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Soil organic carbon (SOC) mineralization is affected by ecological restoration and 
plays an important role in the soil C cycle. However, the mechanism of ecological 
restoration on SOC mineralization remains unclear. Here, we collected soils from 
the degraded grassland that have undergone 14 years of ecological restoration 
by planting shrubs with Salix cupularis alone (SA) and, planting shrubs with 
Salix cupularis plus planting mixed grasses (SG), with the extremely degraded 
grassland underwent natural restoration as control (CK). We aimed to investigate 
the effect of ecological restoration on SOC mineralization at different soil 
depths, and to address the relative importance of biotic and abiotic drivers of 
SOC mineralization. Our results documented the statistically significant impacts 
of restoration mode and its interaction with soil depth on SOC mineralization. 
Compared with CK, the SA and SG increased the cumulative SOC mineralization 
but decreased C mineralization efficiency at the 0–20 and 20–40 cm soil depths. 
Random Forest analyses showed that soil depth, microbial biomass C (MBC), hot-
water extractable organic C (HWEOC), and bacterial community composition 
were important indicators that predicted SOC mineralization. Structural equal 
modeling indicated that MBC, SOC, and C-cycling enzymes had positive 
effects on SOC mineralization. Bacterial community composition regulated 
SOC mineralization via controlling microbial biomass production and C-cycling 
enzyme activities. Overall, our study provides insights into soil biotic and abiotic 
factors in association with SOC mineralization, and contributes to understanding 
the effect and mechanism of ecological restoration on SOC mineralization in a 
degraded grassland in an alpine region.
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Introduction

The alpine grasslands on the Qinghai-Tibetan Plateau, which 
cover roughly 40% of China’s grassland area, serve as an essential 
ecological barrier and carbon sink (Chen et al., 2022; Wang Y. et al., 
2022). However, due to human disturbances and climate changes, 
degradation of alpine grasslands is widespread and has accelerated 
in the past decades, resulting in a significant loss of biodiversity and 
soil C stocks (Bardgett et al., 2021). Ecological restoration is one of 
several actions that can ameliorate degraded and disturbed soils, 
with the goal of rebuilding, initiating, or accelerating recovery of 
disturbed ecosystems (Martin, 2017). Restoration activities can 
reverse soil degradation, mitigate climate change, and combat the 
loss of biodiversity and ecosystem services (Dong et al., 2020). It is 
known that the effect of ecological restoration on the soil C pool 
depends on the balance between C input from plants and C effluxes 
via microbial mineralization (Jackson et al., 2017; Dynarski et al., 
2020). Meanwhile, carbon dioxide (CO2) mitigation and soil fertility 
maintenance can both be achieved through reducing the process of 
SOC mineralization (Zhang B. et al., 2021; Zhang S. et al., 2021; 
Dong et al., 2022). By slowing down the rate of SOC mineralization 
and increasing SOC content, it is possible to reduce the release of 
CO2 into the atmosphere and maintain soil health. To date, our 
understanding of how ecological restoration affects SOC 
mineralization and its mechanism in alpine grasslands lags 
considerably behind that of SOC storage (Zhou et al., 2022). These 
knowledge gaps undermine our predictions of ecological restoration 
effects on soil C processes and constrain the improvement of 
restoration management practices to resist land degradation.

Soil physiochemical properties are essential factors affecting SOC 
mineralization (Zhao et al., 2008; Ahn et al., 2009). For instance, soil 
pH affects SOC mineralization by altering microbial communities and 
enzyme activities (Zhang et  al., 2022; Zhuang et  al., 2022). Soil 
nutrient availability, such as nitrogen and phosphorus, can also impact 
SOC mineralization by impacting microbial activities (Jing et al., 2017; 
Wei et al., 2020; Peixoto et al., 2021). For instance, when nitrogen or 
phosphorus is limiting, microbes may switch from using organic 
carbon to using other sources of carbon, reducing the rate of SOC 
mineralization. Meanwhile, the labile C fractions, such as microbial 
biomass carbon (MBC), easily oxidized carbon (EOC), and hot-water 
extractable carbon (HWEOC), serve as the main C sources for 
microorganisms that determine SOC mineralization (Rousk et al., 
2016). Therefore, understanding the variation in soil physiochemical 
properties and carbon fractions and their relations to SOC 
mineralization under ecological restoration could improve our ability 
to make accurate predictions.

Soil microbiota constitute a large part of the earth’s biodiversity 
and are involved in C sequestration, SOM decomposition, and 
nutrient cycling and availability (Liang et al., 2017; Banerjee et al., 
2018; Yang et  al., 2018; Crowther et  al., 2019; Shu et  al., 2022). 
Therefore, any changes in the diversity, composition, and potential 
functions of microbial communities may alter the direction and 
magnitude of SOC mineralization (Schimel and Schaeffer, 2012; 
Juarez et al., 2013; Tardy et al., 2015; Zhang et al., 2019; Ibrahim et al., 
2021). Microbial extracellular enzymes, especially C-cycling enzymes 
(e.g., β-1,4-glucosidase, β-d-cellobiosidase, peroxidase, polyphenol 
oxidase), play an essential role in the decomposition of SOC and the 
regulation of C fractions (Chen et al., 2018a; Yang et al., 2019; Chen 

J. et al., 2020). Ecological restoration may affect microbial community 
structure and enzyme activities through a direct effect of via regulating 
the quantity and quality of litter inputs, and through an indirect effect 
of modifying soil physiochemical properties (Deng et al., 2010; Raiesi 
and Salek-Gilani, 2018; Xu et al., 2021; Yang et al., 2022). Therefore, 
soils under different ecological restoration modes may differ in 
microbial community structure and enzyme activities and 
consequently the SOC mineralization. However, limited data are 
available regarding the comprehensive influences of soil 
physiochemical properties, microbial community composition, and 
enzyme activities on SOC mineralization.

Here, we explored how ecological restoration may influence SOC 
mineralization and its relation to soil physiochemical properties, labile 
carbon fractions, enzyme activities and bacterial communities in 
degraded grasslands on the Tibetan Plateau. The primary aims of this 
study were: (1) to explore changes in soil physiochemical properties, 
labile carbon fractions, bacterial communities, and enzyme activities 
after 14-year restoration treatments; (2) to determine the influence of 
ecological restoration on SOC mineralization; and (3) to identify the 
relative importance of biotic and abiotic factors in determining SOC 
mineralization under ecological restoration.

Materials and methods

Site description

The study area is located in the Restoration Demonstration region 
of a degraded grassland in Hongyuan County (33°1’ N and 102°37′ 
E), China, at the eastern margin of the Tibetan Plateau 
(Supplementary Figure S1). The average elevation of this region is over 
3,400 m. The mean annual precipitation in this region is 791.95 mm. 
The mean annual temperature is 1.1°C, and the mean temperatures 
are −10.3 and 10.9°C for the coldest and warmest months, respectively. 
The soil is classified as cambic arenosol (FAO Classification, 2006). 
The dominant vegetation species in the recovery area are mainly Salix 
cupularis, Carex peaeclara, Kobresia pygmaea, Artemisia wellbyi, and 
Heracleum souliei. Since 2007, the extremely degraded grassland at 
this site has undergone natural restoration with the dominant species 
being Cyperus stoloniferus; this was the control (CK) for the study. 
Two artificial restoration actions were started as well to restore the 
degraded grassland. The artificial restoration actions included: (1) 
planting shrubs with Salix cupularis alone (SA), and (2) planting 
shrubs with Salix cupularis plus mixed grasses (SG). The primary 
species in SA were Salix cupularis, Lancea tibetica, and Leymus 
secalinus. The primary species in SG were Salix cupularis, Euphrasia 
regelii subsp. Kangtienensis, Anaphalis lacteal, Peucedanum 
praeruptorum, Potentilla discolor, and Elymus nutans. At the time of 
our study, the natural and artificial restoration actions had been 
ongoing for 14 years.

Experimental design

In August 2021, soil samples were taken from three areas in an 
extremely degraded grassland; one that underwent natural restoration 
(CK), one that was planted with shrubs and Salix cupularis alone (SA), 
and one that was planted with shrubs and Salix cupularis plus grasses 
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(SG). Four independent plots were selected for each treatment, where 
four quadrats, each 1 m × 1 m were set up. The characteristics of the 
vegetation community were examined in the field before collecting 
soil samples (Supplementary Table S1). We randomly sampled 1 kg of 
soil from the 0–20 cm and 20–40 cm soil layers in each plot using a 
5-cm diameter soil auger. Then, we pooled and thoroughly mixed the 
samples to produce a composite soil sample. In total, 24 samples (3 
treatments × 4 replicates × 2 depths) were collected. After transporting 
these samples to the laboratory on ice, one-tenth of each soil sample 
was stored at −80°C for the soil bacterial community analysis. 
Two-tenths of each soil sample was stored at 4°C for testing soil 
microbial biomass carbon and enzyme activities. The remaining soil 
was air-dried and sieved for pH, soil organic carbon (SOC), and soil 
nutrients analysis. Moreover, a cutting ring with a capacity of 100 cm3 
was used to collect undisturbed soil before performing soil bulk 
density analysis.

Soil physicochemical characterization

Soil physicochemical characteristics were analyzed as previously 
described by Carter and Gregorich (2007). Soil pH was determined by 
a glass electrode with a soil-to-water ratio of 1:2.5 (weight/volume) 
(Mettler Toledo MP220, Mettler-Toledo, Switzerland). SOC content 
was analyzed using the K2Cr2O7 oxidation method. Soil total nitrogen 
(TN) content was measured using a flow injection autoanalyzer 
(AutoAnalyzer 3, Bran+ Luebbe, Germany). Soil total phosphorus 
(TP) content was analyzed calorimetrically using the H2SO4-HClO4 
method. Bulk density was examined by the cutting ring method, 
undisturbed soil samples were dried at 105°C to reach a 
constant weight.

Soil labile carbon fractions and C-cycling 
enzymes

Microbial biomass carbon (MBC) was measured by the 
chloroform fumigation-extraction method (Vance et  al., 1987). 
Hot-water extractable organic carbon (HWEOC) was determined 
using a TOC analyzer (Elementer Analysensysteme, Germany) (Hou 
et al., 2021). Easily oxidized carbon (EOC) was measured according 
to the 333 mol L−1 KMnO4 method as described by Dong et  al. 
(2022). Additionally, we  analyzed the potential activities of four 
C-cycling enzymes, including β-glucosidase (BG), β-d-cellubiosidase 
(CBH), peroxidase (POD), and polyphenol oxidase (PPO). All 
enzymes were measured using commercial enzyme kits following 
the manufacturer’s protocol (Solarbio Science and Technology Co., 
Ltd., Beijing, China).

Soil C mineralization

Cumulative SOC mineralization was determined according to the 
method described by Hou et al. (2021). First, two 25 ml glass beakers 
filled with 10 g fresh soil and 15 ml 1 M NaOH solution, respectively, 
were put side by side in an airtight plastic 250 ml jar. Deionized water 
was spread on the bottom of the jar and surrounded the breakers to 
keep constant soil moisture. Then, these 250 ml jars were placed in a 

thermostatic incubator at 25°C for 28 days. During the incubation, the 
CO2 gas generated was absorbed in the NaOH solution, and the 
remaining NaOH was measured by titrating with 0.1 M HCl to 
quantify SOC mineralization.

DNA extraction and Illumina MiSeq 
sequencing

For each sample, total DNA was extracted from 0.5 g soil using the 
PowerSoil® DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, 
CA, United States) following the manufacturer’s instructions. The 
concentration and quality of DNA were measured by Nanodrop 2000 
(Thermo Scientific, Wilmington, DE, United  States). Before 
performing PCR amplification, the DNA sample was diluted to 10 ng/
μL. The 16S rRNA V4–V5 regions were sequenced for bacterial 
communities with the primer pair 515F (5′-GTGCCAGCMG 
CCGCGGTAA-3′) and 909R (5′-CCCCGYCAATTCMTTTRAGT-3′). 
Sequencing was conducted on an Illumina MiSeq2500 platform by 
Novogene (Beijing, China). The raw sequence data of the 16S rRNA 
were analyzed using the Quantitative Insights into Microbial Ecology 
(QIIME) pipeline. Using a dissimilarity level of 3%, the unique 
sequence set clustered operational taxonomic units (OTUs) into the 
UPARSE pipeline.

Functional analysis of the bacterial 
community using PICRUSt2

Changes in functional genes involved in C cycling (including C 
degradation and C fixation) were predicted by phylogenetic 
investigation of bacterial communities by reconstruction of 
unobserved states 2 (PICRUSt2) according to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database and 16S rRNA bacterial 
community data (Li et al., 2022). The KEGG orthologues of each gene 
generated by PICRUSt2 were obtained from the table of absolute 
abundance for the KEGG pathway, which then was converted into the 
relative abundance of the corresponding genes.

Calculation of indices

Stocks of SOC were calculated using Equation 1 (Hu et al., 2018):

 

SOC stock Mg ha SOC g kg bulk density

g cm soil depth

− −

−

( ) = ( )×
( )×

1 1

3 ccm( ) / 10
 

(1)

where SOC stock indicates the soil organic carbon stock, and SOC 
indicates the soil organic carbon content.

The following Equation 2 was adopted to calculate carbon 
mineralization efficiency (Dong et al., 2022):

 

CME mg CO C g SOC Cumulative SOC

mineralization mg CO C kg

2
1

2
1

−( ) =
−(

−

− )) ( )−/ SOC g kg 1
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where CME indicates the carbon mineralization efficiency and 
SOC indicates the soil organic carbon content.

Statistical analyses

Statistical analyses were conducted using the R statistical software 
(R version 4.0.2, R Core Team, Vienna, Austria). Unless otherwise 
stated, statistical significance was set at p < 0.05. Difference in soil 
physiochemical properties, labile C fractions, enzyme activity, and 
SOC mineralization between different treatments at two different soil 
depths were tested using a two-way analysis of variance (ANOVA). 
When two-way ANOVA revealed differences, a Tukey’s honestly 
significant difference (Tukey HSD) test was used to compare the 
average value of variables among the different treatments. Linear 
regression analysis was used to evaluate the relationships between soil 
physiochemical properties, labile C fractions, the diversity and 
composition of bacterial communities, enzyme activities and SOC 
mineralization. Principal coordinates analysis (PCoA) was used to 
determine significant differences in microbial communities for the 
various restoration modes and soil depths. Redundancy analysis 
(RDA) was performed with a Monte Carlo permutation test (999 
permutation) to identify soil properties that influence the bacterial 
community structure. The Mantel test was performed to identify soil 
variables that influence the microbial community structure. 
We  performed random forest analysis to evaluate important 
predictors of SOC mineralization among soil depth, physiochemical 
properties, labile C fractions, enzyme activities, bacterial Shannon 
index, bacterial Chao1 index, and bacterial composition. Bacterial 
community composition was estimated based on Bray–Curtis 
distances between samples. Random forest analysis was performed 
using the “randomForest” package, with the significance of the model 
and each predictor was evaluated using the “rfPermute” packages. 
Furthermore, we constructed structural equation modeling (SEM) to 
evaluate the direct and indirect effect of various variables on SOC 
mineralization under ecological restoration. Bacterial composition 
was represented by scaling 1, the first component of principal 
coordinates analysis. The goodness of fit of the SEM was evaluated 
using the Chi-square test, the whole-model p value, Akaike 
information criterion (AIC), and the goodness-of -fit (GFI) statistic. 
The SEM was conducted using AMOS software (IBM SPSS Amos 
24.0.0).

Results

Soil physiochemical properties and labile C 
fractions

The two-way ANOVA demonstrated that soil pH significantly 
differed in restoration mode (F = 67.58, p < 0.001), soil depth (F = 6.36, 
p < 0.05), and by the interaction of restoration mode and soil depth 
(F = 4.00, p < 0.05) (Supplementary Table S2). Compared with CK, SA 
significantly decreased soil pH at the 0–20 and 20–40 cm soil depths 
(p < 0.05). Restoration mode had a significant effect on SOC (F = 18.07, 
p  < 0.001), TN (F  = 91.85, p  < 0.001), and SOC stock (F  = 17.97, 
p < 0.001), but had no significant effect on soil BD and TP. On average, 
the SOC content, TN content and SOC stock followed the order of 

SG > SA > CK (Table 1). Restoration mode had a significant effect on 
MBC (F  = 6.94, p  < 0.01), EOC (F  = 60.20, p  < 0.001), HWEOC 
(F = 93.34, p < 0.001), and HWEOC/SOC (F = 8.43, p < 0.001). Soil 
depth had a significant effect on HWOEC (F  = 6.20, p  < 0.05). 
Moreover, MBC (F = 4.26, p < 0.05) and EOC (F = 4.05, p < 0.05) 
significantly varied with the interaction of restoration mode and soil 
depth (Supplementary Table S2 and Figure 1).

Bacterial community diversity and 
composition

Restoration mode had a significant effect on the Shannon index 
for bacteria in 0–20 cm soil layer (p < 0.05). The highest average 
value of the Shannon index at the 0–20 cm and 20–40 cm soil 
depths were observed in SG (Figure  2A). The Chao1 index for 
bacteria varied significantly with restoration mode (p  < 0.05). 
Compared with CK, modes SA and SG significantly increased 
theChao1 index in the 0–20 cm and 20–40 cm soil depths (p < 0.05) 
(Figure  2B). SOC, TN, HWEOC, and EOC were positively 
correlated with the Chao1 and Shannon indices (p < 0.05). MBC 
was positively correlated with the Chao1 index (p  < 0.05) 
(Supplementary Figure S2).

The most abundant bacterial phyla were Proteobacteria, 
Actinobacteria, Acidobacteria, and Chloroflexi. Compared with CK, 
modes SA and SG increased the relative abundance of Proteobacteria, 
Acidobacteria, and Bacteroidetes, but decreased the relative abundance 
of Actinobacteria, Chloroflexi, and Thaumarchaeota at the 0–20 cm and 
20–40 cm soil depths (Figure 3). The PCoA analyses showed that the 
soil bacterial community in CK was separated from the soil bacterial 
community of soils in SA and SG (Figure 4A). RDA was used to 
identify the major soil properties controlling the soil bacterial 

TABLE 1 Effects of different restoration modes on soil physiochemical 
properties in different soil depths.

Soil 
depth

Variable CK SA SG

0–20 cm

pH 6.81 ± 0.08 a 6.27 ± 0.18 b 6.68 ± 0.04 a

BD (g cm−3) 1.42 ± 0.04 a 1.35 ± 0.05 a 1.41 ± 0.07 a

TN (g kg−1) 0.11 ± 0.02 b 0.17 ± 0.02 b 0.39 ± 0.08 a

TP (g kg−1) 0.16 ± 0.00 a 0.17 ± 0.01 a 0.18 ± 0.01 a

SOC (g kg−1) 2.05 ± 0.78 b 3.39 ± 1.26 ab 5.39 ± 1.33 a

SOC stock 

(Mg ha−1)
5.82 ± 2.29 b 9.15 ± 3.56 ab 15.01 ± 2.91 a

20–40 cm

pH 6.85 ± 0.03 a 5.95 ± 0.18 c 6.57 ± 0.15 b

BD (g cm−3) 1.39 ± 0.13 a 1.38 ± 0.06 a 1.39 ± 0.09 a

TN (g kg−1) 0.12 ± 0.02 b 0.18 ± 0.05 b 0.36 ± 0.03 a

TP (g kg−1) 0.17 ± 0.01 a 0.17 ± 0.00 a 0.17 ± 0.00 a

SOC (g kg−1) 2.30 ± 0.35 a 3.05 ± 0.27 a 4.31 ± 0.82 a

SOC stock 

(Mg ha−1)
6.46 ± 1.38 a 8.40 ± 0.87 a 12.03 ± 2.88 a

Values are represented as the mean followed by a standard deviation in parentheses (n = 3). 
Different lowercase letters indicate a significant different (p < 0.05) among different modes, 
based on the analysis of variance, and Tukey’s honest significance difference (HSD) test. BD, 
bulk density, SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; SOC stock, 
soil organic carbon stock.
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community structure. The first two components explained 49.5% of 
the total variability for bacterial community structure. Soil pH, TN, 
EOC, and HWEOC were the important soil properties controlling the 
bacterial community structure (Supplementary Figure S3). The 
Mantel test indicated that soil pH, TN, EOC, HWEOC, and the ratio 
of HWEOC to SOC were the critical soil parameters affecting the 
bacterial community composition (Figure  4B). The PICRUST2 
analysis indicated that ecological restoration significantly improved 
the role of microbes in C-fixation and decomposition. The relative 
abundance of C-fixation genes (rbcL, meh, mct, ppc, IDH1, and frdA) 
and C-degradation genes (csxA, glgX, malQ, and PYG) were higher in 
SA and SG than in CK (Figure 5).

C-cycling enzyme activities

Restoration mode had a significant effect on the activities of BG 
(F  = 10.37, p  < 0.01) and CBH (F  = 4.88, p  < 0.05), but had no 
significant effect on the activities of PPO and POD 

(Supplementary Table S4). Compared with CK, modes SA and SG 
increased the activities of BG and CBH in the 0–20 and 20–40 cm soil 
depths (Figure 6A). Modes SA and SG decreased the ratio of ligninase 
to cellulase by 40.6 and 66.0% in the 0–20 cm soil depth, and by 29.3 
and 58.9% in 20–40 cm soil depth, respectively, relative to CK 
(Figure 6B). Both BG and CBH were positively correlated with TN, 
MBC, and HWEOC (p < 0.05) (Supplementary Figure S4). The ratio 
of ligninase to cellulase was negatively associated with SOC content 
and SOC stocks (p < 0.05) (Supplementary Figure S5).

SOC mineralization

Restoration mode had a significant effect on cumulative C 
mineralization (F  = 59.22, p  < 0.001) (Supplementary Table S5). 
Compared with CK, the cumulative C mineralization at the 0–20 and 
20–40 cm soil depth increased by 15.7 and 76.8% in the SA mode, and 
by 94.0 and 83.1% in the SG mode, respectively. The CME in the SG 
mode was lower than in CK (Figure 7). Soil depth had a significant 

A B

C D

FIGURE 1

Effects of different restoration modes on soil labile carbon fractions. (A) Microbial biomass carbon (MBC), (B) easily oxidized carbon (EOC), (C) hot-
water extractable organic carbon (HWEOC), (D) the ratio of hot-water extractable organic carbon to soil organic carbon (HWEOC/SOC). Error bars 
indicate standard deviation; Different lowercase letters indicate significant differences at p < 0.05 among treatments, based on the Tukey’s honest 
significance difference (HSD) test.
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effect on cumulative C mineralization (F = 166.07, p < 0.001) and CME 
(F = 15.78, p < 0.001). The cumulative C mineralization significantly 

varied with the interaction of restoration mode and soil depth 
(F = 20.06, p < 0.001) (Supplementary Table S5).

A B

FIGURE 2

Effects of different restoration modes on bacterial alpha diversity. (A) Bacterial Shannon index and (B) bacterial Chao1 index. Error bars indicate 
standard deviation; different lowercase letters indicate significant differences at p < 0.05 among treatments, based on the Tukey’s honest significance 
difference (HSD) test.

A

B

FIGURE 3

Taxonomic distribution of bacterial taxa responsible for community different among different restoration modes at 0–20 cm (A) and 20–40 cm (B) soil 
depth.
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Contribution of abiotic and biotic factors 
to SOC mineralization

Random forest modeling indicated that the top six most important 
factors were soil depth, MBC, HWEOC, bacterial composition, and SOC 
(Figure 8A). SEM analysis showed that both SOC, MBC and C-cycling 
enzymes had a positive effect on the cumulative C mineralization, but 
soil depth had a negative effect on cumulative C mineralization (p < 0.05). 
Soil pH and SOC had a significant effect on bacterial composition 
(p < 0.05). Bacterial community composition had a significant positive 
effect on MBC and C-cycling enzymes (p < 0.05) (Figure 8B).

Discussion

Effects of ecological restoration on soil 
physiochemical characteristics and C 
fractions

Ecological restoration plays a critical role in maintaining soil 
quality via increasing nutrient contents, improving soil physical 
properties (e.g., aggregate stability and water holding capacity), and 
promoting soil C sequestration. In this study, restoration modes SA 
and SG decreased soil pH relative to CK. For example, the SA mode 
had the lowest pH value at the 0–20 cm soil depth. This is 
presumably due to restoration-induced changes in plant residue 
decomposition and root processes (Hong et al., 2018). Meanwhile, 
restoration mode had a significant effect on SOC stocks, and the 
highest value of SOC stock was observed in the SG mode. This 
result has two explanations. First, compared with CK and SA, 
higher plant richness in the SG mode increased plant productivity 
through niche complementary effects, and consequently, improved 
plant C inputs into the soil and enhanced SOC accumulation (Chen 
S. et al., 2018; Chen X. et al., 2019; Li et al., 2019; Jia et al., 2021). 
Second, SG enhanced soil N and P content more effectively, which 
played an important role in SOC accumulation by affecting primary 
productivity and SOC decomposition (Averill and Waring, 2018; 
Chen et al., 2018a,bChen S. et al., 2018; Wang et al., 2020; Ding 
et  al., 2021). Moreover, we  found that ecological restoration 
significantly increased soil TN, but had no significant effect on TP, 
in line with a recent meta-analysis (Tian et al., 2021). This could 
be  mainly because, unlike nitrogen, the external source of 
phosphorus is limited. For instance, diazotrophic microbes can 
enhance soil N content because of their immense N-fixation ability 
(Hsu and Buckley, 2009; Xu et  al., 2019). Furthermore, SOC 
mineralization can produce soil nitrogen, hence, a high SOC 
increases the TN (Tan et al., 2021).

A B

FIGURE 4

(A) Principial coordinates analysis (PCoA) of bacterial community composition based on Bray–Curtis distances. (B) Mantel test analysis of bacterial 
community changes with soil properties.

FIGURE 5

Effects of ecological restoration on the relative abundance of 
functional genes involved in C-cycling according to PICRUST2.
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It is generally accepted that MBC, EOC, and HWEOC are the most 
labile fractions of SOC, which is easily decomposed and mineralized 
by soil microorganisms (Liang et al., 2021; Xiao et al., 2022). Here, 
we found that ecological restoration positively affected MBC, EOC, 
and HWEOC content. Meanwhile, the variation trend of these labile C 
fractions under ecological restoration was basically similar to that of 
SOC with a good positive correlation, suggesting that the concentration 
of these labile C fractions was mainly determined by the plant carbon 
input. Recently, the ratio of HWEOC to SOC (HWEOC/SOC) was 
chosen as a chemical index to describe SOC stability (Plante et al., 
2011; Hou et  al., 2021). The higher HWEOC/SOC, the faster the 
nutrient cycling rate, which is not conducive to the accumulation of 

SOC, so the chemical stability is worse and SOC decomposes more 
easily (Wang et al., 2021). Our result indicated that HWEOC/SOC in 
the SG mode was higher than in the CK and SA modes, suggesting that 
SOC in SG easily decomposed and transformed.

Effects of ecological restoration on the 
bacterial community and its potential 
function

Our results revealed that bacterial alpha diversity in SA and SG 
modes was higher than in CK. Furthermore, bacterial alpha diversity 

A B

FIGURE 6

Effects of different restoration modes on soil carbon-cycling enzyme activities (A) and the ratio of ligninase to cellulase (B). CK, extremely degraded 
grassland. SA, planting shrub with Salix cupularis alone (SA). SG, planting shrub with Salix cupularis plus mixed grasses. Error bars indicate standard 
deviation; different lowercase letters indicate significant differences at p < 0.05 among treatments, based on the Tukey’s honest significance difference 
(HSD) test.

A B

FIGURE 7

Effects of ecological restoration on (A) the cumulative carbon mineralization and (B) carbon mineralization efficiency (CME). Error bars indicate 
standard deviation; different lowercase letters indicate significant differences at p < 0.05 among treatments, based on the Tukey’s honest significance 
difference (HSD) test.
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was positively correlated with SOC, TN, TP, HWEOC, and EOC. The 
evidence suggests that higher labile C and available nutrients in the 
SA and SG modes can create a more suitable microenvironment for 
bacterial communities to survive, and thus enhance bacterial alpha 
diversity. In addition, higher plant richness in the SA and SG modes 
may provide the bacteria with greater accessibility to a variety of root 
exudates, which results in more niches to support higher 
bacterial diversity.

According to the oligotrophic-copiotrophic theory, 
Proteobacteria and Bacteroidetes are generally classified as 
copiotrophic microbes, whereas Choroflexi is classified as 
oligotrophic microbes (Ho et al., 2017; Yao et al., 2017). Our results 
indicated that modes SA and SG increased the relative abundance of 
Proteobacteria and Bacteroidetes but decreased the relative 
abundance of Choroflexi. Correlation analysis indicated that TN, TP, 
HWEOC, and MBC were positively correlated with Proteobacteria 
and Bacteroidetes but negatively correlated with Choroflexi, 
suggesting that copiotrophic taxa gain more advantages in 
competition due to ecological restoration-induced increasing labile 
C pools and to nutrient availability. The relative abundance of 
Actinobacteria in SA and SG modes was lower than in 
CK. Meanwhile, we found a significant positive relationship between 
pH and Actinobacteria under ecological restoration 
(Supplementary Figure S2). This indicated that the restoration-
mediated decrease of pH may decrease their ability to compete with 
other bacteria taxa (Fu et  al., 2022). The negative relationship 
between Actinobacteria and HWOEC and EOC under ecological 
restoration may be  due to some taxa of Actinobacteria being 
oligotrophic groups (Zhong et al., 2019). Additionally, SA and SG 
increased the relative abundance of Acidobacteria relative to 

CK. Recent studies have found that Acidobacteria is a keystone taxon 
in soil and is involved in the decomposition of soil organic matter 
(Costa et al., 2020), nitrogen cycling, and plant growth promotion 
(Eichorst et al., 2018; Kalam et al., 2020). A positive relationship was 
observed between TN and Acidobacteria (Supplementary Figure S2), 
indicating that the changes in Acidobacteria may be tightly linked to 
soil nitrogen content.

In our study, the Mantel test revealed that soil pH was a major 
driver of bacterial community composition, which was in line with 
previous studies on regional studies and large scales (Maestre et al., 
2015; Cheng et al., 2020; Hermans et al., 2020). This may be due to the 
relatively narrow optimal pH for bacterial growth. Many previous 
studies have demonstrated the important role of soil labile C fractions 
in shaping soil bacterial communities (Delgado-Baquerizo et al., 2016; 
Ren et  al., 2018; Ramírez et  al., 2020). Fundamentally, ecological 
restoration considerably affected the amount and quality of soil C 
fractions, which in turn altered microbial community composition 
(Hu et  al., 2022). Our results showed that bacterial community 
composition was more sensitive to labile C fractions (particularly 
EOC and HWEOC) than SOC. This suggested that soil labile C 
fractions could be  a critical predictor for bacterial community 
composition changes in ecological restoration.

Recent evidence has indicated that ecological restoration provides 
favorable environments for soil carbon functional microbes and 
stimulates soil C turnover (Guo et al., 2018; Sun and Badgley, 2019; 
Hu et al., 2022; Li et al., 2022). In our study, the relative abundance of 
C-fixation genes (rbcL, meh, mct, ppc, IDH1, and frdA) in SA and SG 
were higher than in CK, suggesting that soil microbes in SA and SG 
have a strong ability to fix carbon and thus increase the accumulation 
of SOC. Meanwhile, the relative abundance of csxA, glgX, malQ, and 

A B

FIGURE 8

(A) Random Forest regression model shows the main factors of SOC mineralization. MSE, is the mean square error. *p < 0.05, **p < 0.01 on the bar 
indicated that the associated factor had a significant effect on SOC mineralization. (B) Structural equal model (SEM) analysis of the direct and indirect 
effects on the response of SOC mineralization to ecological restoration. Red and blue solid arrows indicate positive and negative relationships, 
respectively. Black arrows represent tested, but not significant paths. The arrow width is proportional to the strength of the relationship. Goodness-of-
fit statistics for the model are shown below the model. *p < 0.05, **p < 0.01.
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PYG genes increased dramatically under SA and SG. This indicated 
that ecological restoration also improved the microbial decomposition 
of C sources, and consequently increased CO2 production.

Effects of ecological restoration on 
C-cycling enzyme activities

Typically, cellulases, β-1,4-glucosidase (BG), and β-d-
cellobiohydrolase (CBH), are related to the degradation of labile C 
pools, while ligninases, polyphenol oxidase (PPO) and peroxidase 
(POD) are associated with degradation of recalcitrant C pools (Zhang 
B. et al., 2021; Zhang S. et al., 2021). Our results showed that ecological 
restoration had a stronger positive effect on cellulase activity rather 
than ligninase activity. On the one hand, increasing plant richness 
under ecological restoration may exhibit stronger niche partition and 
consequently improve primary productivity as well as soil labile and 
recalcitrant C pools (Mahaut et al., 2019; Michalet et al., 2021). In this 
situation, microbes may preferentially invest energy in cellulase 
production to acquire labile resources over ligninase production since 
cellulase synthesis requires less energy than ligninase synthesis (Wang 
et al., 2012; Chen et al., 2018a,b; Chen S. et al., 2018). Our results 
found positive relationships between labile C fractions and cellulase 
activity (Supplementary Figure S4), indicating that ecological 
restoration could enhance cellulase activity via increasing labile C 
substrates. On the other hand, ecological restoration-induced changes 
in microbial biomass and community composition may also impact 
enzyme activities (Wu et al., 2021). Positive relationships between 
cellulase activities, MBC, and SOC (Supplementary Figure S4), 
indicated that faster microbial degradation and transformation of 
labile C substrates mediate the accumulation of SOC in SA and SG 
modes. Moreover, ecological restoration enhanced the relative 
abundance of copiotrophic microbes (Zeng et al., 2017; Yao et al., 
2018; Wang S. et al., 2022; Wang Y. et al., 2022). These microbes had a 
higher investment in extracellular enzymes to decompose the labile C 
substrates (Ramin and Allison, 2019). Our results indicated that the 
cellulase activity was positively correlated to the relative abundance of 
copiotrophic taxa (Proteobacteria and Bacteroidetes) 
(Supplementary Figure S2), which provided evidence that ecological 
restoration-induced changes in bacterial community composition 
could affect the response of cellulase activity. Notably, we observed 
that the ratio of ligninase to cellulase was negatively correlated with 
SOC content and stocks under ecological restoration 
(Supplementary Figure S5). This finding indicated that the decreased 
ratio of ligninase to cellulase under ecological restoration could 
be benefitical to the accumulation of SOC under ecological restoration, 
which was consistent with a recent meta-analysis (Wu et al., 2022).

Effects and mechanisms of ecological 
restoration on SOC mineralization

Determining the underlying mechanisms controlling SOC 
mineralization under ecological restoration is challenging since SOC 
mineralization is regulated by complex factors, including soil 
physiochemical properties, SOC quality and availability, enzyme 
activities and soil microbiota. Here, we  observed that ecological 
restoration had a significant effect on the cumulative C mineralization 

and C mineralization efficiency. The cumulative C mineralization in 
SA and SG was higher than in CK. The fundamental explanation for 
the increased C release is that SOC stock was elevated by ecological 
restoration, which is supported by the substantial positive relationship 
between cumulative C mineralization and SOC content and stocks. 
Meanwhile, structural equal modeling revealed that SOC was the 
main factor driving C mineralization under ecological restoration. In 
addition to SOC stock, soil N and P content also mediate SOC 
mineralization by altering microbial activity and community 
composition (Meyer et al., 2018), which is supported by the positive 
association between TN and TP and cumulative SOC mineralization.

This study indicated that MBC and HWEOC could better predict 
the variation in the cumulative C mineralization than SOC. Indeed, 
higher labile C contents can boost microbial activity and thus 
stimulate soil C mineralization (Dong et al., 2022). Our SEM showed 
that MBC had a direct and positive effect on C mineralization. MBC 
is the C content of live and dead microorganisms, which has a faster 
turnover and is often used to define soil microbial biomass (Chen 
C. et al., 2019; Chen X. et al., 2019). When HWEOC is abundant, 
microbial biomass becomes a major factor limiting C mineralization, 
thereby playing a critical role in C mineralization (Dong et al., 2022).

Microbial enzymes are “sensors” of microbial function and can 
provide useful links between microbes and C cycling (Ashraf et al., 
2021; Hu et  al., 2023). In our study, we  observed that BG was 
significantly and positively associated with cumulative C 
mineralization, which is in line with previous studies (Zhu et al., 2014; 
Zhang B. et  al., 2021; Zhang S. et  al., 2021). SEM results further 
indicated that C-cycling enzyme activities had a direct and positive 
effect on C mineralization. This suggested a limitation of enzyme 
activities on substrate conversion and consumption in degraded 
grassland soils.

The diversity and composition of the soil microbial community 
play essential roles in regulating SOC decomposition in terrestrial 
ecosystems (Qin et al., 2021; Chen et al., 2023). In this study, the 
Shannon index for bacteria was positively correlated to cumulative C 
mineralization. In general, soils with higher bacterial diversity may 
boost the levels of soil microbial functions due to the high functional 
redundancy of the soil bacterial community (Philippot et al., 2013; 
Louca et al., 2018; Maron et al., 2018), corroborating the positive 
correlations between bacterial diversity and enzyme activities, MBC, 
TN, and TP. Meanwhile, higher bacterial diversity may also sustain 
plant richness and plant C inputs (van der Heijden et al., 2008; Chen 
J. et  al., 2020; Chen Q. et  al., 2020), and finally promote SOC 
mineralization. Random forest analysis revealed that bacterial 
community composition played a critical role in controlling SOC 
mineralization. SEM results showed that bacterial community 
composition had no significant effect on SOC mineralization but had 
a significant effect on MBC and C-cycling enzyme activities. This 
highlighted that bacterial community composition was a crucial 
underlying factor controlling SOC mineralization via mediating 
microbial production and microbial functionality.

Additionally, soil depth was a key factor that predicted the 
variation in SOC mineralization. The interpretation was that the SOC 
pool, labile C content, enzyme activities, and the diversity and 
activities of soil microorganisms decreased with increasing soil depth, 
resulting in a decreased SOC mineralization rate (Qin et al., 2021). 
Overall, our findings suggested that soil physiochemical 
characteristics, labile C fractions, and the diversity and composition 
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and function of the bacterial community jointly determined the 
response of SOC mineralization to ecological restoration.

Effects of ecological restoration on SOC 
mineralization efficiency

Soil organic carbon mineralization efficiency is crucial in 
regulating the C cycle and determining the magnitude of soil CO2 
emissions, thus playing an important role in mitigating climate 
change. A low SOC mineralization efficiency can result in more C 
accumulated in the soil, thereby benefiting soil fertility and plant 
growth. In this study, we found that ecological restoration significantly 
decreased the SOC mineralization efficiency. Ecological restoration 
increased large soil aggregates to make inner SOC physically stable 
and protect it from microbial decomposition. In addition, ecological 
restoration can change soil physiochemical properties (e.g., pH and 
texture), which may affect the compositions and activities of soil 
microbial communities, thereby impacting SOC mineralization 
efficiency (Dong et al., 2022).

Conclusion

Ecological restoration had a positive effect on SOC content and 
stocks, TN, the contents of labile C fractions, cellulase activity, and 
microbial diversity, whereas decreased soil pH and the ratio of 
ligninase to cellulase. Soil pH, TN, EOC, and HWOEC were major 
factors that determining bacterial community composition. Ecological 
restoration increased the SOC mineralization, but decreased the SOC 
mineralization efficiency. SOC, MBC and C-cycling enzyme activities 
had a positive effect on SOC mineralization. Bacterial community 
composition can regulate SOC mineralization via boosting microbial 
biomass and C-cycling enzyme activities. Our results indicate that 
shrub with Salix cupularis plus grasses had a better SOC accumulation, 
microbial diversity and functions, which was an optimum mode for 
restoring alpine degraded grassland.
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