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Introduction: The composition and stability of soil fungal network are important

for soil function, but the e�ect of trifluralin on network complexity and stability is

not well understood.

Methods: In this study, two agricultural soils were used to test the impact of

trifluralin on a fungal network. The two soils were treated with trifluralin (0, 0.84,

8.4, and 84mg kg−1) and kept in artificial weather boxes.

Results and discussion: Under the impact of trifluralin, the fungal network nodes,

edges, and average degrees were increased by 6–45, 134–392, and 0.169–1.468

in the two soils, respectively; however, the average path length was decreased

by 0.304–0.70 in both soils. The keystone nodes were also changed in trifluralin

treatments in the two soils. In the two soils, trifluralin treatments shared 219–

285 nodes and 16–27 links with control treatments, and the network dissimilarity

was 0.98–0.99. These results indicated that fungal network composition was

significantly influenced. After trifluralin treatment, fungal network stability was

increased. Specifically, the network robustness was increased by trifluralin with

0.002–0.009, and vulnerability was decreased by trifluralin with 0.0001–0.00032

in the two soils. Fungal network community functions were also impacted by

trifluralin in both soils. Trifluralin significantly impacts the fungal network.
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1. Introduction

Microorganisms are important for soil substance and energy cycling. In a soil ecosystem,

microbial species connect as an organic entity and connect with others through positive,

negative, and neutral relationships (Faust and Raes, 2012; Coyte et al., 2015). In these

complicated relationships, soil microorganisms perform functions of mineral and energy

management and nutrient cycling (Montoya et al., 2006; Glaze et al., 2022). Therefore,

interactions between microbes are vital for maintaining homeostasis in soil processes. The

network has been increasingly used in soil ecology to evaluate complicated relationships of

microbial species (Berry and Widder, 2014; Przulj and Malod-Dognin, 2016). For example,

Wu reported that permafrost degradation reduced microbial network stability and increased

carbon loss (Wu et al., 2021); Shen et al. analyzed the impact of plant diversity on soil fungal

network stability and functions (Shen et al., 2022).

Pesticide is the most common means of agricultural production. However, it is

also a disturbance factor in soil microbial connections (Du et al., 2022). Previous

studies mostly focused on the topological indexes impacted by pesticides (Gao

et al., 2018; Xun et al., 2021; Su et al., 2022), but the topological indexes
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are based on mathematical theory (Diestel, 2000), and this limited

researchers in further understanding the impact of pesticides

on the microbial network. Understanding the changed nodes

in the network composition has important implications for soil

community functions (Xun et al., 2021). In addition, the changed

node, edge, and network dissimilarity are important for evaluating

network changes (Poisot et al., 2012). Network stability is also an

important network index, and it has been used to evaluate the

resistance of the network to disturbance (Thebault and Fontaine,

2010; Yuan et al., 2021). However, no research has been carried out

concerning node persistence, network composition, and network

stability in pesticide-polluted soils based on the present literature,

which limits researchers’ understanding of the effect(s) of pesticides

on the stability of soil microbial networks.

Trifluralin is a fluorinated dinitroaniline compound that has

been used as a pre-emergence herbicide on cotton, alfalfa, and

soybeans (Zhang, 2018). Approximately 4,400 tons is applied per

year (Maggi et al., 2019), and the half-life is more than 375

days in soil (Karasali et al., 2017). Previous studies reported that

trifluralin can influence soil microbial communities (Du et al.,

2018). However, there is little understanding of the influence of

trifluralin on the fungal network. In this study, we carried out a

3-month indoor experiment to evaluate the influence of trifluralin

on the fungal network. Fungal network complexity, dissimilarity,

stability, and related functions were analyzed to evaluate network

changes. Network complexity includes the number of nodes and

links, average degree of nodes, density, and clustering coefficient of

a network. Stability evaluates the network resistance to interference,

which has been estimated by robustness and vulnerability (Deng

et al., 2012; Yuan et al., 2021). Microbial network dissimilarity was

used to evaluate two network differences on the basis of shared

nodes and edges (Poisot et al., 2012; Mo et al., 2021). Our aim

was to clarify whether trifluralin could influence fungal network

composition and stability.

2. Materials and methods

2.1. Experimental design

A total of two soil samples were collected from the

Langfang research base, Hebei Province (LF), and the Jiansanjiang

reclamation area, Heilongjiang Province (JSJ). Based on soil particle

diameter, soils from LF and JSJ were classified as silty loam soil

and silty clay soil, respectively. In the LF soil, the content of

organic matter, available P, available K, and pH were 25.8 g kg−1,

51.7mg kg−1, 289mg kg−1, and 7.24mg kg−1, respectively. In

JSJ soil, the content of organic matter, available P, available K,

and pH were 18.0 g kg−1, 74.9mg kg−1, 289.8mg kg−1, and

7.07mg kg−1, respectively. A 2-mm mesh was used to sieve

the soils, and the soils were preincubated for 2 weeks (Trabue

et al., 2006). Trifluralin purity was 98%, and it was dissolved in

acetone (analytical grade; Beijing Chemical Company). In total,

three concentrations of trifluralin in soils were used. The active

ingredients of trifluralin in 1 kg of dry soil were 0.84, 8.4, and

84mg, and they were corresponding to 1 (L), 10 (M), and 100 (H)

times of the recommended application rate, respectively. The M

level represents excessive use of pesticides in the field, and the H

level represents extremely contaminated soil by pesticides (e.g., soil

near a pesticide factory). The procedure of pesticide exposure is as

follows: 50 g of soil and 100µL pesticide solution were added to the

dark brown bottles, and then thoroughly mixed for 15min; after

that, 200 g of soil was transferred to each bottle and thoroughly

mixed for 15min. A control treatment was also needed and this

consisted of treatment with a solution lacking trifluralin. Each

treatment was repeated three times. The soil concentration was

1.5 g cm−3 (GB/T31270.1-2014, 2014). Soil moister was kept at 50%

using deionized water. The weighingmethodwas used to determine

the loss of water every 2 days, and the soil moisture was kept

constant according to the loss of weight. The laboratory experiment

was carried out for 3 months in an artificial climate box at 25◦C.

Sampling times were 7, 15, 30, 60, and 90 days after experimental

establishment. The samples were stored at−80◦C until analysis.

2.2. Characterization of soil microbial
communities

A PowerSoil Isolation Kit (Mo Bio Laboratories, Carlsbad,

CA, USA) was used to extract soil microbial DNA. An ND-

1000 spectrophotometer (NanoDrop Technologies) was used to

analyze microbial DNA quality. The forward primer ITS3_KYO2

(5
′

-GATGAAGAACGYAGYRAA-3
′

) and reverse primer ITS4 (5
′

-

TCCTCCGCTTATTGATATGC-3
′

) were used to amplify internally

transcribed spacer (ITS; Tian et al., 2017). Microbial DNA was

amplified using a PCR amplifier, and each amplification system

contained 1.5µL of each 10µMprimer, 100–300 ngDNA template,

5 µL of 2mM dNTPs, 1 µL KOD-Plus-Neo enzyme (Toyobo,

Shanghai, China), 5 µL of 10× PCR buffer for KOD-Plus-Neo,

3 µL of 25mM MgSO4, and water to 50 µL. The temperature

change steps were as follows: 94◦C for 2min, followed by 98◦C for

10 s (for 35 cycles), 62◦C for 30 s, and 68◦C for 30 s, and the final

extension temperature was 68◦C for 10min. Negative control with

DNA solution was also settled. A PCR Purification Kit (Qiagen,

Hilden, Germany) was used to purify PCR products after 1.5%

agarose gel electrophoresis. An Illumina platform (Santiago, CA,

United States) was used to sequence the purified PCR products

using a 2 × 250 bp kit. USEARCH was used to process amplicon

sequencing data (Edgar, 2010, 2013). The following rules were used

to filter raw reads: (1) adaptors were cut, (2) reads which included

more than 10% of unknown nucleotides were removed, and (3)

reads that included < 80% of bases with quality (Q-value) > 20

were removed. Tags were assembled with clean reads according to

more than 10 bp overlaps and <2% mismatch between paired-end

reads. Clean data were clustered into operational taxonomic units

(OTUs) with a similarity of 97%.

2.3. Network construction and
characterization

All co-occurrence networks were established on the basis of

Pearson correlations of OTU abundances and performed on the

Cytoscape platform using the CoNet plugin (Faust and Raes, 2016).

Pearson’s correlation was used to analyze the association of pairwise
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FIGURE 1

Visualization of fungal networks for each treatment in the two studied soils.

fungal OTUs with an absolute value of correlation coefficient (r)

higher than 0.7. The topological indices were calculated using

Gephi software include total nodes, total edges, average degrees,

clustering coefficient, network density, and path length. Nodes in

the network represent the OTUs in the network. The degrees of

each node represents the connections of a node to others, and the

average degree represents the main value of all degrees. Modularity

based on the connections of nodes represents the level of a network

divided into different modules. A network diagram was established

on Gephi software.

The node’s topological role was evaluated by among-module

connectivity (Pi) and within-module connectivity (Zi; Guimerà and

Nunes Amaral, 2005). The network nodes were classified as module

hubs with Zi ≥ 2.5 and Pi < 0.62, connectors with Zi < 2.5 and

Pi ≥ 0.62, and network hubs with Zi ≥ 2.5 and Pi ≥ 0.62 (Olesen

et al., 2007; Chen et al., 2019). These three categories of nodes are
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TABLE 1 Topological indices of each fungal network.

JSJ LF

CK L M H CK L M H

Total nodes 339 362 345 368 282 327 309 293

Total links 1,262 1,396 1,496 1,401 952 1,344 1,221 1,204

Average degree 7.445 7.713 8.672 7.614 6.752 8.22 7.903 8.218

Modularity 0.807 0.769 0.814 0.835 0.81 0.777 0.781 0.775

Average path length 5.652 5.09 5.279 5.237 5.81 5.252 5.506 5.110

Network density 0.022 0.021 0.025 0.021 0.024 0.025 0.026 0.028

Number of positive edges 1,238 1,384 1,489 1,383 942 1,335 1,208 1,185

Percentage of positive edges (%) 98.1% 99.14% 99.53% 98.71% 98.95% 99.33% 98.94% 98.42%

Number of negative edges 24 12 7 18 10 9 13 19

Percentage of negative edges (%) 1.90% 0.86% 0.47% 1.28% 1.05% 0.67% 1.06% 1.58%

Number of keystone nodes 134 118 105 117 93 111 86 96

FIGURE 2

Venn diagram of keystone nodes in each network in LF (A) and JSJ (B) soils.

TABLE 2 Shared nodes and edges and dissimilarity between di�erent

fungal networks in the two soils.

Shared
nodes

Shared
edges

Dissimilarity
of networks

JSJ CK vs. L 285 19 0.99

CK vs. M 272 26 0.98

CK vs. H 279 23 0.98

LF CK vs. L 231 20 0.98

CK vs. M 227 16 0.99

CK vs. H 219 27 0.97

referred to as keystone nodes (Banerjee et al., 2019; Röttjers and

Faust, 2019). Upset plots were used to visualize shared keystone

nodes between control and trifluralin treatment (Lex et al., 2014).

Network stability can be used to evaluate ecological system

stability to disturbance (Thebault and Fontaine, 2010). Generally,

it is usually evaluated by network robustness and vulnerability

(Wu et al., 2021; Yuan et al., 2021). Robustness is the remaining

proportion of nodes in the network after removing some nodes

(Montesinos-Navarro et al., 2017). In this study, 0.05% of nodes

in the network have been removed to simulate random species

removal each time. Vulnerability is also an index used to evaluate

network stability based on node removal (Yuan et al., 2021).
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2.4. Network dissimilarity

Network dissimilarity was used to evaluate the dissimilarity

of two fungal networks in this study (Poisot et al., 2012; Mo

et al., 2021). It was evaluated by shared nodes and edges of two

different networks, and the shared nodes and edges were also used

to evaluate dissimilarity (Poisot et al., 2012; Mo et al., 2021).

2.5. Fungal functions

FUNGuild is a database of fungal functions, and it clusters

almost all published studies on fungal functions (Nguyen et al.,

2016). Based on fungal amplicon sequencing data and taxonomy,

FUNGuild can be used to predict fungal functions. There are

three categories of trophic modes of fungi, namely, pathotroph,

saprotroph, and symbiotroph. Furthermore, these three categories

can be divided for better evaluation of fungal functions. Saprotroph

was divided into dung saprotroph, leaf saprotroph, plant

saprotroph, soil saprotroph, and wood saprotroph; pathotroph

was divided into animal pathogen, plant pathogen, fungal

parasite, lichen parasite, bryophyte parasite, and endophyte;

and symbiotroph was divided into ectomycorrhizal, ericoid

mycorrhizal, and endophyte. Fungal network OTUs abundance was

used to analyze the correlation of fungal community structure with

fungal functions based on the mantal test (Duan et al., 2020).

3. Results

3.1. Network indexes and keystone nodes

A total of eight fungal networks were established for each

treatment based on Pearson’s correlation coefficients of fungal

OTUs (Figure 1, Table 1) presents each network’s topological

indexes. In the networks, the nodes were assigned to four fungal

phyla in LF soil and three fungal phyla in JSJ soil. Among these,

the phyla Ascomycota and Basidiomycota were most abundant in

both soils. Compared with the control, the total nodes, total links,

and average degree were all increased by trifluralin. In LF soils,

the total nodes, total links, and average degrees were increased

by 11–45, 252–392, and 1.151–1.468 in trifluralin treatments,

respectively; in JSJ soil, the total nodes, total links, and average

degrees were increased by 6–29, 134–234, and 0.169–1.227 in

trifluralin treatments, respectively. The average path length was

decreased by 0.558, 0.304, and 0.70 in L, M, and H treatments in

LF soils and by 0.562, 0.373, and 0.415 in L, M, and H treatments in

JSJ soils.

Based on nodes’ Zi and Pi, there were 93, 111, 86, and 96

keystone nodes in control, L, M, and H treatments in LF soil,

respectively; there were 134, 118, 105, and 117 keystone nodes in

control, L, M, and H treatments in JSJ soil, respectively. In LF soil,

the shared keystone nodes were 35, 23, and 30 for the comparison of

control-L, control-M, and control-H, respectively; in JSJ soil, they

were 45, 37, and 36 for the comparison of control-L, control-M, and

control-H, respectively (Figure 2).

3.2. Network dissimilarity

Network dissimilarity is an effective tool to evaluate network

similarity. According to Table 2, for the comparison of control-L,

control-M, and control-H, the shared nodes were 231, 227, and

219 in LF soil and 285, 272, and 279 in JSJ soil, separately. The

shared nodes accounted for a significant part of the total nodes in

each network, but the shared links were significantly low for each

comparison. Specifically, for the comparison of control-L, control-

M, and control-H, shared links were 20, 16, and 27 in LF soil and

19, 26, and 23 in JSJ soil. According to the shared nodes and links,

the network composition was significantly influenced by trifluralin.

The dissimilarity was 0.97–0.99 between control and trifluralin

treatments in both soils.

3.3. Network stability

On the basis of random species loss, the network robustness was

increased by trifluralin in the two soils (Figure 3). In LF soil, it was

increased by 0.009, 0.003, and 0.002 in L, M, and H, respectively. In

JSJ soil, it was increased by 0.003, 0.006, and 0.007 in L, M, and H,

separately. For vulnerability, it was decreased by trifluralin in both

soils (Figure 3). In LF soil, it was decreased by 0.00032, 0.00022, and

0.00014 in L, M, and H, separately. In JSJ soil, it was decreased by

0.0001, 0.00015, and 0.00019 in L, M, and H, separately.

FIGURE 3

Robustness and vulnerability of each network in LF (A) and JSJ (B) soils.
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FIGURE 4

Relationships between fungal network communities and functions for each treatment in the two soils.
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3.4. Connection of fungal network
communities to functions

There were 11 guilds identified in this study, and they were

dung saprotroph, endophyte, lichen parasite, fungal parasite, plant

pathogen, animal pathogen, plant saprotroph, soil saprotroph,

wood saprotroph, ectomycorrhizal, and mycorrhizal. The

correlations of the fungal network community with functions

are shown in Figure 4. In LF soil, the fungal community was

significantly correlated with dung saprotroph in the control

treatment; in H treatments, the fungal community was significantly

correlated with dung saprotroph and wood saprotroph. In JSJ

soil, the fungal community was significantly correlated with dung

saprotroph in L treatment; in M treatments, the fungal community

was significantly correlated with endophyte, lichen parasite, plant

pathogen, animal pathogen, soil saprotroph, and wood saprotroph;

in H treatment, the fungal community was significantly correlated

with dung saprotroph and endophyte.

4. Discussion

The soil microbial system is an organic entity, and fungi

are important in the system. There are complicated relationships

among them, which act as decomposers, nutrient moderators,

mutualists, C-cycling mediators, and plant pathogens (Tedersoo

et al., 2014). Microorganism network is a valuable way to analyze

the complicated relationships and the influenced microorganism

connection (Berry and Widder, 2014; Przulj and Malod-Dognin,

2016; Mo et al., 2021). Wu et al. (2021) studied the relationship

between microbial stability and carbon loss through the network

in alpine permafrost degradation. In the study of Mo et al. (2021),

the authors found a slight salinity shift inmicroeukaryotic plankton

communities’ network stability. In the study of Vries, the fungal

community was more stable than the bacterial community in the

network (de Vries et al., 2018).

In this study, the increased network complexities in trifluralin

treatments indicated that the relationships of fungal species were

significantly impacted by trifluralin. In addition, these results also

suggested that there were more connections with others caused by

trifluralin. Mesosulfuron-methyl also increased the microorganism

network average degree and network density in different soils

(Du et al., 2021). In addition, the increased positive edges

suggested that trifluralin induced relationships with mutualism,

commensalism, parasitism, and neutralism predation more than

previously reported (Faust and Raes, 2012; Coyte et al., 2015).

The increased network complexities also indicated that

fungal network composition and dissimilarity were impacted.

The results of shared nodes, shared edges, and dissimilarity

between control and trifluralin treatments proved this suggestion.

Network dissimilarity was first published by Poisot, and this

index has also been used by other researchers to evaluate

microbial network differences (Poisot et al., 2012; Mo et al.,

2021; Liao et al., 2023). In the study of Liao et al. (2023),

network dissimilarity was used to evaluate the difference between

marine medaka gut and gill microbial networks; Mo reported

that the microeukaryotic plankton networks in different salinity

subtropical urban reservoirs were significantly different on the basis

of shared nodes, shared edges, and network dissimilarity. These

results suggested that fungal network composition was significantly

impacted by trifluralin.

Soil microbial network stability is important for functions,

ecosystem sustainability, and environmental protection (Coyte

et al., 2015; Pan et al., 2023). In this study, fungal network

stability was increased by trifluralin with increased robustness and

decreased vulnerability in the two soils. These results indicated that

the capacity of resisting interference of the fungal network was

increased by trifluralin (McCann, 2000), but that also suggested

that it was difficult for the fungal network to return to its original

state. In addition, these influences also impact network functions.

In LF soil, the impact on the correlations of the network community

to functions was low. The influenced correlations of the network

community to dung saprotroph in L and M treatments suggested

that the capacity of decomposing livestock and poultry manure

was impacted in LF soil (Hudson, 1984; Cannon and Kirk, 2008).

In JSJ soil, the correlated functions were increased by trifluralin,

suggesting that the network fungal community could play more

functions after trifluralin treatment. Different from the profiles of

correlations in LF soil, the fungal community was correlated with

dung saprotroph in JSJ soil. These results suggested that the effects

of trifluralin on network community functions were different in

the two soils. Previous research also showed that fungal functions

were sensitive to herbicides (Flores et al., 2014; Chen et al., 2022).

Chen reported that Oxathiapiprolin significantly impacted fungal

functions in an indoor experiment (Chen et al., 2022). Imazalil,

clothianidin, and diazinon also impacted fungi’s organic matter

processing and energy cycling (Flores et al., 2014; Huang et al.,

2021).

5. Conclusion

In this study network complexities, keystone node,

composition, and stability were used to evaluate the impact

of trifluralin on soil fungal networks. Trifluralin increased fungal

network complexities in two studied soils. Correspondingly, fungal

network composition and keystone nodes were also influenced.

Fungal network stability was increased by trifluralin in the two

soils, with increased robustness and decreased vulnerability. In

addition, fungal functions related to network community were also

impacted by trifluralin in both soils.
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