compounds, using S. elongatus 
PCC 7942 as non-conventional microbial cell factory.
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1. Introduction

Cyanobacteria are promising host organisms for the production 
of compounds with biotechnological applications (Santos-Merino 
et al., 2019). Their ability to utilize solar energy to fix CO2 makes them 
particularly attractive, especially in an era where the urge of 
development of sustainable biotechnological processes has gained an 
increased attention (Rajneesh et  al., 2017). As bioproduction 
platforms, cyanobacteria offer several advantages when compared to 
plants and algae, such as higher photosynthetic efficiencies (Zahra 
et al., 2020) and ease of genetic manipulation (Berla et al., 2013). The 
model cyanobacterium Synechococcus elongatus PCC 7942 has been 
widely explored as a cell factory to produce several value-added 
compounds, including 2,3-butanediol (Oliver et al., 2013; Nozzi and 
Atsumi, 2015) and omega-3 fatty acids (Santos-Merino et al., 2018, 
2022), among others.

Cyanobacteria are able to naturally produce short-chain 
omega-3 fatty acids, such as alpha-linolenic acid (ALA) and 
stearidonic acid (SDA). In the quest to find more sustainable, 
suitable, and economically viable hosts for the production of 
omega-3 fatty acids, cyanobacteria, and microalgae have emerged 
as alternative organisms to native (i.e., fish and plant oils and 
oleaginous microorganisms) and non-native sources (e.g., genetic 
engineering organisms) (Galán et al., 2019; Patel et al., 2020). By 
contrast, cyanobacteria are preferred organisms over microalgae 
due to their small genomes that generally facilitates manipulation 
and the availability of a large number of advanced genome editing 
tools for cyanobacterial genetic engineering (Vavitsas et al., 2021). 
In the last years, extensive research efforts have been focused on the 
metabolic engineering of cyanobacterial strains to enhance ALA 
and SDA production (Dong et al., 2016; Yoshino et al., 2017; Santos-
Merino et al., 2018; Poole et al., 2020; Santos-Merino et al., 2022). 
In many of the cases, the enzymes directly involved in the synthesis 
of omega-3 fatty acids (i.e., desaturases) have been overexpressed 
to increase the production yields. There are only a couple of reports 
where other targets have been exploited to increase omega-3 fatty 
acids, such as enzymes involved in the saturated fatty acid synthesis 
(Santos-Merino et al., 2018, 2022) and the vesicle-inducing protein 
in plastids (Vipp1), a thylakoid membrane formation enhancer 
(Poole et al., 2020). Limited exploration has been done to identify 
additional targets in other competitive metabolic pathways with the 
aim to increase omega-3 fatty acid titers. One of the major obstacles 
to make omega-3 fatty acid production by engineered cyanobacteria 
practical and cost-effective is the low productivity levels achieved 
in these engineered strains (Shinde et  al., 2022). Traditional 
metabolic engineering strategies are the most common avenues 
used to increase production yields in cyanobacteria. However, since 
these classical technologies are expensive, time-consuming, and 
labor-intensive processes, computational biology strategies are 
emerging as powerful tools to overcome these limitations (Xu 
C. et al., 2013; Gudmundsson and Nogales, 2021).

Genome-scale models (GEMs) are based on the annotated 
genome sequence and describe metabolic pathways as stoichiometric 
coefficients and mass balances of participating metabolites 
(Gudmundsson and Nogales, 2015). They can be  used as 
computational test-bed to estimate metabolic fluxes using numerical 
optimization, thus offering a systems-biology tool not only to link 
genotype to phenotype but also to analyze and contextualize the 
metabolic capabilities of organisms (Oberhardt et al., 2009). GEMs 
have been successfully applied to analyze and guide the metabolism 
of cyanobacteria for production of several target compounds from 
CO2 (Nogales et al., 2013; Santos-Merino et al., 2019; Hendry et al., 
2020). To date, three GEMs have been developed for S. elongatus PCC 
7942: iSyf715 (Triana et al., 2014), iJB785 (Broddrick et al., 2016), and 
iJB792 (Broddrick et al., 2019). However, these existing models have 
paid little attention to fatty acid biosynthetic pathways, making it 
harder to use them as tool to analyze the potential of S. elongatus PCC 
7942 toward the production of omega-3 fatty acids and related 
compounds. Then, an updated GEM with a high-quality annotation 
of fatty acid biosynthetic pathways is urgently required for accurately 
contextualizing fatty acid metabolism while predicting nutritional, 
physiological, and genetic scenarios for overproducing omega-3 
fatty acids.

Full-facing this challenge, we present here iMS837, an updated 
GEM of S. elongatus PCC 7942 using iJB792 as a foundation 
(Broddrick et al., 2019). We validate the accuracy of our GEM using 
growth performance and gene essentiality predictions. The validated 
GEM was subsequently used to assess the production of omega-3 fatty, 
identifying the overexpression of fabF as key metabolic target to 
increase ALA production in agreement with published experimental 
data (Santos-Merino et al., 2018). Next, we used the model to predict 
possible engineered metabolic targets to enhance ALA production, 
identifying a set of ten additional knock-out metabolic targets that 
resulted in higher yields of this omega-3 fatty acid, albeit not growth-
coupled. In addition, mixotrophic conditions using different carbon 
sources (i.e., glucose and acetate) were evaluated in silico, boosting the 
ALA yields obtained in both cases. These predictions will serve as a 
starting point for future efforts to design strains and conditions that 
will potentially improve omega-3 fatty acid production 
in cyanobacteria.

2. Results

2.1. Properties of the iMS837 GEM 
metabolic network

iMS837 was constructed using as a template the previously 
published GEM, iJB792 (Broddrick et al., 2019). We expanded iJB792 
by adding new content, including 46 genes, 24 metabolites, and 29 
reactions by means of a detailed manual curation based on literature 
legacy and by comparison with other published high-quality GEMs 
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from cyanobacteria [i.e., iJN678 from Synechocystis, sp. PCC 6803 
(Nogales et al., 2012)] and from heterotrophic bacteria [i.e., iJN1462 
from Pseudomonas putida KT2440 (Nogales et al., 2020)] (Table 1; 
Supplementary Table S1). Overall, the largest portion of the new 
metabolic content of iMS837 was related with the fatty acid 
metabolism including 22 new reactions related to this subsystem 
(Figure 1A). In addition, other 11 reactions were included in iMS837, 
whereas four reactions related to the intracellular demands were 
removed. These new reactions demonstrate the uniqueness of iMS837, 
especially regarding the modeling of the fatty acid biosynthesis.

Beyond the important metabolic expansion done, the gene–
protein-reaction (GPR) associations of several reactions were updated 
while others were corrected in order to improve the model accuracy 
(Supplementary Dataset 1). For example, reactions involved in 
glycogen synthesis and degradation were corrected while reactions 
related to electron transport chain (e.g., Cytochrome b6f complex, 
Cytochrome aa3 oxidase, Ferredoxin:NADPH oxidoreductase) were 
updated, among others. In addition, a meticulous analysis of orphan 
reactions included in iJB792 was carried out in order to identify the 
genes responsible for such reactions. We  manually added 20 new 
GPRs, which were mainly involved in photosynthesis, respiration, and 
photorespiration processes (Figure 1B). The rest of the added genes 
(i.e., 26) belong to a large variety of subsystems as shown in 
Figure 1B. Finally, the biomass objective function (BOF) of iJB792 was 
also updated in iMS837 by removing those metabolites that were not 
necessary for growth (Supplementary Dataset 1). The modification of 
the BOF had associated changes in: (i) pigments and xanthophylls, (ii) 
cofactor pools, and (iii) lipids.

MEMOTE is a platform that has been developed to promote 
standardization of GEMs, as well as to assess quality control metrics 
in order to improve model reproducibility and applicability (Lieven 
et al., 2020). Therefore, we used MEMOTE tool in order to define the 
completeness, consistency, and interoperability of iMS837 when 
compared with previous models while analyzing potential flaws or 
shortcomings (Supplementary Dataset 2). The overall score for the 
model was 75% over the 20% estimated for iJB792, which suggest a 
very good level of completeness. The scores in annotation 
subcategories were increased by adding annotations and Systems 
Biology Ontology (SBO) terms to metabolites, reactions, and genes in 
the updated GEM which were not previously included in iJB792. The 
model scored 55% for the critical category of consistency, which 
represents accuracy in reaction stoichiometry, mass and charge 
balances, connectivity of metabolites, and reaction cycles. A major gap 
was found due the lack of annotation of outside references for some 
genes, metabolites, and reactions. This limitation only will have some 
impact when using automated tools or scripts; however, its accuracy 

and usability should not be affected. Taking together, the MEMOTE 
analysis demonstrated that iMS837 is a highly complete and detailed 
model that can be used as a reference for other GEM constructions.

2.2. Model validation using gene 
essentiality prediction

An increase in the number of genes, reactions and metabolites does 
not always indicate a higher-quality GEM. In order to validate the 
quality of iMS837, we conducted an extensive gene essentiality analysis 
of the genes included in this GEM by comparing the predicted results 
in silico with available essentiality experimental data for S. elongatus 
PCC 7942 (Rubin et al., 2015; Figure 2). We performed single-gene 
knockout simulations in iMS837 using COBRApy (Ebrahim et  al., 
2013). The model-based gene essentiality predictions showed an overall 
high-level of accuracy, 85.5% (Figure 2B). More specifically, the model 
was able to correctly assign 330 and 333 as essential and non-essential 
genes, respectively (Figure  2A; Supplementary Table S2). On the 
contrary, the level of discrepancy found between the predictions of 
iMS837 and the experimental data was pretty low. For instance, 75 genes 
were incorrectly predicted as essential while only 37 genes were 
predicted as essential but were found non-essential in vivo. Gene 
essentiality accuracy assignment in GEMs is often biased due large 
number of non-essential genes (Wei et al., 2013). Therefore, to avoid 
potential bias caused by such effect, we proceed to additionally compute 
the sensitivity (i.e., proportion of essential genes that have been correctly 
identified), specificity (i.e., proportion of true negatives that have been 
correctly predicted), and precision (i.e., the probability that the essential 
genes were predicted as essential) of our gene essentially prediction 
(Figure  2B). We  found very high values for all these parameters, 
suggesting no significant bias, and corroborating the high capacity of 
iMS837 when predicting gene essentiality.

On the other hand, when comparing the level of accuracy of 
iMS837 with that from previous S. elongatus PCC 7942 GEMs, iJB792 
(Broddrick et al., 2019), iJB785 (Broddrick et al., 2016), and iSyf715 
(Triana et al., 2014), we found that iMS837 scored the highest in 
terms of accuracy, sensitivity, specificity, and precision (Figure 2B). 
Whereas iJB792, iJB785, and iSyf715 were able to correctly assign the 
80.3, 79.2, and 60.1% of the genes included in the model as true 
essential and nonessential, the 80.3, 79.2, and 60.1% of the genes 
included in the model, iMS837 outperforms better that these three 
GEMs by correctly predicting 85.5% (Figure  2B; 
Supplementary Table S2). Overall, these results indicate that we have 
not only expanded the last published GEM of S. elongatus PCC 7942 
by adding new reactions, metabolites and genes, but also, we have 
improved its accuracy by increasing its completeness.

2.3. System evaluation of S. elongatus PCC 
7942 as a cell factory toward the 
production of omega-3 fatty acids

The capability of a GEM to provide accurate predictions of 
experimentally supported data of a target organism’s functional states 
is a key feature in order to assess the accuracy and completeness of the 
final reconstruction. Once iMS837’s accuracy and completeness were 
assessed, the model was ready to be used to characterize metabolic 

TABLE 1 Properties of the different GEM models of S. elongatus PCC 
7942.

Values for

iMS837 iJB792 iJB785 iSyf715

Metabolites 801 777 768 838

Reactions 887 858 850 851

Genes 837 791 785 715

Reference This work
Broddrick 

et al. (2019)

Broddrick 

et al. (2016)

Triana et al. 

(2014)
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states underlying observed phenotypic functions and as a 
computational framework for metabolic engineering endeavors. In 
this regard, we further used iMS837 as a test-bed to systematically 
analyze S. elongatus PCC 7942 as a cell factory toward the production 
of ALA. In order to do that, we first included the non-native ALA 
synthesis pathways in the GEM of S. elongatus PCC 7942, a 
non-natural ALA producer strain. We used iJN678, a well-developed 
GEM from Synechocystis sp. PCC 6803 (Nogales et al., 2012) that 
includes this biosynthetic pathway, since this cyanobacterium is able 
to naturally produce omega-3 fatty acids (Tasaka et al., 1996). A total 
of 34 reactions and 28 metabolites were added to iMS837 in order to 
produce ALA and accumulate this omega-3 fatty acid in its membranes 
(Supplementary Table S3; Supplementary Dataset 1). Among the 
added reactions to produce ALA in S. elongatus PCC 7942, 
we  included the desaturases DesA and DesB (Δ12- and 
Δ15-desaturases) and all the reactions involved in integrating this 
omega-3 in the phospholipids of cellular membranes.

In silico, the production capabilities of a given strain can be shown 
using production envelope plots, which represent all possible 

production rates of a selected metabolite and their associated feasible 
growth rates (Lewis et  al., 2012). Production envelope for ALA 
production showed that, although feasible under a real nutritional 
scenario, the production of this omega-3 fatty acid is not coupled to 
growth (Supplementary Figure S1). In other words, for all the possible 
levels of ALA production, the model predicted a decrease in the 
maximal growth rate. This is not surprising since the synthesis of fatty 
acids is one of the most energetically expensive process among all the 
lipid membranes components (Zhang and Rock, 2009), and the 
heterologous production of ALA directly compete with cell growth 
(Chen et al., 2014). Cyanobacteria only produced unsaturated fatty 
acids in respond to drops in temperature to compensate for the 
decrease in membrane fluidity, conditions where they do not normally 
growth. In addition, it is well-established that cyanobacteria are only 
able to accumulate fatty acids at low temperatures, where the 
transcripts for desA and desB desaturases are more abundant 
(Sakamoto et al., 1997; Ludwig and Bryant, 2012).

Once demonstrated that the model was able to predict ALA 
production fluxes, we decided to explore in silico previously identified 

A B

FIGURE 1

Distribution of reactions and genes added and removed to iMS837 based on functional subsystems. (A) Summary of reactions added and removed to 
iMS837. (B) Summary of genes added to iMS837. In both cases, the subsystems where changes have been made are only represented.

A

B

FIGURE 2

Comparison of gene essentially predictions to experimental results. (A) Contingency table of the results obtained for gene essentially predictions using 
iMS837. (B) Parameters used to estimate the performance of gene essentially predictions for all GEM of Synechococcus elongatus PCC 7942. Gene 
essentially results obtained in silico revealed a high level of accuracy (85.5%), sensitivity (81.5%), specificity (90%) and precision (89.9%) of iMS837. Genes 
with ambiguous essentiality results and not-analyzed in vivo were excluded from this analysis (Supplementary Table S2).
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genetic interventions that led to a decrease and an increase in ALA 
yield (i.e., fabH deletion and fabF overexpression, respectively) 
(Santos-Merino et al., 2018). We used Markov chain Monte Carlo 
sampling to establish potential differences in the metabolic states 
between strains by comparing the allowed specific metabolic solution 
spaces (Schellenberger and Palsson, 2009). This flux sampling 
methodology allowed us to explore the feasible flux solutions in our 
metabolic network by generating probability distributions of steady-
state reaction fluxes (Herrmann et al., 2019). We analyzed the fluxes 
of the reactions involved in the saturated and unsaturated fatty acid 
synthesis and their probability in each strain.

Firstly, we explored the flux distributions for strains with increased 
levels of FabF enzyme (3OAS180 reaction in iMS837): (i) FabF-UP-2x, 
with double flux for FabF reaction than the control strain; and (ii) 
FabF-UP-4x, with quadruple flux for FabF reaction than the control 
strain (Figure  3). We  observed an overall increase in the flux of 
reactions involved in the saturated fatty acid synthesis pathway, 
proportional to the value of FabF flux. Same effect was observed in the 
flux of the DesC desaturase (DESAT18a). In addition, a large flux for 
DesA and DesB desaturases (DES::12 and DES::15, respectively) was 
observed for FabF-UP-4x, but the probability was lower than the 
minor fluxes observed FabF-UP-2x. These results agree with in vivo 
experimental data linking the overexpression of fabF with increased 
levels of C18:1 (the product of DESAT18a reaction) and ALA (Santos-
Merino et al., 2018).

As a second scenario, we analyzed in silico the flux distributions 
for strains harboring down- and up-regulation of FabH fluxes (KAS15 
reaction in iMS837) that we  denominated FabH-DOWN and 
FabH-UP, respectively (Figure 4). For the FabH-UP sampling, it was 
predicted an increase in the flux of the reactions involved in the 
elongation cycle (FabF, FabG, FabZ, and FabI). As could be expected, 
we computed an increase of these fluxes for FabH-DOWN sampling. 
On the other hand, the flux of DesC desaturase (DESAT18a) was 
increased in FabH-UP, while it was almost zero for FabH-
DOWN. Finally, FabH-UP and FabH-DOWN failed to increase the 
fluxes through DesA and DesB desaturases (DES::12 and DES::15, 
respectively). Overall, these results mainly agree with in vivo 
observations, showing no increased in ALA yields after modifications 
of the expression of fabH (Santos-Merino et al., 2018).

2.4. Identification of potential gene 
overexpression targets to increase ALA 
yields

GEM gives us the advantage of speeding up the exploration and 
redesign of the metabolism of an organism toward the production of 
a given metabolite. In most cases, the upregulation of certain fluxes 
directly or indirectly involved in the biosynthetic pathway of a desired 
compound, results in improved yields. With the aim of identifying 
fluxes that could be upregulated to increase ALA production, we used 
flux scanning based on enforced objective function (FSEOF) (Park 
et  al., 2012). This method scans changes in metabolic fluxes in 
response to an artificially enforced objective flux of the desired 
product formation. Using this algorithm, up to 70 target reactions 
were identified as a result of gradually increments in the ALA 
production reaction and the acceptance of up to 20% reduction in the 
biomass-producing reaction (Supplementary Table S4).

The FSEOF simulation results revealed that ALA production 
increased with the enhancement of the fatty acid biosynthetic 
pathways (Figure 5). All the reactions involved in the unsaturation and 
desaturation steps in the fatty acid biosynthesis were identified as 
potential overexpression targets. Following the logic of increasing the 
intermediates of ALA synthesis, we have previously overproduced in 
vivo FabF, FabH, FabD, FabZ, and FabG with the aim to improve ALA 
yields (Santos-Merino et  al., 2018, 2022), with the exception of 
FabI. The overexpression of most of them did not increase C18:1 
levels, the substrate for the sequential activity of DesA and DesB 
desaturases. Only the overproduction of FabF was able to successfully 
increase ALA yields. Little known of the regulation of fatty acid 
synthesis in cyanobacteria, that could affect to our experimental 
interventions in this pathway, as well as the in silico predictive 
capability of iMS837, which does not include information about 
regulation. Acetyl-CoA carboxylase, which catalyzes the first step of 
the saturated fatty acid biosynthesis, was also identified as a potential 
overexpression target to increase ALA production. Overexpression of 
this enzyme has been proven to be an effective way to increase the rate 
of saturated fatty acid synthesis in Synechocystis sp. PCC 6803 
(Eungrasamee et  al., 2019), as well as other Acetyl-CoA derived 
compounds, such as alkanes and alkenes (Tan et al., 2011; Wang et al., 
2013). All together indicates that overexpression of Acetyl-CoA could 
be  a feasible strategy to be  implemented in vivo with the aim to 
increase ALA yields.

In addition, the increase in the fluxes through the components of 
the photosynthetic electron transport chain was the second category 
of reactions that showed an increase in ALA production. It has been 
experimentally demonstrated that an increase in the light intensity 
leads to an increase in omega-3 fatty acids in Synechococcus sp. PCC 
7002 (Sakamoto et al., 1997). Then, it is not surprising that reactions 
related to photosynthesis are the second-most represented in the 
results obtained with FSEOF. The third category of reactions that can 
be upregulated to increase ALA yields is the amino acid metabolism 
(Figure 5), including reactions involved in the synthesis of alanine, 
serine, glutamate, glutamine, and aspartate (Supplementary Table S4). 
In Arthrospira platensis, the supplementation of cultures with aspartate 
stimulated the accumulation of saturated fatty acids, possibly through 
enhanced de novo fatty acid biosynthesis (Fekrat et al., 2022). An 
increase of the in silico flux of reactions associated with amino acid 
metabolism could have the same role. Finally, it is important to 
highlight that in the category of reactions related to pyruvate 
metabolism and tricarboxylic acid cycle (TCA), the only reaction 
which flux should be  increased is the one for the Acetyl-CoA 
synthetase (Supplementary Table S4). Acetyl-CoA is a key metabolic 
intermediate that links many metabolic processes, including the TCA 
cycle, amino acid metabolism, and fatty acid metabolism (Mills et al., 
2020). It is possible that in order to increase the direct flux of 
Acetyl-CoA into the fatty acid synthesis, the flux of this key 
intermediate should be increased to avoid the competition between 
all the pathways that use it.

2.5. Identification of potential genetic 
interventions to improve ALA production

In addition to upregulation of reaction fluxes, gene knockout is 
one the most common strategies to improve microbial strains for 
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producing desirable compounds. OptKnock (Burgard et al., 2003) and 
GDLS (Lun et al., 2009) are strain design algorithms commonly used 
to predict genetic manipulations for target overproduction. Both 
methods are based on constraint-based optimization processes to 
suggest reaction knockout interventions (constraining the metabolic 
flux of a reaction to zero) to increase targeted compound production 
while optimizing biomass yield and product yield. Once identified, the 
suggested reactions can be eliminated in vivo by knocking out one or 
more of the genes encoding the enzymes catalyzing the reaction.

Unfortunately, the application of GDLS and OptKnock 
algorithms failed identifying suitable knockout strategies for coupling 
ALA production to biomass synthesis. However, both algorithms 
were able to identify partial strategies harboring an increasing 
number of knockouts putatively resulting in ALA overproduction 
(Figure 6). Overall, and as could be expected, a higher number of 

knockouts resulted in a higher ALA production due the removal of 
competing pathways. Interestingly, Optknock was shown as the most 
efficient algorithm under the condition tested being able to identify 
more potential knockout target reactions than GDLS 
(Supplementary Figure S2; Table  2). Among the six reactions 
identified as potential target to improve ALA production by both 
algorithms, four of them were related to amino acid metabolism 
(ALAD_L, PSERT, PGCD, and PSP_L) and two were involved in the 
oxidative branch of the Pentose Phosphate Pathway (G6PDH2r and 
GND, respectively. As mentioned in the previous section, the 
synthesis of these amino acids outcompetes for Acetyl-CoA necessary 
for fatty acid biosynthesis. A similar explanation could be attributed 
to the other two common reactions obtained using OptKnock and 
GDLS, G6PDH2r and GND, since they are diverting glucose away to 
the formation of Acetyl-CoA. OptKnock was able to identify a 

FIGURE 3

Flux sampling distributions of main reactions of ALA synthesis for in silico FabF overexpression mutants and predicted using iMS837. For each reaction, 
a plot of the probability density versus the predicted flux of the specific reaction is represented. In green, the results obtained for iMS837_ALA are 
represented (Control); in orange, an in silico designed strain that has double flux for FabF reaction (3OAS180) than iMS837_ALA (FabF-UP-2x); and in 
blue, an in silico designed strain that has quadruple flux for FabF reaction (3OAS180) than iMS837_ALA (FabF-UP-4x).
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reaction involved in the fatty acid synthesis as a potential target to 
be knocked out, ACOATA (Supplementary Figure S2; Table 2). This 
reaction is performed for FabH, an enzyme that failed in silico 
(Figure 4) and experimentally to increase ALA production (Santos-
Merino et al., 2018).

The optimal solutions for most of the single, double, triple, and 
quadruple knockouts were different for OptKnock and GDLS 
predictions (Supplementary Table S5; Figures 6A–C). Only in the case 
of some triple knockouts, the knockouts in the identified reactions 
gave identical optimal changes in the flux distribution 
(Supplementary Table S5; Figure 6B). In addition, only the GDLS 
algorithm was able to suggest optimal solutions by knocking out five 
reactions (Supplementary Table S5; Figure 6D). Finally, none of the 
algorithms was able to provide optimal solutions by applying single 
reaction knockout strategies.

Although growth coupled overproducing strategies are 
challenging due the low metabolic robustness of cyanobacteria 
(Nogales et al., 2013; Gudmundsson and Nogales, 2015), which could 
result in unfeasible genetic designs under the current scenario, 
we cannot rule out the possibility that the lack of success using GDLS 
and OptKnock is due to an insufficiently scrutinized metabolic space. 
To address a more systematic search, we  performed a new strain 
designing analysis by using gcFront (Legon et al., 2022). gcFront is an 
algorithm that explores knockout strategies maximizing not only cell 
growth and product synthesis, but also the strength of production-to-
growth coupling using a tri-level optimization. The incorporation of 
this last optimization parameter significantly reduces the search time 
with respect other strain designing algorithms such as OptKnock or 
GDLS, thus significantly speeding up the process. In addition, gcFront 
is based on a genetic algorithm approach, thus, it allows to perform a 

FIGURE 4

Flux sampling distributions of main reactions of ALA synthesis for in silico FabH overexpression and downregulation mutants and predicted using 
iMS837. For each reaction, a plot of the probability density versus the predicted flux of the specific reaction is represented. In green, the results 
obtained for iMS837_ALA are represented (Control); in purple, an in silico designed strain that has double flux for FabH reaction (KAS15) than iMS837_
ALA (FabH-UP); and in yellow, an in silico designed strain that has half flux for FabH reaction (KAS15) than iMS837_ALA (FabH-DOWN).
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larger search in terms of number of knockouts. Unfortunately, we were 
not able to find growth-coupled ALA overproducing strategies even 
allowing up to 30 knockouts (data not shown). Taking together, these 

results confirmed the limited chance of designing growth-coupled 
ALA overproducing phenotypes using cyanobacteria under 
photoautotrophic conditions.

2.6. Exploring the production of ALA in S. 
elongatus PCC 7942 beyond 
photoautotrophic conditions

The lack of growth coupled ALA designs under photoautotrophic 
conditions encouraging us to explore alternative nutritional regimens, 
such as photomixotrophy. It has been previously demonstrated that 
photomixotrophic conditions can enhance growth performance of 
S. elongatus PCC 7942 while provide, at least in theory, a more robust 
metabolism increasing the metabolic space suitable to flux rerouting 
(Yan et  al., 2012; Nogales et  al., 2013). To address this goal, 
we constructed a set of condition-specific GEMs using as constraint 
the uptake of inorganic and organic carbon sources previously 
reported (Yan et al., 2012), as detailed in methods. Following this 
procedure, we  construct a photoautotrophic model and two 
photomixotrophic GEMs harboring acetate and glucose consumption 
systems, respectively. The ALA production envelope of the 

FIGURE 5

Distribution of reactions obtained with FSEOF algorithm based on 
functional subsystems. The reactions included in each subsystem are 
depicted in Supplementary Table S4.

A B

C D

FIGURE 6

Production envelope for S. elongatus PCC 7942 mutants with enhanced ALA production obtained with GDLS and OptKnock. Maximum optimal 
production rate (mmol gDW−1 h−1) of ALA achievable with (A) two knockouts; (B) three knockouts; (C) four knockouts; and (D) five knockouts.
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condition-specific models revealed a significant higher metabolic 
space bounded by photomixotrophic conditions (Figure 7A). Glucose 
provided the highest metabolic solution space with up to double 
production of ALA and growth rate, whereas acetate provided a 
slightly chance of ALA production although it was not growth-
coupled. This improved phenotypic performance under 
photomixotrophic conditions was not only due the presence of 
organic carbons as additional nutrients, but also to improved 
photosynthetic efficiencies (Figure  7B). In fact, we  computed 
significant higher fluxes through Photosystem I and II reactions as 
well as a higher oxygen evolution and photon uptake under 
photomixotrophic conditions, completely agreeing experimental data 
(Yan et al., 2012). Subsequently, we used this expanded metabolic 
space to search for growth-coupled strategies using gcFront following 
identical setup than used under autotrophic conditions. Despite 
several attempts performed, we were not able to identify growth-
coupled ALA-overproducing S. elongatus PCC 7942 strains neither 
using glucose nor acetate as organic carbon sources (data not shown). 
Therefore, we concluded that the single use of knockout strategy is not 
feasible to reroute carbon flux toward the production of ALA.

To gain further insights on this hypothesis, we  analyzed the 
metabolic flux of the reactions from central metabolism including 
Calvin–Benson–Bassham (CBB) cycle and TCA and those directly 
involved in ALA synthesis under photoautotrophic and 
photomixotrophic conditions (Supplementary Figures S3–S5). The 
detailed analysis of this flux distribution identified that the synthesis 
of ALA is limited since Acetyl-CoA pool is funneled almost exclusively 
to the synthesis of fatty acids. In fact, the metabolism of fatty acids via 
Acetyl-CoA is not connected with the production of other components 
of the biomass. Compounding the problem, the complete list of genes 
involved in fatty acid biosynthesis are essential under the three 

nutritional regimens analyzed, excluding the possibility to reroute 
carbon flux from fatty acid biosynthesis to ALA production via 
removing competitive pathways. Taking together, the reduced 
connectivity of Acetyl-CoA and the essentiality of genes surrounding 
fatty acid biosynthesis and ALA production explains, at great extent, 
the unfeasibility of designing growth coupled ALA overproducer 
S. elongatus PCC 7942 strains.

As a direct consequence, the only solution found increasing ALA 
production was the increase of the flux through the Δ12-desaturase 
(DES::12) reaction (Figure 8; Supplementary Figure S3), as it has been 
demonstrated in vivo (Sakamoto et al., 1997; Chen et al., 2014; Santos-
Merino et al., 2018). Interestingly, while under photoautotrophic and 
glucose-driven photomixotrophic conditions the increase in DES::12 
flux negatively impacted S. elongatus PCC 7942 growth rate (Figure 8; 
Supplementary Figure S5), we observed an increase in ALA production 
without any negative effect over the biomass using acetate-driven 
photomixotrophic conditions (Figure 8; Supplementary Figure S4). 
This is because, the drainage of the Acetyl-CoA pool toward the ALA 
production is replenished by increasing the uptake of acetate 
conditions. Therefore, our computational analysis expanding the 
metabolic space by feeding S. elongatus PCC 7942 with organic carbon 
sources, strongly suggested that such photomixotrophic conditions, 
especially using acetate as a carbon source, seem to be a promising 
strategy to increase ALA production in S. elongatus PCC 7942. 
However, these results will need to be further validated experimentally.

3. Discussion

We generated an updated GEM of S. elongatus PCC 792 with 
considerable improvements in model annotation and accuracy of 

TABLE 2 Comparison of the reactions suggested by OptKnock and GDLS to be deleted in order to increase the production of ALA.

Method Suggested reactions Enzyme name Pathway

OptKnock ACOATA Acetyl-CoA ACP transacylase Fatty acid biosynthesis

OptKnock AGDI Agmatine deiminase Amino acid metabolism

GDLS/OptKnock ALAD_L L-alanine dehydrogenase Amino acid metabolism

GDLS ALCD1 Alcohol dehydrogenase (glycerol) Glycolysis/Gluconeogenesis

OptKnock FALGTHLs Formaldehyde glutathione ligase Cofactor biosynthesis

OptKnock FBA Fructose-bisphosphate aldolase Glycolysis/Gluconeogenesis

OptKnock FUM Fumarase Amino acid metabolism

GDLS/OptKnock G6PDH2r Glucose 6-phosphate dehydrogenase Calvin cycle/Pentose phosphate pathway

OptKnock GART GAR transformylase-T Purine and Pyrimidine Biosynthesis

OptKnock GHMT2r Glycine hydroxymethyltransferase Amino acid metabolism

GDLS/ OptKnock GND Phosphogluconate dehydrogenase Calvin cycle/Pentose phosphate pathway

OptKnock H2CO3_NAt_syn Sodium/bicarbonate symporter (SbtA) Transport: Inner Membrane

OptKnock PDS2 Phytofluene dehydrogenase Carotenoid biosynthesis

GDLS/OptKnock PGCD Phosphoglycerate dehydrogenase Amino acid metabolism

GDLS/OptKnock PGL 6-phosphogluconolactonase Calvin cycle/Pentose phosphate pathway

GDLS/OptKnock PSERT Phosphoserine transaminase Amino acid metabolism

GDLS PSP_L Phosphoserine phosphatase (L-serine) Amino acid metabolism

OptKnock PYK Pyruvate kinase Pyruvate metabolism/TCA Reactions

GDLS VALTA Valine transaminase Amino acid metabolism
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essentiality prediction. The metabolic reaction and genome coverage 
of the reconstruction was expanded, the format and annotations were 
updated to be  consistent with current best practices. Model 

improvements were quantified through various metrics such as 
accuracy of growth yield and ALA yield predictions as well as 
MEMOTE benchmarking. Overall, iMS837 has increased the coverage 

A B

FIGURE 7

Exploration of the metabolic space under photomixotrophic conditions. (A) ALA production envelopes in photoautotrophic and photomixotrophic 
conditions using acetate or glucose as carbon source. The solution space increases under photomixotrophic conditions. (B) Evaluation of 
photosynthetic activity under photoautotrophic and photomixotrophic conditions. The flux of the reactions associated with the activity of 
Photosystem I and II (PSIum and PSIIum, respectively), the production of oxygen (EX_o2_e) and the flux oh photons (Photon_uptake) under 
photomixotrophic were simulated and normalized to the values obtained under photoautotrophic conditions.

FIGURE 8

Flux variability analysis of Δ12-desaturase (DES::12) overexpression in different nutritional conditions. Impact of DES::12 overexpression on growth rate 
(BOF), ALA production (DM_ALA), and organic carbon uptake (Carbon Source Uptake) under photoautotrophic (left panel), photomixotrophic with 
acetate (middle panel), and photomixotrophic with glucose (right panel) conditions. Fluxes through some reactions of the fatty acid synthesis 
(ACCOAC) and TCA cycle (CS) were measured.
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of the metabolic functionality of S. elongatus PCC 7942 and is one of 
the highest-quality cyanobacterial GEMs. While the updates included 
in iMS837 largely improved the model accuracy, there were still 
incorrect predictions about gene essentiality that were not able to 
be addressed. In S. elongatus PCC 7942, a significant proportion of 
genes has still an unknown function (Labella et al., 2020), with many 
of them presumably involved in processes relevant to the metabolism 
of the cyanobacteria. It makes it difficult to include new metabolic 
genes in the model, since there is a lack of information between GPR 
associations that will allow their identification. In addition, iMS837 
only contains a small portion of the total genes of S. elongatus PCC 
7942 genome (837 of 2,772 genes; Table  1) with an absence of 
regulation that could influence the correct prediction of their 
essentiality. However, despite all this missing information, iMS837 was 
able to achieve a high overall accuracy for predicting gene essentiality 
phenotypes (i.e., 85.5%) that is comparable to the performance of the 
well-curated E. coli models, iJO1366 (i.e., 93.4%) (Orth et al., 2011) 
and iML1515 (i.e., 93.4%) (Monk et al., 2017).

Although iMS837 only captures 30.2% of the protein coding genes 
of S. elongatus PCC 7942, this metabolic reconstruction was able to 
make correct computational predictions related to experimental data 
(i.e., gene essentiality and fatty acid biosynthesis). The correct 
functional annotation of the genes encoding metabolic enzymes 
involved in the fatty acid biosynthetic pathway helped with prediction 
involving enzymes of this pathway (Supplementary Dataset 1). An 
experimental effort to identify unknown GPR associations, as well as 
a constant improvement and updating of the GEM of S. elongatus PCC 
7942 will improve its prediction capabilities and its use to generate 
new hypotheses and to identify promising targets for bioengineering 
applications (Esvelt and Wang, 2013). Integration of kinetics and 
omics data in GEMs will broaden their quality and application scopes 
to better understanding the metabolism of cyanobacteria (Gu et al., 
2019). On the other hand, the incorporation of accurate and well-
developed GEMs into Design-Build-Test-Learn cycles, together with 
the use of machine learning, will lead to a very powerful toolset for 
guiding metabolic engineering of cyanobacteria (Liao et al., 2022).

Metabolic models through the implementation of different 
algorithms are powerful tools to predict potential interventions that 
may improve the production of a specific compound. FSEOF and 
GDLS/OptKnock turned out as efficient systems to predict which gene 
overexpressions and knockouts, respectively, that might be potential 
targets to increase ALA production. FSEOF results suggest that the 
availability of saturated fatty acid pools is important for the synthesis 
of ALA (Figure 5; Supplementary Table S4). This hypothesis was tested 
previously in vivo demonstrated that FabF seems to be the limiting-
rate step in this pathway (Santos-Merino et al., 2018). All the solutions 
obtained with GDLS, OptKnock and gcFront algorithms failed to 
produce mutants where ALA production is coupled with growth 
under photoautotrophic conditions (Figure 6).

It has been previously demonstrated that the carbon flux rerouting 
to obtain growth-coupled producer strains is more challenging under 
autotrophic conditions than under mixotrophic or heterotrophic 
conditions in cyanobacteria (Nogales et al., 2013; Wan et al., 2015). 
Photomixotrophic culture conditions has been successfully applied in 
S. elongatus PCC 7942 to efficiently increase the production of 
2,3-butanediol (McEwen et al., 2013; Kanno et al., 2017), which has 
been also tested in silico using iJB792 (Broddrick et  al., 2019). In 
addition, the use of acetate as carbon source has allowed to increase 

the production of poly-3-hydroxybutyrate (PHB) in different 
cyanobacterial strains (de Philippis et  al., 1992; Wu et  al., 2002; 
Sharma and Mallick, 2005; Panda et al., 2006; Khetkorn et al., 2016; 
Towijit et  al., 2018). Here, we  successfully demonstrated that the 
production of ALA can be  also boosted in silico under 
photomixotrophic conditions using acetate or glucose as carbon 
sources (Figure 7A), and this strategy could be employed in vivo likely 
leading to the same result. The synthesis of PHB and ALA requires the 
same precursor, Acetyl-CoA. The stimulatory effect of acetate on ALA 
synthesis could be explained by the direct utilization of acetate to 
increase the intracellular Acetyl-CoA pool, as it has been previously 
speculated for PHB (de Philippis et al., 1992; Khetkorn et al., 2016).

Overall, we were able to find potential solutions in silico that were 
feasible to increase ALA production in S. elongatus PCC 7942 under 
phototrophic conditions, but in all the cases, they have a negative cost 
for the cells, negatively impacting their ability to grow. Omega-3 fatty 
acid synthesis takes place under a continuous supply of Acetyl-CoA 
and NADPH, which limits carbon flux through the biomass synthesis 
(Diao et al., 2020). Using iMS837, we were able to predict that 
there is a limitation of the flux of Acetyl-CoA that impedes 
maximizing ALA production without decreasing biomass yields 
(Supplementary Figure S3). Contrary to heterotrophic conditions, 
phototrophic growth promotes low level of Acetyl-CoA since 
reducing equivalents are provided by photosynthesis instead of TCA 
via oxidation of Acetyl-CoA. Therefore, Acetyl-CoA is mainly used 
as building block for fatty acids resulting a narrow window for ALA 
production (Supplementary Figure S3). The use of an organic carbon 
substrate to stimulate the production of Acetyl-CoA, such as acetate, 
was the only alternative option to balance the production of ALA and 
biomass. The utilization of acetate by S. elongatus PCC 7942 does not 
compete with TCA cycle and CO2 fixation activities 
(Supplementary Figure S4), but also it seems to stimulate S. elongatus 
PCC 7942 photosynthetic activity (Figure 7B), and potentially the 
NADPH production, needed for fatty acid production.

4. Conclusion

In this study, we provided and updated GEM of S. elongatus 
PCC 7942 by using information from the scientific literature and 
openly available databases, as well as data from well-annotated 
GEMs from other bacteria. The updated model, iMS837, comprised 
837 genes, 887 reactions, and 801 metabolites. Following a series of 
growth simulations, the model was found to agree with published 
literature. The application of the updated GEM to investigate ALA 
production recapitulated phenotypes observed in literature, and the 
use of algorithms to identify potential reactions target to 
be overexpressed or eliminated can offer systematic strategies that 
would be  difficult to delineate experimentally. In addition, 
photomixotrophic conditions were also identified as potential target 
to boost ALA production. This application of the updated 
reconstruction serves as an example of how GEMs can provide 
insights into non-intuitive metabolic engineering strategies to 
improve the production of industrially important metabolites. 
Ultimately, our computational in-depth analysis of iMS837 for ALA 
production provides an example of the systems-biology science 
iteration paradigm, by producing further hypothesis that need 
experimental follow-up to be validated.
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5. Materials and methods

5.1. Development of an upgraded GEM of 
S. elongatus PCC 7942 named iMS837

The iMS837 model was developed using the published iJB792 model 
(Broddrick et al., 2019) as a starting point (Supplementary Dataset 3). 
Updates in iJB792 were made using Python and the COBRApy package 
(Ebrahim et al., 2013). A detailed description of all these changes can 
be found in the Supplementary Dataset 1 and Supplementary Table S1. 
The new generated model was denominated iMS837. All the scripts used 
in the methods section can be found in GitHub repository (https://github.
com/MariaS87/GEM-Synechococcus-elongatus-PCC-7942-iMS837.git).

5.2. Flux balance analysis

Flux Balanced Analysis (FBA) uses linear programming to 
maximize an objective function while assuming no metabolite 
accumulation during cellular growth. We used FBA to evaluate the 
biomass production (growth prediction) once the biomass reaction 
was fixed as the objective function (BOF, Biomass Objective Function) 
(Orth et al., 2010). The result when executing FBA was the growth rate 
(h−1) predicted under the specified media conditions.

5.3. Model manipulation to produce ALA

iMS837 was modified to introduce the required reactions to 
produce ALA. A detailed list of the reactions and metabolites added 
is included in Supplementary Table S3. The new generated model was 
denominated iMS837_ALA (Supplementary Dataset 3).

5.4. Metabolic network simulations

iMS837 and iMS837_ALA models were analyzed using COBRA 
Toolbox v2.0 (Schellenberger et  al., 2011) within the MATLAB 
environment (The MathWorks Inc.). Tomlab CPLEX (Tomlab 
Optimization Inc., San Diego, CA) and Gurobi (Gurobi Optimization 
Inc., Houston, TX) were used for solving the linear 
programming problems.

5.5. Gene essentiality predictions of iMS837

For growth simulation, the biomass equation (BOF) was set as the 
objective function. The analysis of gene essentiality was performed 
using the “single_gene_deletion” function of COBRApy 
(Supplementary Dataset 1; Ebrahim et al., 2013). If the growing rate 
of the knockout strain was lower than 10−3, the gene was defined 
as essential.

To evaluate the performance of our GEM to correctly predict gene 
essentiality, we employed a variety of statistical index-based methods, 
including: accuracy, sensitivity, specificity, precision, F1-score, and 
Cohen’s Kappa coefficient (van Stralen et al., 2009; Aromolaran et al., 
2021). All the statistical metrics were computed based on the scores 
from true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN). TP and TN occur when both the model 
prediction and the experimental data agree that a gene is essential and 
non-essential, respectively. FP occur when the model says a gene is 
essential, but experiments suggest otherwise, whereas FN occur when 
the model says a gene is non-essential, but experiments indicate that 
it is essential (Becker and Palsson, 2008). The aforementioned 
statistical index-based metrics are described from Equations 1–6 
as follows:
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The accuracy measures the degree of correctness of a model 
with respect to both positive and negative classes. The sensitivity 
estimates the proportion of essential genes that have been correctly 
identified, whereas the specificity measures the proportion of true 
negatives that have been correctly predicted. The precision 
calculates the probability that the essential genes are correctly 
predicted. The F1-score represents the harmonic mean between 
precision and sensitivity, combining these two parameters into a 
single measure (Ghasemian et  al., 2022). Lastly, Cohen’s Kappa 
coefficient measures the degree of agreement between the output of 
experimental versus predicted essentiality data. If Kappa = 1, then 
the predictions are in perfect agreement with experimental data, 
and Kappa = 0 means there is no agreement between predictions 
and experimental data (Aromolaran et al., 2021).

5.6. Monte Carlo flux sampling

The distribution of feasible fluxes in the condition-specific models 
was calculated by Markov chain Monte Carlo sampling (Schellenberger 
and Palsson, 2009) implemented in COBRA package (Schellenberger 
et al., 2011).
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5.7. Identification of gene overexpression 
targets for ALA overproduction

The identification of gene amplification targets was based on the 
strategy of flux scanning based on enforced objective flux (FSEOF) 
(Choi et al., 2010). We first simulated the growth behavior of the strain 
using FBA and set the biomass-producing reaction as the objective 
function. Then, the maximum theoretical ALA production was 
obtained by setting the ALA exchange reaction (EX_ALA(e)) as the 
objective function. In the next steps, this reaction was raised stepwise 
to reach 80% of the theoretical maximum.

5.8. Identification of potential knockout 
targets for ALA overproduction

OptKnock (Burgard et al., 2003) and GDLS (Lun et al., 2009) 
algorithms were implemented to predict potential genetic 
knockout manipulations that can lead to ALA overproduction. 
Whereas OptKnock uses bi-level optimization strategies to solve 
the conflict of cell growth and maximum bioengineering objective, 
the GDLS algorithm employs reduced metabolic models and 
predicts gene knockouts based on Gene–Protein-Reaction 
associations (Xu Z. et al., 2013). Before using these two algorithms, 
GEM was reduced, including only nonblocked reactions catalyzed 
by proteins whose genes are nonessential, reactions not involved 
in transport and reactions with known GPR associations. This 
step generated a ‘reduced’ model. These methods were accessible 
through the COBRA Toolbox v2.0  in MATLAB. For both 
optimization methods, ALA production flux was set as the 
optimization target. Each reaction elimination design solution 
was examined by making the identified changes on bounds to the 
reactions obtained with OptKnock or GDLS, and were plotted 
using metabolic production envelope that represents the accessible 
flux space onto the plane of growth rate versus the target’s 
production rate (Edwards et al., 2002). The suggested reactions 
obtained with these algorithms can be  removed in vivo by 
knocking out one or more of the genes encoding the enzymes 
catalyzing the reaction.

In addition, the recently developed gcFront algorithm was also 
used to identify knockouts that growth-couple synthesis (Legon 
et al., 2022). gcFront uses a multiobjective genetic algorithm that 
identifies a Pareto front of designs that maximize growth rate, 
product synthesis and coupling strength and finds combinations of 
gene/reaction knockouts that will enforce growth coupling (Legon 
et  al., 2022). Before applying this algorithm, GEMs need to 
be  pre-processed to reduce the search space of reaction by 
removing the biomass reactions not assigned as objective and 
blocked reactions. All blocked reactions were identified using flux 
variability analysis (FVA) (Mahadevan and Schilling, 2003) as 
reactions unable to carry flux when the biomass was constraint to 
20%. To reduce computation time by gcFront algorithm, the list of 
reactions previously identified with Optknock screening with 1–5 
maximum number of knockouts was used. Then, gcFront was 
executed for each nutritional condition (i.e., phototrophic, 
photomixotrophic with acetate and photomixotrophic with 
glucose) using the parameter setup described in Table 3.

5.9. Generation of specific GEMs for 
photomixotrophic conditions from 
iMS837_ALA

Reactions for the uptake of glucose and acetate were added to 
iMS837_ALA. The experimental data obtained under 
photomixotrophic conditions with acetate and glucose in vivo (Yan 
et al., 2012) were used to introduce constraints to iMS837_ALA to 
simulate these conditions in silico. A summary of these constraints is 
depicted in Table 4. In addition, a biomass equation was specifically 
generated for photomixotrophic conditions with acetate and glucose, 
denominated BOF_acetate_photomixotrophy and BOF_glucose_
photomixotrophy, respectively. In order to do that, a previously 
published protocol to generate biomass objective functions from 
experimental data was used (Lachance et al., 2019). Condition-specific 
macromolecular data related to protein, lipid, carbohydrate, and 
photosynthetic pigment composition were obtained for previously 
published data (Yan et al., 2012). In addition, transcriptomic data and 
lipid profiles were also needed and obtained from different literature 
sources (Rós et al., 2013; Xiong et al., 2015).

5.10. Generation of pathway maps for 
visualization of metabolic fluxes

Escher was used for visualizing the fluxes of the metabolic 
pathways involved in ALA synthesis (King et al., 2015). The Escher 
website was used to draw all the metabolic maps.
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