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Gas production from several metabolic pathways is a necessary process that 
accompanies the growth and central metabolism of some microorganisms. 
However, accurate and rapid nondestructive detection of gas production is 
still challenging. To this end, gas chromatography (GC) is primarily used, which 
requires sampling and sample preparation. Furthermore, GC is expensive and 
difficult to operate. Several researchers working on microbial gases are looking 
forward to a new method to accurately capture the gas trends within a closed 
system in real-time. In this study, we developed a precise quantitative analysis 
for headspace gas in Hungate tubes using Raman spectroscopy. This method 
requires only a controlled focus on the gas portion inside Hungate tubes, 
enabling nondestructive, real-time, continuous monitoring without the need 
for sampling. The peak area ratio was selected to establish a calibration curve 
with nine different CH4–N2 gaseous mixtures and a linear relationship was 
observed between the peak area ratio of methane to nitrogen and their molar 
ratios (A(CH4)/A(N2) = 6.0739 × n(CH4)/n(N2)). The results of in situ quantitative 
analysis using Raman spectroscopy showed good agreement with those of GC 
in the continuous monitoring of culture experiments of a deep-sea cold seep 
methanogenic archaeon. This method significantly improves the detection 
efficiency and shows great potential for in situ quantitative gas detection in 
microbiology. It can be a powerful complementary tool to GC.
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1. Introduction

The deep sea is extremely rich in microbial resources, and several microbial communities 
remain undiscovered, especially in the deep-sea extreme environments (Jorgensen and Boetius, 
2007). Because microbial communities are believed to be related to the origin of life and the vast 
majority of microorganisms are not yet known to us, such a wide range of microbial resources 
has great potential for exploitation and use. In recent years, researchers have isolated a variety 
of methanogenic archaea from various habitats (Simankova et al., 2001; Lyimo et al., 2009; 
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Zhilina et al., 2013). Methanogenic archaea and methanogens have 
great phylogenetic and ecological diversity despite their limited range 
of metabolic diversity (Liu and Whitman, 2008; Yang et al., 2020). 
Recently, our team also isolated a novel strain of methanogenic 
archaea from a deep-sea cold seep. Our preliminary studies have 
suggested that different environmental conditions can greatly affect its 
metabolic methanogenic processes. Therefore, to more conveniently 
and quickly investigate whether methane can be  produced under 
different conditions and to identify under which conditions methane 
production is the most efficient, in situ detection methods for methane 
production should be developed. Furthermore, in microbiology, in 
addition to methanogenic bacteria, other types of gases produced 
through several metabolic pathways by the microorganisms, such as 
hydrogen sulfide (Kalenitchenko et al., 2017), hydrogen (Jiang et al., 
2014), and carbon dioxide (La Ferla and Azzaro, 2001), can be detected 
using a similar method. The identification of gas production by these 
organisms can then be quickly performed. This will also bring great 
convenience to various subsequent biological studies and will certainly 
assist in rapidly exploring the best reaction conditions and monitoring 
the reaction process.

In conventional anaerobic culture experiments of marine 
microorganisms, the Hungate tube is a commonly used small 
anaerobic culture equipment. The Hungate tube is convenient for 
setting various substrate conditions to investigate the fermentation 
process, culture conditions, and optimal reaction conditions (Bowles 
et  al., 2011). However, the gas generated in the tube cannot yet 
be measured nondestructively using in situ methods. Instead, it can 
only be measured using a typical procedure of collecting a sample with 
a syringe or gas-tight needle and testing it using gas chromatography 
(GC) (Ahamed and Ahring, 2011). GC is widely used for evaluating 
the gas composition because of its high sensitivity and small sample 
requirements. However, when the number of samples is large and the 
detection frequency is high, sample preparation is cumbersome and 
time-consuming for GC testing in addition to being expensive (Chen 
et  al., 2003). Furthermore, GC requires sampling prior to 
determination, which is followed by a multistep gas-transfer procedure 
(Drozd and Novák, 1979).

Laser Raman spectroscopy is an excellent method for studying 
gases (Wang et al., 2011; Hanf et al., 2014), fluids (Facq et al., 2014; Li 
et al., 2018), and mineral components (Ma et al., 2021). In recent 
years, Raman spectroscopy has been gradually applied in the studies 
of microbiology because of its unique advantages of being inexpensive, 
nondestructive, requiring a short time, exhibiting high accuracy, and 
enabling in situ monitoring (Shope et al., 1987; Picard et al., 2007; Wu 
et al., 2015; Schalk et al., 2017; Jehlicka et al., 2019; Shi et al., 2020; 
Osman et al., 2021; Wang et al., 2022). Furthermore, owing to the 
ability of Raman spectroscopy to detect rapidly the characteristic 
peaks of several gas–and liquid-phase substances from a closed 
system, it can be used for the long-term monitoring of gas production. 
Quantitative analysis of fermentation gases using Raman spectroscopy 
was achieved by Numata et al. (2013), and they conducted a detailed 
study on the ratios of gaseous mixtures. Fang et al. (2018) studied the 
Raman spectral parameters of H2 and CH4 gaseous mixtures. They 
found that the peak area and height ratios between CH4 and H2 were 
sensitive to composition (i.e., the molar ratio between CH4 and H2) 
but were almost independent of pressure. These two studies provided 
a reference for our study; we  considered simulating the real gas 
production process by using gaseous mixtures to build a calibration 

curve, followed by the application of the curve to the actual biological 
sample testing process. Our objective was to propose a new, simple, 
and fast method that does not require device interfacing. In this 
method, the test environment and equipment depend entirely on the 
common conditions in microbiology experiments. Thus, the use of 
custom devices can be  avoided, which ensures the versatility 
and simplicity.

In this study, we established a quantitative calibration curve for 
methane and nitrogen in a binary-mixture system based on Raman 
spectroscopy. The methane content in the culture experiments of a 
deep-sea cold seep methanogenic archaeon can be  monitored 
quantitatively in real time. This method has the potential to become a 
novel method for gas quantification alone or in combination with GC 
in microbiology, with the advantages of being nondestructive, fast, 
and inexpensive.

2. Materials and methods

2.1. Strains and culture conditions

Following the process reported in previous studies (Zheng et al., 
2021, 2022), deep-sea sediment samples were collected by RV KEXUE 
from a typical cold seep in the South China Sea. These sediment 
samples were cultured at 28°C for 2 months in an anaerobic 
enrichment medium containing (per liter of seawater) the following: 
yeast extract, 0.1 g; peptone, 0.1 g; methanol, 10 mL; cysteine 
hydrochloride, 0.6 g; and resazurin, 500 μL 0.1% (w/v; the pH was 
adjusted to 7.0). The cultures were purified via the repeated use of the 
Hungate roll-tube method. Single colonies were picked using sterilized 
bamboo skewers, which were then cultured in the anaerobic 
enrichment medium. The purity of the isolate was confirmed via 
repeated partial sequencing of the 16S rRNA gene. Thereafter, a strain 
of methanogenic archaea (strain ZRKC1), which belongs to the genus 
Methanolobus, was isolated from the deep-sea surficial sediments. 
Cells of ZRKC1 were motile cocci. This strain grew between 12 and 
42°C (optimum 37°C), at pH between 6.5 and 8.2 (optimum pH 7.0) 
and salinity from 20 to 120 gL−1 NaCl (optimum 45 gL−1). To study the 
production of methane from methanol by strain ZRKC1, 100 μL of 
freshly incubated cells were inoculated in 10 mL of basal medium 
(including 2.0 g of the yeast extract, 1.0 g of NH4Cl, 1.0 g of NaHCO3, 
1.0 g of CH3COONa, 0.5 g of KH2PO4, 0.2 g of MgSO4 7H2O, 0.6 g of 
cysteine hydrochloride, 500 μL of 0.1% (w/v) resazurin in 1 L filtered 
seawater, and pH = 7.0) supplemented with 100 μL methanol at 25°C 
for 12 days.

2.2. Raman spectrometer and data 
processing

In the experiment, a Raman insertion probe (RiP) system was 
used to collect the Raman spectra of the gas above the liquid medium 
in the Hungate tubes. The system description has been detailed in the 
study by Zhang et al. (2017) and a similar concept for this system was 
first proposed by Brewer et al. (2004). The system primarily consists 
of a diode-pumped neodymium-doped yttrium aluminum garnet 
pulsed laser with a power of 150 mW and wavelength of 532 nm 
(Kaiser Optical Systems, Inc.) and cooled charge-coupled device 
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(CCD) of 2,048 × 512 pixels (Andor Technology, Inc.). The spectral 
range (100–4,325 cm−1) was split into two regions (100–2,100 and 
2,100–4,325 cm−1) on the surface of the CCD. The acquired spectra 
were a combination of these two regions. The Raman spectra were 
collected using HoloGRAMS 4.1 (Kaiser Optical Systems, Inc.) with 
an exposure time of 6 s and five accumulations, which is an appropriate 
monitoring mode based on multiple previous experiments. Spectra 
were collected 3–5 times per tube at the same focus position using 
Raman non-contact optics (Kaiser Optical Systems, Inc.) in a dark 
room with the focus adjusted to the gas above the liquid inside the 
Hungate tubes. We then used GRAMS/AI® 9.1 software (Thermo 
Fisher Scientific, Inc.) for the baseline calibration of the Raman 
spectra. The peak position, height, and area were determined using 
the GRAMS/AI “Peak fitting” and “Integrate” routine.

2.3. Sample preparation and experimental 
procedures

In the evaluation procedure of gas component samples with 
known ratios, we  configured nine sets of binary mixtures of 
methane (>99.9%) and nitrogen (>99.9%) (Qingdao Deyi Gas 
Co., Ltd.) at different ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 
1:9) at a normal temperature and pressure (25°C and 1 atm, 
respectively) using a multicomponent high-precision dynamic 
gas distribution system (Suzhou Friend Experimental Equipment 
Co., Ltd.). Pre-experiments revealed that these ratios adequately 
covered the dynamics of the gas in the tube during the subsequent 
methanogenesis of methanogenic archaea. The gas mixture was 
collected in a large water tank by draining it into the same tube 
as that used in the subsequent experiments. After stabilization, 
the Raman spectrum of the gas in the tube was collected by 
controlling the focus point (Figure 1), and a standard curve of the 
Raman peak area ratio and gas mixture molar ratio was obtained 
after processing. Subsequently, additional sets of binary mixtures 

with different ratios were randomly generated to test the 
curve accuracy.

A total of 16 tubes (Hungate tube, 15 ml) with identical initial 
conditions were configured for the detection of unknown gas 
production in the actual samples, and a continuous observation period 
of 10–12 days was planned. The specific operation was to fix the same 
interval and select one tube for Raman spectroscopy acquisition every 
day. Subsequently, approximately 5 mL of gas was immediately 
transferred into a small customized gas bag with a syringe. After this 
two-step procedure, the sample was not used. After the completion of 
data collection and sampling, some samples were selected for GC testing 
as needed (Figure 2), and excess tubes and gas bags were used as spares. 
In addition to this, for control validation, we selected several tubes for 
Raman spectra collection at random times in the later stages of the 
process, and the gas collection was switched to a vacuum blood 
collection tube directly from the Hungate tube. This method avoids 
retaining the gas in the syringe and reduces a gas transit step, which may 
reduce errors and can be used with GC to validate the curve again.

3. Results and discussion

3.1. Raman spectra of the gaseous mixtures 
and quantitative theory

The C–H symmetric stretching band at 2,921 cm−1 was the 
dominant Raman peak used to identify methane in the CH4–N2 gas 
mixture in this study. For nitrogen, the N–N stretching band located 
at 2,332 cm−1 was considered (Figure 3). We uniformly controlled the 
left and right endpoints of the acquired spectra in the ranges of 2,900–
2,940 cm−1 for methane and 2,310–2,350 cm−1 for nitrogen. All 
subsequent spectral processing was limited and performed within the 
respective spectral ranges. The Raman intensity normalization theory 
of Wopenka and Pasteris laid the foundation for the quantitative 
analysis of the Raman spectra based on the normalized intensities 

FIGURE 1

Schematic of the experimental system for establishing the calibration curve. The system is equipped with gas-mixing, RiP, and Raman non-contact 
optical systems.

https://doi.org/10.3389/fmicb.2023.1128064
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yin et al. 10.3389/fmicb.2023.1128064

Frontiers in Microbiology 04 frontiersin.org

(intensity ratios) (Wopenka and Pasteris, 1987), which has led to the 
development of qualitative Raman spectroscopy for quantification. In 
our experiments, the Raman scattering intensity reflected the amount 
of gas within the closed system; however, it was also influenced by 
other factors. The molar ratios of the two Raman-active species, a and 
b, in a homogeneous phase can be calculated from the peak areas of 
one of their specific vibrational bands based on the following equation:
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where A is the peak area corresponding to the selected vibration 
band, C is the molar concentration, σ is the Raman scattering 
coefficient, η is the instrumental efficiency factor, and F is the Raman 
quantification factor (Wopenka and Pasteris, 1987). This calculation 
method was widely utilized in the quantitative analysis of gaseous 
mixtures (Chou et al., 1990; Seitz et al., 1993; Lu et al., 2006; Fang 
et al., 2018; Chen and Chou, 2022).

To quantify the concentration of methane, known or constant 
concentrations of Raman-active substances in the sample should 
be  simultaneously measured as a standard reference (Szostak and 

Mazurek, 2002; Zhang et al., 2016). The Raman peak of nitrogen is a 
good choice for the procedure of establishing a calibration curve, 
where it can be used as a quantity of a known concentration. The 
amount of substance remains constant during the application. 
Furthermore, nitrogen does not participate in any reactions in this 
experiment, and it is considered as an inert gas. Consequently, it is 
well suited to the conditions of the internal standard. In addition, 
we consistently controlled the environmental conditions. We did not 
adjust or move the Raman system during the entire experimental cycle 
and only changed the samples in the sample holder. Therefore, the 
laser intensity and optical path conditions were consistent. Therefore, 
the ratio F(CH4)/F(N2) can be approximated as a constant. The gas 
space inside the Hungate tube was always controlled to be maintained 
at 5 mL. Thus, C(CH4)/C(N2) can be  calculated from the ratio 
A(CH4)/A(N2), which is also equal to the ratio n(CH4)/n(N2).

3.2. Establishment and validation of the 
Raman quantitative curve

Based on our RiP system, Raman spectra of nine different binary 
mixtures (molar ratios of CH4 to N2 = 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 

FIGURE 2

Schematic of the experimental system for the application of the calibration curve to the culture experiments. It shows real-time online in situ 
monitoring of methanogenesis using Raman spectroscopy. The partially enlarged insets illustrate the collection of gas Raman spectra. Raman spectra 
can easily be acquired by focusing the laser through Raman non-contact optics on the gas portion above the interior of the Hungate tube.
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and 1:9) were collected at normal temperature and pressure. 
We regressed the peak area ratio of methane and normalized nitrogen 
on the molar ratio of methane to nitrogen to obtain the calibration 
curve shown in Figure  4. Relevant data are shown in Table  1. In 
general, different laboratories reported different F values due to 

different Raman systems and optical paths. The slope of the calibration 
curve is 6.0739 (R2 = 0.9985), which is representative of F(CH4)/F(N2) 
in this study.

Thereafter, three different ratios of gaseous mixtures were 
randomly configured, and the volume ratios calculated with their 

FIGURE 3

Raman spectra of three molar ratios of methane and nitrogen. The peaks at 2332 and 2,921 cm−1 were assigned to nitrogen and methane, respectively.

FIGURE 4

Quantitative calibration curve of the molar ratio of the gaseous mixtures to the Raman peak area ratio. Error bars are within the symbol size; therefore, 
the relevant values are shown in Table 1. The green stars are validation data that are randomly mixed to test the difference between the theoretical and 
measured values, and they are close to the calibration curve. The lower-right corner shows the molar ratio predicted by the calibration curve versus 
the actual value.
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measured peak area ratios were 0.35, 2.84, and 8.10, which were close 
to the actual values of 0.33, 3.00, and 8.00, respectively. These data are 
marked with green stars in the standard curve, as shown in Figure 4. 
The root-mean-square error of the molar ratio based on the calibration 
curve of the peak area ratio was 0.1095. The slopes of the fitting lines 
were close to 1.0, which indicates that the curve-predicted and actual 
values are generally consistent and demonstrates the accuracy of the 
calibration curve. When only a qualitative detection is required, a 
signal-to-noise ratio of 3:1 is generally used as the detection limit. In 
this case, CH4 with a volume fraction of 5% in this experiment could 
be detected by our system. Converting it to a concentration unit is 
2.05 mmol/L. A quantitative limit is generally based on a signal-to-
noise ratio greater than 10:1. In this study, the signal-to-noise ratios 
of Raman spectra for both CH4 and N2 in the detection interval were 
considerably larger than 10; therefore, the conditions for quantification 
were available from the spectroscopic point of view. Based on this 
curve, we could then quantitatively monitor the CH4 concentrations 
in the 10–90% interval in our experiment.

To achieve nondestructive in situ real-time monitoring, we used 
Raman non-contact optics, which have the advantage of a wide range 
of working distances for remote measurements either directly or 
through sight glasses and translucent packaging. However, because of 
its characteristics for remote measurements, other regions through 
which the laser passes beside the focal point partially excite the 
scattering effect. This scattering effect will also be reflected in the 
Raman spectrum, that is, the information in the optical path. 
Nonetheless, this effect can be  eliminated using a simple spectral 
treatment. Specifically, in this experiment, we used the nitrogen peak 
area in the Raman spectrum of a Hungate tube filled with pure 
methane as the reference value of the optical path. The reason for this 
treatment is that the optical path passes through air containing 
nitrogen but no methane. This reference value was subtracted from all 
the peak areas of nitrogen in the subsequent spectral processing to 
obtain the Raman signal excited only by the nitrogen in the tube 
under ideal conditions. If we ignore the influence of the optical path, 
the attempted calibration curve has an R2 of only 0.8, and nine points 
appear to have a logarithmic trend, which is inconsistent with the ideal 
situation. The results showed that the effect of the gas in the optical 
path cannot be neglected. This data treatment is closer to the actual 
ideal conditions and more conducive to the establishment of an 
accurate quantitative curve.

In addition, the Raman spectrum is highly sensitive to pressure 
and temperature changes (Peercy and Morosin, 1973; Pironon et al., 
2003), particularly in a gas (Lallemand et al., 1966; Lu et al., 2007). 
Therefore, in our experiments, the pressure and temperature were 
controlled. The characteristics of the methane peaks were 
systematically investigated by Petrov (2017) in the range of 1–55 bar. 
The half width of the C–H symmetric stretching band (ν1) increased 
only slightly with increasing pressure (~0.005 cm−1/bar). Furthermore, 
the peak position of the C–H symmetric stretching band shifted 
toward lower wavenumbers for 1.1 cm−1 in the range of 1–55 bar. Two 
other studies have arrived at similar conclusions (Lin et al., 2007a,b). 
In our study, the pressure in the culture experiments was estimated to 
be no more than 5 bar. This was roughly inferred by the insertion of 
the syringe through the rubber plug into the Hungate tube. Based on 
Petrov’s model, we showed that both the Raman shift and half-width 
variations in this range were less than 0.1 cm−1. The ν1 peak of methane 
in this range was largely unaffected by pressure; therefore, the effect of 
pressure on the experiment could be ignored. The study by Lu et al. 
(2007) contains data that confirm our opinion. Therefore, we did not 
perform experiments under different pressures in our quantitative 
analysis. The same concerns applied to the temperature: the culture 
temperature of the strain was set to normal room temperature (25°C). 
It is the same temperature as in the previous analysis, and the 
subsequent continuous observation experiments were also performed 
at this temperature. Even if there was an error in the controlled 
temperature, such a small temperature change would not have a 
significant effect on the experimental results. The claim is also 
supported by the temperature data reported in a former study (Lu 
et al., 2007). Therefore, the temperature had no effect on any of the 
spectra in our experiments.

3.3. Application in continuous observation 
of methanogenesis

In the microbiological experiments, the Raman spectra of the gas 
above the liquid in the Hungate tube were collected over a period of 
12 consecutive days. Daily data showed good repeatability. 
Considering the data of the second day with low methane 
concentrations in the early stage as an example, the peak area ratio 
data obtained from five replicates were 0.656, 0.664, 0.697, 0.633, and 
0.646, respectively. Figure 5A shows the Raman spectra of the methane 
peaks collected in the Hungate tube for 5 out of the 12 consecutive 
days. A clear trend in the intensity of the methane peaks with time 
were observed, and this trend is presented in two forms in 
Figure 5B. Based on the trend analysis and the figure, we can surmise 
that strain ZRKC1 may not have undergone methanogenesis in the 
first 5 days. At this stage, the observed methane production was low, 
and the parameters related to the methane peak did not change 
significantly. From the sixth day, the methane production was 
noticeable (Supplementary Video S1). In the later stages, methane 
dominated the gas composition in the tubes. Methanogenesis was 
suppressed owing to a high production of methane. Furthermore, 
methanol was almost completely consumed, resulting in the 
stabilization of the final methane volume fraction. The gas 
environment inside the tube for the first 5 days was consistent with 
that of the initial environment, which was a mixed-gas system inside 
the anaerobic operating table. In the later days, because of a significant 

TABLE 1 Molar ratio of methane to nitrogen and the corresponding peak 
area ratio.

Serial 
number

Molar ratio Peak area 
ratio

Standard 
deviation

1 1:9 0.780 0.068

2 2:8 1.637 0.074

3 3:7 2.812 0.220

4 4:6 4.230 0.166

5 5:5 6.337 0.350

6 6:4 8.849 0.749

7 7:3 15.630 1.067

8 8:2 22.455 0.062

9 9:1 55.086 1.190
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methane production, we used the curve to calculate the methane and 
nitrogen volume fraction data in the tube at various time points. The 
data are shown in Table 2. The purpose of using volume fractions as 
units was to enable a better comparison with the GC data.

Because the sampling procedure was performed in parallel, 
we selected several samples for GC testing. Specifically, one sample 
from day 10 and two samples from the backup group with unknown 
culture times were selected and sent for testing, yielding methane 

volume fractions of 78.73, 69.40, and 77.33%, respectively. The peak 
area ratios for these three data sets were 16.070, 17.931, and 22.357, 
respectively, and the volume fractions of methane calculated after 
incorporating them into the curve were 72.57, 74.70, and 78.64%, 
respectively, which were close to the actual values (Figure 6). A p-value 
of 0.968 obtained from the t-test of paired data for the two data sets 
was considerably greater than 0.05, indicating that there was no 
significant difference between the two sets of data. Thus, the accuracy 

A

B

FIGURE 5

Changes in the methane peaks during the 5 days selected from the 12-day monitoring. The Raman spectra with simultaneous inclusion of nitrogen 
peaks were shown in Supplementary Figure S1 (A). Methane production, as demonstrated by the methane peak area ratio with nitrogen and methane 
volume fractions calculated from the curve over a period of 12 days (B).
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of this in situ detection method meets the requirements of the 
observation experiments.

Currently, there are five methanogenic pathways for methanogenic 
archaea, and the corresponding research is abundant. A majority of 
methanogenic processes are accompanied by the production of carbon 
dioxide according to the literature (Liu and Whitman, 2008; Zhou 
et  al., 2022). Therefore, when we  analyzed the obtained spectra, 

we focused on the peak of CO2, which also showed a slightly increasing 
trend throughout the 12-day monitoring (5 out of 12-day data are 
shown in Figure 7). However, we inferred from the qualitative analysis 
that its production is extremely small. The production of CO2 was 
insignificant compared with the production of CH4. Therefore, 
we neglected the CO2 content in the calculated data presented in 
Table 2. The measured data may not match the theoretical situation in 
most of the literature, which is an interesting finding. Thus, a trace 
amount of CO2 has a minimum effect on the spectral parameters of 
methane and nitrogen and can be neglected, which also indicates the 
need for further metabolic studies on this strain. However, it also 
shows that a small part of the pressure increase in the tubes during the 
culture experiments is contributed by the production of CO2.

During the continuous observation of methanogenesis, 
we prepared multiple tubes in the same batch with identical initial 
conditions for one tube per day of testing. This selection might have 
incorporated some chance errors, and our data (e.g., the first 5 days 
provided fluctuating results, and the results on some days were lower 
than predicted) confirmed the existence of these errors. However, 
unlike the theoretically ideal method of concentrating on the same 
tube for daily monitoring with multiple samplings, we discard the 
tube after collecting the spectrum and taking the sample in the 
current method. This method does not require multisampling and, 
therefore, avoids the accompanying problems of signal-to-noise ratio 
reduction (Numata et  al., 2013), pressure reduction (Seitz et  al., 
1996), and culture contamination. Consequently, this processing 
allows us to obtain Raman data that are more accurate. We also aim 
to adopt the former ideal method in subsequent studies that do not 
require GC validation. Because of the convenience of this method, 

TABLE 2 Volume fraction of methane and nitrogen calculated from the 
curve.

Days Peak area 
ratio

Nitrogen 
volume 

fraction (%)

Methane 
volume 

fraction (%)

1 0.684 89.884 10.116

2 0.659 90.210 9.790

3 0.678 89.965 10.035

4 0.764 88.830 11.170

5 0.734 89.225 10.775

6 1.752 77.614 22.386

7 4.470 57.607 42.393

8 7.779 43.845 56.155

9 14.089 30.124 69.876

10 16.070 27.429 72.571

11 21.363 22.138 77.862

12 22.663 21.137 78.863

FIGURE 6

Comparison of the Raman and GC data acquired from three sets of samples with different culture times in the later stages of the culture experiments. 
The methane volume fraction calculated from the curve using Raman data and methane volume fraction measured using GC show good agreement.
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we can quickly explore whether the strain can produce methane 
from other organic or inorganic substances apart from methanol, 
such as shrimp shells and lignin. This method makes it possible to 
reduce the cost and speed up the assay and facilitates the setting of 
a wide range of initial conditions, which is ideal for the initial 
screening of a large number of substances. After the initial screening, 
further small-scale studies in combination with GC can result in 
significant time and cost savings.

4. Conclusion

In this study, we first established a quantitative Raman curve of 
methane with nitrogen in a binary mixture system by configuring 
different mixture ratios. Based on this curve, we  quantitatively 
monitored the metabolism of a novel methanogenic archaeon 
isolated from a cold seep and successfully demonstrated an in situ 
quantitative detection method for gas production. The curve and its 
application were separately validated, with fair accuracy. Compared 
with GC, the proposed method has the following advantages: 
sampling, gas separation, and transfer are not required and this 
method enables fast detection and continuous long-term monitoring 
at fixed time intervals. This will bring great convenience to similar 
studies by reducing the operational difficulty and threshold. In the 
future, simulations of gaseous mixtures, including methane and 
hydrogen, at different temperatures and pressures can be conducted. 
Combined with Raman immersion probes, this method is expected 
to be better adapted for in situ monitoring of microbial fermentation 
and metabolic processes in extreme environments.
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