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The tigecycline resistance gene tet(X4) was widespread in various bacteria. 
However, limited information about the plasmid harboring the tet(X4) gene spread 
among the different species is available. Here, we investigated the transmission 
mechanisms of the tet(X4) gene spread among bacteria in a pig farm. The tet(X4) 
positive Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and 
Enterobacter hormaeche were identified in the same farm. The whole genome 
sequencing (WGS) analysis showed that the K. pneumoniae belonged to ST727 
(n = 11) and ST3830 (n = 1), E. cloacae and E. hormaeche belonged to ST524 
(n = 1) and ST1862 (n = 1). All tet(X4) genes were located on the IncHI1 plasmids 
that could be conjugatively transferred into the recipient E. coli C600 at 30°C. 
Moreover, a fusion plasmid was identified that the IncHI1 plasmid recombined 
with the IncN plasmid mediated by ISCR2 during the conjugation from strains 
B12L to C600 (pB12L-EC-1). The fusion plasmid also has been discovered in a K. 
pneumoniae (K1L) that could provide more opportunities to spread antimicrobial 
resistance genes. The tet(X4) plasmids in these bacteria are derived from the same 
plasmid with a similar structure. Moreover, all the IncHI1 plasmids harboring the 
tet(X4) gene in GenBank belonged to the pST17, the newly defined pMLST. The 
antimicrobial susceptibility testing was performed by broth microdilution method 
showing the transconjugants acquired the most antimicrobial resistance from the 
donor strains. Taken together, this report provides evidence that IncHI1/pST17 
is an important carrier for the tet(X4) spread in Enterobacteriaceae species, and 
these transmission mechanisms may perform in the environment.
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Introduction

Tigecycline, a member of tetracyclines, is one of the last-resort antibiotics to treat infections 
caused by Carbapenem-Resistant Enterobacteriaceae (CRE). The tigecycline still exhibits 
antibacterial activities in the bacteria containing the earlier tetracyclines resistance genes. The 
plasmid-mediated tet(X3) and tet(X4) genes conferring tigecycline resistance were discovered 
in various Gram-negative bacteria, including carbapenem-resistant and colistin-resistant 
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bacterial strains (He T. et al., 2019; Sun et al., 2019; Tang et al., 2022a; 
Ma et al., 2022b). The tet(X) variant-positive isolates from animals, 
retail meat, and humans have been identified (Zheng et al., 2020; Tang 
et al., 2021; Umar et al., 2021). Despite the large numbers of tet(X) 
variant genes were discovered, tet(X3) and tet(X4) were the most 
popular tigecycline resistance genes, especially tet(X4) (Cheng et al., 
2020; Guan et  al., 2022). The tet(X4) gene was widelydetected in 
Escherichia coli, Klebsiella pneumoniae, Aeromonas caviae, Citrobacter 
freundii, Acinetobacter indicus, Enterobacter cloacae and so on (Chen 
et al., 2019; Fang et al., 2020; Li et al., 2021; Zeng et al., 2021; Wu et al., 
2022; Zhai et al., 2022).

IncHI plasmid is an important vector for the tet(X4) gene, which 
belongs to the H incompatibility (IncH) group, including IncHI1 to 
IncHI5 subgroups (Phan and Wain, 2008; Cui et al., 2022). The IncHI1 
plasmid is a conjugative plasmid usually larger than 200 kb. IncHI1 
plasmid usually contains three replication genes (repHI1A, repHI1B 
and repFIA-like) (Liang et  al., 2018). IncHI1 plasmids are 
thermosensitive for conjugative transfer, and the efficiency is optimal 
between 22 and 30°C (Phan and Wain, 2008). It is one of the most 
common plasmids carrying antimicrobial resistance genes (ARGs) in 
Salmonella (Kubasova et al., 2016). Moreover, IncHI1 plasmids also 
have been discovered in other Enterobacteriaceae, such as E. coli, 
K. pneumoniae and C. freundii (Dolejska et al., 2013; Hüttener et al., 
2019). Significantly, the tet(X4) positive IncHI1 plasmids were 
discovered in several species of Enterobacteriaceae (Feng et al., 2022; 
Gao et al., 2022; Wu et al., 2022).

There are few reports about the mechanism of the tet(X4) gene 
spread between bacterial species. Here, we  screened the tigecycline 
resistance bacteria from a large-scale pig farm in Guangxi province, 
China. The tigecycline-resistant E. coli, K. pneumoniae, E. cloacae and 
Enterobacter hormaechei were isolated at the same time. The mechanisms 
of the tet(X4) gene transferred among the spaces were unknown. 
We analyzed the characterization of these strains and compared the 
ability of conjugative transfer. To the best of our knowledge, this is the 
first evidence for the IncHI1 and IncHI1-N plasmid harboring the 
tet(X4) gene transferred in several bacteria spp. in a farm.

Method

Sample collection and bacterial isolation

Eighty-nine fecal samples were collected from a pig farm in 
Guangxi province, China, in 2019. These samples were distributed in 
several stages of the pig’s life, including the piglets, weanling piglets, 
fattening pigs, and sows. The samples were sent to the laboratory in a 
cryogenic incubator and screened by the MacConkey agar containing 
the tigecycline (4 mg/l). The tet(X) gene was detected by PCR as the 
primer (F: 5’-TGGACCCGTTGGACTGACTA-3′, R: 5’-CACTTC 
TTCTTACCAGGTTC-3′) and sequenced by Sanger Sequencing for 
the tigecycline resistant strains. Then the tet(X)-positive strains were 
identified by 16S rDNA PCR and sequencing.

Whole genome sequencing

Whole genome sequencing (WGS) of all isolates was performed 
using the Illumina HiSeq platform (Yu et al., 2018). The sequences 

were assembled with SPAdes and analyzed via the CGE server.1 To 
further characterize the tet(X4) gene in the isolates, three 
K. pneumoniae strains, one E. cloacae strain and one E. hormaechei 
were sequenced by the Nanopore MinION platform and assembled by 
Unicycler. Then the sequence was annotated with the RAST server.2 
The novel plasmid multilocus sequence typing MLST (pMLST) of 
IncHI1 was assigned by PubMLST.

Conjugation testing

The tet(X4) positive K. pneumoniae, E. cloacae and E. hormaechei 
were used as the donor strains, and the E. coli C600 (rifampin-resistant) 
was used as the recipient. In addition, E. coli J53 (sodium azide-
resistant) was the recipient when the transconjugants used as the donor 
(Tang et al., 2019, Tang, B. et al., 2020; Lin et al., 2022). The cultures of 
donor and recipient strains were mixed in fresh LB stationary at 30°C 
or 37°C overnight. The mixed cultures were collected by centrifugation, 
then diluted with PBS. The transconjugants were selected by the LB 
plate containing 4 μg/ml of tigecycline with rifampin (100 μg/ml) at 
37°C overnight. Each experiment was repeated three times.

S1-nuclease digestion pulsed-field gel 
electrophoresis (S1-PFGE)

S1-PFGE was used to detect plasmid size in strains performed as 
previously described (Ma et al., 2022a,b; Tang et al., 2022b). In brief, the 
plugs were made from the fresh cultures embedded in 2% gold agarose 
and lysed with cell lysis buffer. Then S1 nuclease was used to cut the 
plugs, and the Salmonella H9812 was restricted with XbaI as the marker. 
The plasmids were separated with the CHEF Mapper XA system.

Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) for 13 
antimicrobial agents (ampicillin (AMP), amoxicillin-clavulanate 
(A/C), gentamicin (GEN), florfenicol (FFC), tetracycline (TET), 
tigecycline (TIG), ceftiofur (CEF), ceftazidime (CAZ), enrofloxacin 
(ENR), sulfisoxazole (SUL), imipenem (IMP), meropenem (MEM), 
colistin (COL)) were determined by the broth microdilution method 
according to the Clinical and Laboratory Standards Institute (CLSI) 
as previously described (Ma et al., 2020; Tang et al., 2022a). The wild 
strains and transconjugants were tested.

Result

Prevalence of tet(X4)-positive isolates

A total of twelve (13.48%) K. pneumoniae, one (1.12%) E. cloacae 
and one (1.12%) E. hormaechei were screened by MacConkey agar with 

1 http://www.genomicepidemiology.org/

2 https://rast.nmpdr.org/rast.cgi
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tigecycline (4 mg/l) from 89 swine feces samples in Guangxi Province in 
China. Furthermore, 26 (29.21%) tet(X4)-positive E. coli had been 
isolated and reported in a previous study (Feng et al., 2022). All of these 
strains carrying the tet(X4) genes were identified by PCR and sequencing.

Genomic epidemiology of tet(X4)-positive 
Klebsiella pneumoniae, Enterobacter 
cloacae and Enterobacter hormaechei

The Multi-Locus Sequence Typing (MLST) analysis showed that 
12 isolates of K. pneumoniae belong to ST727 (11/12) and ST3830 
(1/12), the E. cloacae belong to ST524 and the E. hormaechei belongs 
to novel type (ST1862), respectively. The K. pneumoniae showed a 
clone spread with the ST727 type.

The ARGs prediction showed the strains have various resistance 
genes, including blaTEM-1, blaOXA-10, blaSHV-11, floR, cmlA1, fosA, mef(B), 
oqxA, oqxB, qnrS1, sul3, tet(A), tet(X4), aadA12, aph(3′)-Ia, dfrA14, 
arr-2 and so on (Figure 1). The K. pneumoniae strains 16 l, 29 l, 38 l, 
39 l, 312 l, 313 l, 421 l, 423 l, K1L, 3Z1L and B12L belonged to ST727 
that have a similar ARGs. They were different from the K. pneumoniae 
3Z5L (ST3830), E. cloacae GX1Z-1 l (ST524) and E. hormaechei 
GX4-8 l (ST1862).

Genetic structures of tet(X4)-positive 
plasmids

All strains carried multiple replicons (IncHI1A, IncHI1B and 
IncFIA), and most K. pneumoniae strains carried IncN replicon 
(Table 1). The complete sequence of strains K1L, 3Z5L, B12L, GX1Z-1 l 
and GX4-8 l showed that the tet(X4) gene are located on the IncHI1 
plasmid and belongs to a novel pMLST. The IncHI1 plasmid was 
assigned to pST17, which contained two novel alleles, HCM1_043 (4) 
and HCM1_116 (5). Moreover, we  analyzed 100 IncHI1 plasmid 

sequences from GenBank database that showed all tet(X4)-positive 
plasmids belonged to pST17. Although these plasmids were discovered 
in different spaces, more commonly E. coli, a small amount of 
K. pneumoniae (MW940615), Salmonella enterica (CP060586), and 
Citrobacter sp. (MW940627) that have relatively close consanguinity 
based on the core genes analysis. Similarly, the mcr and blaNDM positive 
plasmids have a closer relationship (Figure 2). This suggests that the 
tet(X4), mcr, and blaNDM-positive IncHI1 plasmid in several species 
were mainly transmitted by cloning.

Klebsiella pneumoniae and E. cloacae tet(X4) positive plasmids 
have similar backbone structures (Figure 3A). All the IncHI1 plasmids 
contained the completed conjugation transfer elements including 
oriT, T4SS and T4CP, but without a conjugation transfer element was 
identified in IncN plasmid. IncHI1 plasmid-mediated tet(X4) transfer 
risk in different species is underestimated. The core genetic structures 
of tet(X4) remained in the conserved sequence as abh-tet(X4)-ISCR2 
(Li et al., 2020b). Interestingly, the pK1L (301 kb) is a complex plasmid 
(IncHI1-N) that is derived by homologous recombination of the 
IncHI1 (~190 kb) and IncN (~110 kb) from other K. pneumoniae 
strains. The fusion plasmid IncHI1-N was also detected in the 
transconjugant (pB12L-EC-1) harboring tet(X4) from the 
K. pneumoniae B12L (pB12L-1 and pB12L-2) to E. coli C600 mediated 
by ISCR2 with a ~ 13 kb homologous sequence (ISCR2-virD-floR-lysR-
tet(A)-blaTEM-1B-IS26-dfrA14-aadA1-blaOXA-10-cmlA-aadA1-
IntI1-IS26) (Figure 3B). This is similar to the previously reported that 
the mcr-1-bearing plasmids pD72-mcr1 (IncF33: A-: B-) recombined 
with pD72-F33 (IncN) that was mediated by IS26 (He D. et al., 2019). 
The fusion plasmid pB12L-EC-1 was highly similar to pK1L.

Conjugation and S1-PFGE analysis of 
tet(X4)-positive strains

The conjugation assay was performed to investigate the 
transferability of the tet(X4) gene in Enterobacteriaceae. As with the 

FIGURE 1

The heat map of antimicrobial resistance genes of 14 strains in this study. The positive genes in strains are marked with the red box. The names of 
genes are labeled below the heat map.
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characteristics of IncHI1 plasmids, conjugation experiments showed 
that all strains successfully transfer the tet(X4) gene to recipient strain 
E. coli C600 with a higher conjugation frequency at 30°C, and a 
significantly reduced conjugation frequency observed at 37°C 
(Figure  4A). This is consistent with the characteristics of the 
thermosensitive plasmids. As mentioned above, the fusion plasmid 
pB12L-C600-1 containing two replicons, IncHI1 and IncN generated 
by the conjugation transfer of the K. pneumoniae B12L to E. coli C600. 
The plasmid profiles of the donor and transconjugants detected by 
S1-PFGE showed the two sizes plasmids (about 200 kb and 300 kb) in 
the transconjugants (Figure 4B).

In order to analyze the ability of conjugation transfer of the 
IncHI1 and IncHI1-N plasmids. The transconjugants containing the 
pB12L-EC-1(IncHI1-N) and pB12L-EC-2(IncHI1) were further 
conjugated transfer to recipient E. coli J53 at 30°C or 37°C. The result 
showed that the pB12L-EC-1 and pB12L-EC-2 had no significant 
difference in conjugation frequency from EC600 to J53, both at 30°C 
and 37°C (Figure 4A).

Antimicrobial susceptibility testing of 
donors and transconjugants

The K. pneumoniae, E. cloacae and E. hormaechei, as well as their 
transconjugants were detected the antimicrobial susceptibility. All of the 
wild-type strains exhibited resistance to AMP, A/C, FFC, TET, TIG, ENR 
and SUL, and sensitive to CAZ, IMP, MEM and COL. Only one strain 
GX4-8 l was resistant to GEN. The transconjugants acquired the most of 
ARGs that have similar resistant profiles (Supplementary Table S1).

Discussion

The tet(X4) is the critical resistant gene for the tetracycline family, 
especially tigecycline. An increasing number of tet(X4)-positive 

bacteria species have been discovered since it was first discovered in 
E. coli (He T. et al., 2019; Sun et al., 2019). The E. coli remains the most 
common carrier for the tet(X4) gene, and the Citrobacter sp., 
Acinetobacter sp., K. pneumoniae, E. cloacae and E. hormaechei 
carrying tet(X4) gene were reported occasionally. The different 
bacteria spp. carrying tet(X4) gene were always isolated from different 
farms or regions. Here, we  identified the tet(X4)-positive 
K. pneumoniae, E. cloacae and E. hormaechei in a pig farm at the same 
time. These strains carried the same plasmid that belonged to pST17 
IncHI1 plasmid. The tet(X4)-positive IncHI1 plasmid was also 
identified in E. coli from this farm in our previous study (Feng et al., 
2022). It is strong evidence that the IncHI1plasmid mediated the 
tet(X4) gene transfer among different Enterobacteriaceae.

The tet(X4) gene was always located on the plasmid in 
Enterobacteriaceae and on chromosomes in other bacteria. The IncX1 
type plasmid was considered the most common vector for the tet(X4) 
gene, followed closely by the IncHI1 plasmid (Cui et al., 2022). The 
IncHI1 harbored tet(X4) gene is becoming increasingly common in 
Enterobacteriaceae (Fang et al., 2020; Gao et al., 2022). Notice that it 
has become the most important type for the spread of the tet(X4) gene 
among Enterobacteriaceae, except E. coli, which has been discovered 
in K. pneumoniae and E. cloacae.

pMLST is an important method for tracing the spread of plasmids 
based on molecular typing. Phan et al. established the typing method 
for IncHI1 plasmids using variation in six conserved loci (Phan et al., 
2009). Seventeen types that have been identified in IncHI1 plasmids 
and recorded in PubMLST.3 The tet(X4) gene is only located in the 
pST17 IncHI1 plasmid, and similar results were observed in mcr, 
blaNDM and blaCTX-M located in a specific plasmid (Valcek et al., 2021). 
This suggests that there is some association between resistance genes 
and plasmid typing. The probability of insertion of resistance genes 
into plasmids is much lower than plasmid transfer.

3 https://pubmlst.org/bigsdb?db=pubmlst_plasmidseqdef

TABLE 1 The genome characteristics of the K. pneumoniae, E. cloacae and Enterobacter hormaechei strains.

Strains Species MLST Plasmids Inc type Size(−kb)
GC content 

(%)
tet(X4) 
position

Accession 
no.

3Z5L K. pneumoniae

ST3830 - - 5,215,453 58 No CP072515

p3Z5L-1 IncHI1B 259,774 47.2 No CP072516

p3Z5L-2 IncHI1 196,655 46.2 Positive CP072517

p3Z5L-3 IncFIB(K) 110,830 52.1 No CP072518

p3Z5L-4 IncM2 59,397 51.9 No CP072519

B12L K. pneumoniae

ST727 - - 5,419,314 57.3 No CP072456

pB12L-1 IncHI1 185,386 46.5 Positive CP072457

pB12L-2 IncN 111,105 51.7 No CP072458

K1L K. pneumoniae

ST727 - - 5,420,142 57.3 No CP072460

pK1L-1 IncHI1-N 301,103 48.3 Positive CP072461

pK1L-2 - 9,585 42.0 No CP072462

GX1Z-1 l E. cloacae
ST524 - - 4,798,859 54.9 No CP071861

pGX1Z-1 l IncHI1 296,468 48.7 Positive CP071862

GX4-8 l E. cloacae
ST1862 - - 4,754,790 55.2 No CP071876

pGX4-8 l IncHI1 195,884 46.2 Positive CP071877
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The plasmid is the most important vector for transferring the 
ARGs. The ARGs and the virulence genes are always located on the 
specific Inc-type plasmids, such as the mcr-1 mainly in IncX4, IncI2 
and IncHI2 plasmid (Rodríguez-Santiago et  al., 2021). Hybrid 
plasmids are becoming increasingly common, which could contribute 
to the ARGs and virulence genes co-translocation and assist the 
non-conjugative plasmids transferred (Li et al., 2020a; Tang, M. et al., 
2020). The most of hybrid plasmids were derived during the 
conjugation transfer, and the insertion sequence IS26 was the most 
common element for guided the plasmids recombination by the 
homologous sequence (Liu et al., 2020; Peng et al., 2022). Conversely, 
the doner plasmids containing the highly similar homologous 
sequences suggested that the small plasmids may be produced by 

decomposition of fusion plasmid from other hosts. The mechanism of 
initial fusion remains to be investigated. Note that the IncHI1 plasmid 
could remove the temperature restrictions for conjugative transfer by 
fusion with the IncN plasmid and obtain the resistance and virulence 
genes at the same time. This study is the first report of the IncHI1 
fusion with IncN plasmid that may increase the ability to spread 
tet(X4).

Conclusion

In summary, we  reported the IncHI1 plasmid harboring the 
tet(X4) gene discovered in K. pneumoniae, E. cloacae, and 

FIGURE 2

Phylogenetic tree of 100 IncHI1 plasmids with complete sequence from GenBank database. The accession numbers in red are discovered in this study. 
The innermost to outermost circles indicated the pMLST of plasmids, the species of isolates and the important ARGs on the plasmids.

https://doi.org/10.3389/fmicb.2023.1128905
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fmicb.2023.1128905

Frontiers in Microbiology 06 frontiersin.org

E. hormaechei from the same farm. It provided further evidence that 
the tet(X4) gene transfer among bacteria by IncHI1 plasmid in 
livestock farm. The tet(X4)-positive IncHI1 plasmids belonged to 
pST17, a novel subtype. Furthermore, the IncHI1 and IncN plasmid 

tended to fuse by the ISCR2, which could increase the risk of 
co-transfer the ARGs among bacteria. The study highlights that the 
IncHI1 plasmid is a risk factor for transfer tet(X4) 
among Enterobacteriaceae.

A

B

FIGURE 3

Sequence alignment of tet(X) harboring plasmids in this study. (A) The circular genetic map of plasmids pK1L, pGX1Z-1 l, pGX4-8 l, p3Z5L-2, pB12L-1, 
pB12L-2 and pB12L-EC-1. The pK1L is used as the reference. (B) Linear comparison of plasmids pK1L, pB12L-1 and pB12L-2 with the transconjugant 
plasmid pB12L-EC-1. The corresponding alignments are represented in wathet blue and pink. The orange dashed boxes indicated the genes in the 
homologous region. The arrows and triangles represent genes of different function categories (blue: transfer element; red: AMR gene; green: 
partitioning protein; golden: integrase and resolvase; gray: other functions).
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FIGURE 4

The conjugation transfer frequency of different bacteria and the plasmid profiles of fusion plasmid. (A) The conjugation transfer frequency of five 
tet(X4) positive strains and the transconjugants of B12L. (B) The S1-PFGE of the donor strain B12L and two types transconjugants (B12L-EC-1 and B12L-
EC-2).
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