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Introduction: Klebsiella pneumonia (K. pneumonia) is a Gram-negative bacterium 
that opportunistically causes nosocomial infections in the lung, bloodstream, and 
urinary tract. Extended-spectrum β-Lactamases (ESBLs)-expressed K. pneumonia 
strains are widely reported to cause antibiotic resistance and therapy failure. 
Therefore, early identification of K. pneumonia, especially ESBL-positive strains, is 
essential in preventing severe infections. However, clinical detection of K. pneumonia 
requires a time-consuming process in agar disk diffusion. Nucleic acid detection, 
like qPCR, is precise but requires expensive equipment. Recent research reveals that 
collateral cleavage activity of CRISPR-LbCas12a has been applied in nucleic acid 
detection, and the unique testing model can accommodate various testing models.

Methods: This study established a system that combined PCR with CRISPR-LbCas12a 
targeting the K. pneumoniae system. Additionally, this study summarized the antibiotic-
resistant information of the past five years’ K. pneumoniae clinic cases in Luohu Hospital 
and found that the ESBL-positive strains were growing. This study then designs a crRNA 
that targets SHV to detect ESBL-resistant K. pneumoniae. This work is to detect K. 
pneumoniae and ESBL-positive strains’ nucleic acid using CRISPR-Cas12 technology. 
We compared PCR-LbCas12 workflow with PCR and qPCR techniques.

Results and Discussion: This system showed excellent detection specificity and 
sensitivity in both bench work and clinical samples. Due to its advantages, its 
application can meet different detection requirements in health centers where 
qPCR is not accessible. The antibiotic-resistant information is valuable for further 
research.
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Introduction

Klebsiella pneumonia (K. pneumonia) is a family of Gram-negative bacteria that causes 
nosocomial infections in the bloodstream, wound, and urinary tract (Magill et  al., 2014). 
Hypervirulent K. pneumoniae strains, such as K1, K2, and K5, have emerged worldwide and caused 
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severe infections, including liver abscess and pneumonia, with a 
mortality rate as high as 20–30% (Podschun and Ullmann, 1998).

β-Lactamases (ESBLs) can degrade β-Lactam antibiotics into 
non-effective compounds, thus resulting in drug-resistant strains (Bush 
and Bradford, 2016). However, due to the excessive use of β-Lactam 
antibiotics, the prevalence of ESBL-producing K. pneumonia has 
primarily increased. To date, ESBL-producing K. pneumonia contributes 
to nearly 45% of K. pneumoniae nosocomial infections (Miftode et al., 
2021) and 43% in the intensive care unit (Paterson et al., 2004; Calbo 
et al., 2011). More strikingly, ESBL-positive strains result in significantly 
higher mortality (Miftode et al., 2021); a recent study reported that 
ESBL-producing K. pneumonia is associated with over 55% mortality 
(Starzyk-Luszcz et al., 2017). Despite various genes encoding ESBLs, 
most ESBLs were derived from one or two amino acid substitutions of 
SHV-1 and TEM-1 (Ramdani-Bouguessa et al., 2011; Ben Achour et al., 
2014). SHV-type ESBLs almost evolved from SHV-1; for example, SHV-2 
harbors G238S (Zhong et al., 2021). Over 100 SHV variants have been 
found,1 and most of which are associated with ESBL-positive strains. 
Until 2016, the SHV-type ESBLs only accounted for 10% ESBLs. 
However, the majority are found in K. pneumoniae (Castanheira et al., 
2016). Thus, the detection of SHV is valuable in identifying ESBLs in 
K. pneumoniae.

Klebsiella pneumonia colonies derived from clinical samples under 
24–48 h of 37°C incubation culture after disk diffusion present features 
that could be diagnosed by well-trained personnel (Wagner et al., 2016). 
Usually, 1 week is required to determine the specific antibiotic resistance 
of bacterial strain (Giske et al., 2022). Despite the low cost and the 
simplicity of operation, disk diffusion is time-consuming and sometimes 
produces false-negative results especially for atypical colonies (Johnson 
et al., 2006; Hutchison et al., 2018). In contrast, nucleic acid detection 
methods that detect K. pneumoniae-specific DNA fragments are more 
advantageous. For example, quantitative real-time PCR or qPCR is the 
most widely used one (Hyun et al., 2019). The K. pneumonia and specific 
drug-resistant strains can be determined by qPCR (Yan et al., 2021). For 
ESBL testing, SHV-1, TEM, and CTX-M gene DNA fragments are used 
(Souverein et al., 2017). However, qPCR requires expensive equipment, 
which restricts its application in the healthcare center.

The CRISPR-Cas systems have been discovered to cleave target 
DNA or RNA under the guidance of crRNA in a base-pairing manner 
(Yan et al., 2019). Recent research shows that Cas13 and Cas12 exhibit 
collateral cleavage activity that could degrade probes if crRNA 
perfectly base-pairs targeted RNAs or DNAs (Chen et  al., 2018; 
Gootenberg et  al., 2018). Combined with DNA amplification and 
signal detection methods, Cas12 and Cas13 have been applied to 
detect nucleic acid (Li et  al., 2019). The detection workflow only 
requires 37°C incubation and does not rely on complicated 
equipment. To combat COVID-19, lots of nucleic acid detection 
workflow based on Cas13 and Cas12 have been developed 
(Kostyusheva et al., 2021; Nouri et al., 2021). Both Cas12 and Cas13 
require no expensive equipment and are compatible with various 
amplification or detection methods.

1 https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/SHV

Despite these advantages, the CRISPR-Cas12 detection method 
targeting K. pneumonia has not been reported. We established a sensitive 
nucleic acid detection method based on CRISPR-Cas12 and PCR to 
detect K. pneumonia. It produces results in less than 2 h and requires less 
expensive equipment (Figure 1A). Furthermore, we tried to identify 
ESBLs by targeting SHV DNA fragments. Compared to the traditional 
detection methods, this trial may help community healthcare centers to 
accomplish nucleic acid detection.

Results

Establishment of PCR-LbCas12a detection 
targeting Klebsiella pneumonia

To find a suitable target for nucleic acid detection, we used blast to 
screen the most relevant gene as a target for nucleic acid detection. 
We downloaded 14,288 genomic sequences from NCBI and removed 
the sequences under 5.2 M, for this is a complete genomic DNA size for 
K. pneumonia. As a result, 2,024 sequences survived for further 
analysis. We found that IF-2, 16S RNA, and YP_005224572.1 compose 
99.70% (2018/2024), 98.86% (2001/2024), and 99.70% (2018/2024) of 
all the sequences (Figure 1B). Therefore, they are suitable targets for 
nucleic acid detection. Considering the TTTV PAM sequences required 
for LbCas12a targeting, we designed five 36-nt long crRNAs which 
share 19 nt standards nucleotides and have 17 nt unique sequences to 
base-pair different K. pneumoniae DNA targets. K.P.-crRNA-1,2 target 
16S RNA, K.P.-crRNA-3,4 target YP_005224572.1, and K.P.-crRNA-5 
targets IF-2. We also screened the K. pneumonia genomes and found 
that these five crRNA targets separately 98.86% (2001/2024), 98.67% 
(1997/2024), 95.90% (1941/2024), 98.81% (2000/2024), and 99.90% 
(2022/2024) of the genomes (Figure 1C). To quickly test the detecting 
efficiency of the crRNAs, chemically synthetic single-stranded DNA 
targets were added to the LbCas12a system. Compared to the negative 
control, all crRNAs generated a significantly high level of FAM signals 
(Figure 1D). Further, the free FAM group generated by digesting probes 
can generate 488 nm fluorescent under 360 nM UV light exposure 
(Wang et al., 2022). We photographed the tube after the Cas12a reaction 
(Figure 1E). The K.P.-crRNA-2 and K.P.-crRNA-4 generate potent and 
stable FAM signals.

Next, we test the primers to amplify DNA fragments for crRNA-2 
and crRNA-4. The amplification efficiency of YP_005224572.1 primers 
is far more efficient than that of 16S (Figure 1F). To test the specificity 
one step further, we blast the K.P.-crRNA-2,4, 16S, YP_005224572.1 in 
other Klebsiella strains (Supplementary Table 1). The results showed that 
the K.P.-crRNA-2 targets all of them, while the K.P.-crRNA-4 perfectly 
targets only Klebsiella oxytoca. Klebsiella michiganensis, Klebsiella 
variicola, and Klebsiella Africana have mutations on the targets, which 
might not be  detected. As a result, K.P.-crRNA-4 and the primers 
targeting the YP_005224572.1 gene are used to establish this system to 
detect the K. pneumoniae strain (Figure 1A).

PCR-LbCas12a is sensitive and specific in 
Klebsiella pneumonia nucleic acid detection

To explore the minimum amount of DNA sample required for 
nucleic acid detection, serial diluted standard DNA samples were to test 
PCR, qPCR, and PCR-LbCas12a techniques. Basic PCR exhibited 

Abbreviations: PCR, Polymerase chain reaction; K. pneumonia, Klebsiella pneumonia; 

UTI, Urinary tract infection; BSI, Bloodstream infections; ESBL, Extended-spectrum 
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positive signals when target DNA was as few as 10 copies (Figures 2A–C). 
In contrast, the LbCas12a system and qPCR can display a signal in 
40 min when the copy number is as few as one single copy (Figure 2A). 
Next, to confirm if the detection system’s specificity targets only 
K. pneumoniae, we applied PCR-LbCas12a detection in 10 commonly 
seen pathogens in laboratory department, including Escherichia coli 
(E. coli), Staphylococcus aureus (S. aureus), Shigella dysenteriae, 
Salmonella enterica, Pseudomonas aeruginosa, Proteus mirabilis, 
Stenotrophomonas maltophilia, Acinetobacter baumannii, 
Corynebacterium striatum, and Candida albicans (fungi).

As a result, after 40 min PCR-Cas12 reactions, only K. pneumonia 
generated a significantly higher FAM signal (Figure  2D). The 
PCR-LbCas12a detection system is sensitive and specific.

PCR-LbCas12a detects clinic samples

To apply this PCR-LbCas12a detection system to clinic use, 
we collected 89 sputum samples tested using disk diffusion. Total DNA 
was extracted from the samples. Then, PCR was processed and 
followed by LbCas12a incubation at 37°C for 20 min. Results were 
collected by photographing samples under UV light exposure 
(Supplementary Figure S1). Most of the positive and the negative 
samples were identical. Six samples were only positive in disk diffusion 
assay, and seven samples were only positive in PCR-LbCas12a 
workflow (Figure 2E). To verify the controversial samples, we PCR 
amplified them and processed Sanger sequencing. The Sanger sequence 
results showed that they are nearly 100% identical to the K. pneumonia 
YP_005224572.1 gene fragment. Meanwhile, seven samples that are 
positive failed to be detected in this system. This failure might result 

from the corruption of the sputum samples, which were not well 
preserved after disk diffusion for diagnosis.

Detection of SHV In ESBL-producing 
Klebsiella pneumonia

To start the task, we looked up the drug-resistant information of 
K. pneumonia in the medical laboratory department’s record since 
2018. The ESBL-positive strains’ percentage is increasing from 22.9% 
(2018) to 40.3% (2020) and then remains at a relatively high level 
(Figure 3A). This information suggests that the identification of ESBL-
positive strains is valuable. SHV-associated ESBLs are the most 
commonly reported groups, so we designed four crRNAs that target 
SHV to detect ESBLs. We also screened the 184 reported SHV genes by 
this four crRNAs, and found that SHV-crRNA1-4 target 93.47% 
(172/184), 93.47% (172/184), 93.47% (172/184), and 98.91% (182/184) 
of 184 SHV genes (Figure 3B).

Using the PCR-LbCas12a workflow, we  tested the four crRNAs 
efficiencies. Although all the crRNAs are effective (Figures 3C, D), the 
SHV-crRNA-4 is the most efficient. The PCR-LbCas12a can test as few 
as one copy of the SHV-1 DNA fragment (Figure 3E).

Next, we detected the clinic samples. We collected 18 K. pneumoniae 
clinic samples that had been tested by disk diffusion susceptibility test. 
We tried it in our PCR-LbCas12a workflow and compared it with the 
clinic diagnosis (Figure 3F). All the ESBL (+) samples were positive in 
our workflow. Additionally, 10 more ESBL (−) were tested positive in 
PCR-LbCas12a detection. Sanger sequencing results suggest that three 
of them contain the SHV-1 DNA fragment; the rest seven samples failed 
to be detected by PCR.

A B C

D E
F

FIGURE 1

(A) Graphical illustration of PCR-LbCas12a detecting Klebsiella pneumonia nucleic acid. (B) The proportion of IF-216SRNA and YP_005224572.1 in the 
2024 K. pneumonia genomes. (C) The percentage of each K.P.-crRNA hitting the 2024 K. pneumonia genomes. (D) FAM signal of five K.P.-crRNA activity in 
LbCas12a reaction. (E) PCR-LbCas12a reaction products of (D) were photographed under UV activation. (F) The PCR amplification efficiency of primers 
targeting16S and YP_005224572.1.
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Discussion

The excessive use of antibiotics increases drug-resistant bacteria. A 
recent discovery reveals that 73.1% of K. pneumonia are resistant to at 
least one antibiotic (Petrosillo et al., 2019; Sharahi et al., 2021). Multi-
drug resistant and extensively drug-resistant K. pneumonia strains are 
increasing (Peng et  al., 2020; Yan et  al., 2021; Yang et  al., 2021). 
Effectively controlling K. pneumonia requires the direct knowledge of 
drug-resistant information (Ludden et al., 2020).

The most used detection method is the disk diffusion antibiotic 
susceptibility test (Prastiyanto et al., 2020). However, the sensitivity and 
accuracy are only about 56% and 65% (Koyuncu and Haggblom, 2009). 
Furthermore, two rounds of tests are required to identify specific 
antibiotic information, which costs more time. In comparison, nucleic 
acid detection is more advantageous in terms of stability and accuracy. 
qPCR specifically and accurately identifies K. pneumonia from bacteria 
like E. coli and S. aureus (Kim et al., 2021) and its antibiotic-resistant 
gene (Castanheira et  al., 2021). However, qPCR needs expensive 
equipment and skilled workers (Corman et al., 2020).

Recently, CRISPR-Cas12-mediated trans-collateral activity was 
widely applied to nucleic acid detection (Li et al., 2019; Ma et al., 2021; 

Selvam et al., 2021). The CRISPR-Cas12 detection system is accurate and 
specific and can also combine various readout and amplification 
technologies (Ali et  al., 2020; Chen et  al., 2020; Ramachandran 
et al., 2020).

In this study, we first established the PCR-LbCas12a system in this 
study to detect K. pneumoniae nucleic acid and SHV genes. We used PCR 
to harvest enough target DNA as a substrate for the LbCas12a reaction. The 
PCR-LbCas12a detection system can detect as low as only one copy of 
K. pneumonia. The results were highly consistent with the disk diffusion 
test. The clinic information on drug-resistant K. pneumonia showed that 
the ESBL (+) strains have been increasing over the past 5 years. We also 
tried the workflow to detect ESBL-resistant strains by detecting SHV 
fragments. The detection of SHV is successful. However, most of the 
positive strains are not ESBL (+) in disk diffusion tests. We speculate that 
this contradiction may result from the following reasons:

 1. The disk diffusion might be  too strict about detecting the 
K. pneumonia strains that are less resistant.

 2. The K. pneumonia samples may not be well preserved to grow on 
the agar disk.

 3. Many of the SHV variants do not encode ESBL enzymes.

A

C D

E

B

FIGURE 2

(A) The RFU signal generated by the PCR-LbCas12a system detecting the serially diluted standard YP_005224572.1 DNA. (B) The qPCR results of 
serial diluted standard DNA samples. (C) 1% agarose gel electrophoresis of the PCR product from serial diluted standard DNA samples. (D) Different 
pathogens was detected by PCR-Cas12a system. Only Klebsiella pneumoniae was successfully detected. Data are mean ± s. d. of n  = 3 biological 
independent experiments. (E) Venn diagram of results of testing 89 sputum samples in disk diffusion assay and PCR-LbCas12a workflow.
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Nevertheless, this workflow exhibits the potential to detect specific 
DNA fragments. Accurately detecting specific antibiotic-resistant strains 
needs more adjustment and knowledge of the mechanism. Compared 
to disk diffusion, PCR-LbCas12a detection, which takes no more than 
2 h, is highly advantageous in time-consuming.

Materials and methods

Bioinformatics analysis and scripts

The source is downloaded from NCBI-genome. The R and Python 
scripts are prepared by Guoyu Peng. The detailed information is on 
https://github.com/GuoYu-Peng/GANAB_BLCA.

Nucleic acid preparation

crRNAs were designed to target 16sRNA, YP_005224572.1, and IF-2 
gene according to the protocol (Chen et al., 2018). RNA nucleotides 
were chemically synthesized without 5′-phosphorylation (Transheep, 
China). crRNA consists of 19 nt common sequences and 17 nt for 
recognizing target (Li et al., 2018). DNA and RNA sequences used in 
this manuscript are in the Supplementary material.

DNA extraction and quantification

Clinical samples were swabs of sputa. According to the 
manufacturer’s protocol, swabs were dipped in cell lysate and processed 

genomic DNA extraction using the DNA extraction Kit (Tianlong 
science & technology, China). Extracted DNA samples were quantified 
by NanoDrop (Thermo Fisher Scientific, US) and preserved at −80°C 
before use.

PCR and qPCR

PCR system was carried out in a 20 μl reaction system in the 0.2 ml 
EP tube. Each reaction contains 10 μl of PrimeSTAR (TAKARA, Japan) 
PCR premix, 1 μl of forward primer (10 nM) and 1 μl of reverse primer 
(10 nM), 10 ng of sample DNA, and ddH2O to supplement the volume 
to 20 μl. The PCR reactions were processed for 35 cycles on an Eppendorf 
thermocycler with denaturation at 94°C for 15 s, annealing at 58°C for 
15 s, and extension at 72°C for 20 s. DNA electrophoresis was processed 
in 1% agarose gel in TAE buffer.

qPCR reactions were processed using Hieff UNICON Universal 
Blue qPCR SYBR Green Master Mix (Yeasen, China) on QuantStudio 
Dx (ABI, US). Program started with a 95°C for 2 min followed by 
40 cycles of denaturation at 95°C for 10 s, annealing at 60°C for 10 s, and 
extension at 72°C for 15 s qPCR. Each reaction was repeated in three 
biologically independent experiments.

PCR-LbCas12a detection

The LbCas12a detection was carried out in a 20 μl system. The 
system contains 2 μl Buffer 3 (NEB, US), 50 nM LbCas12a protein, 
60 nM crRNA, and 30 nM labeled probe, and 100 ng purified PCR 
product. Samples were mixed and then incubated at 37°C, and signals 

A

D E F

B C

FIGURE 3

(A) The summary of drug-resistant Klebsiella pneumonia information in the Medical Laboratory Department of Shenzhen Luohu People’s Hospital from 
January 2018 to June 2022. (B) The percentage of SHV genes hit by four SHV-crRNAs. FAM signal, (C) and photograph under UV, (D) of four SHV-crRNAs 
activity in PCR-LbCas12a reaction. (E) The RFU signal generated by the PCR-LbCas12a system detecting the serially diluted standard SHV DNA. (F) Venn 
Diagram of results of testing ESBL of 18 K. pneumonia samples in PCR-LbCas12a and disk diffusion susceptibility test.
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were obtained from QuantStudio Dx (ABI, US) every minute for 
20–60 min. Each reaction was repeated in three biologically 
independent experiments.

For clinic detection, samples were incubated at 37°C for 20 min, and 
then photographed under the UV light exposure. Two independent 
experiments were processed for each sample.

Sample information

Sample information is available in Supplementary Table 2.
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