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The availability of combined antiretroviral therapy (cART) has revolutionized the 
course of HIV infection, suppressing HIV viremia, restoring the immune system, and 
improving the quality of life of HIV infected patients. However, the emergence of 
drug resistant and multidrug resistant strains remains an important contributor to 
cART failure, associated with a higher risk of HIV-disease progression and mortality. 
According to the latest WHO HIV Drug Resistance Report, the prevalence of acquired 
and transmitted HIV drug resistance in ART naive individuals has exponentially 
increased in the recent years, being an important obstacle in ending HIV-1 epidemic 
as a public health threat by 2030. The prevalence of three and four-class resistance 
is estimated to range from 5 to 10% in Europe and less than 3% in North America. 
The new drug development strategies are focused on improved safety and resistance 
profile within the existing antiretroviral classes, discovery of drugs with novel 
mechanisms of action (e.g., attachment/post-attachment inhibitors, capsid inhibitors, 
maturation inhibitors, nucleoside reverse transcriptase translocation inhibitors), 
combination therapies with improved adherence, and treatment simplification with 
infrequent dosing. This review highlight the current progress in the management of 
salvage therapy for patients with multidrug-resistant HIV-1 infection, discussing the 
recently approved and under development antiretroviral agents, as well as the new 
drug targets that are providing a new avenue for the development of therapeutic 
interventions in HIV infection.
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Introduction

In 2021, 38.4 million people were living with HIV infections and 1.5 million people became 
newly infected with HIV according to the recent update from The Joint United Nations Programme 
on HIV/AIDS.1 The availability of combined antiretroviral therapy (cART) has revolutionized the 
course of HIV infection, suppressing HIV viremia, restoring the immune system, and improving 
the quality of life of HIV infected patients (Samji et al., 2013). Current HIV treatment includes five 
different classes of antiretrovirals targeting multiple steps of the HIV life cycle (Figure 1): entry 
inhibitors that block (1) the attachment of HIV envelope glycoprotein gp120 to CCR5 co-receptors 
(maraviroc) or (2) the cell fusion mediated by HIV gp41 (enfuvirtide), (3) nucleoside reverse 
transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) 

1 https://www.unaids.org/sites/default/files/media_asset/JC3032_AIDS_Data_book_2021_En.pdf
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that block the reverse transcription of viral RNA to cDNA, (4) integrase 
strand transfer inhibitors (INSTIs) that inhibit the integration of 
proviral DNA into host genome, and (5) protease inhibitors (PIs) that 
inhibit the protease-mediated cleavage of gag and gag-pol precursors, 
resulting in the production of non-infectious virus particles (De Clercq 
and Li, 2016). However, the emergence of drug resistant and multidrug 
resistant strains remains an important contributor to cART failure, 
associated with a higher risk of HIV-disease progression and mortality 
(Galli et al., 2020). Cross-resistance between drugs within the same 
class can occur and affects all major classes of antiretroviral drugs 
(Puertas et  al., 2020). According to the latest WHO HIV Drug 
Resistance Report, the prevalence of acquired and transmitted HIV 
drug resistance in ART naive individuals has exponentially increased 
in the recent years, being an important obstacle in ending HIV-1 
epidemic as a public health threat by 2030.2 The report indicates that 
10% of adults starting HIV treatment have resistance to non-nucleoside 
reverse transcriptase inhibitors (NNRTIs) and people with previous 
exposure to antiretroviral drugs are three times more likely to present 
resistance to the NNRTI drug class. The prevalence of three and four-
class drug-resistant viruses is estimated to be 5 to 10% in different 

2 https://www.who.int/publications/i/item/9789240038608

cohorts of antiretroviral-experienced patients from Europe and less 
than 3% in North America (Judd et al., 2017; Galli et al., 2020; Puertas 
et al., 2020; Lombardi et al., 2021). Global efforts are required to design 
effective strategies to address HIV drug resistance: routine viral load 
monitoring, improving adherence to treatment, conducting drug 
resistance genotyping, regimen switch if indicated and selection of the 
most effective antiretroviral drugs combinations to achieve long-term 
and successful treatment outcomes. Two or three fully active agents are 
recommended to construct a new regimen for highly treatment-
experienced patients with multidrug-resistant virus.3 Therefore, the 
development of new drugs is focused on (a) improved safety and 
resistance profile within the existing antiretroviral classes, (b) 
combination therapies with improved adherence, (c) treatment 
simplification with infrequent dosing, using long-acting agents to 
overcome the adherence issues and prevent the development of drug 
resistance (Overton et al., 2020; Flexner et al., 2021) and (d) discovery 
of drugs with novel mechanisms of action (e.g., attachment/post-
attachment inhibitors, capsid inhibitors, maturation inhibitors, 
nucleoside reverse transcriptase translocation inhibitors).

3 https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/adult-

adolescent-arv/guidelines-adult-adolescent-arv.pdf

FIGURE 1

Antiretroviral agents. In dark-the conventional ART used in combinations: entry inhibitors, reverstranscription inhibitors (NRTI-nucleoside analogs 
reverstranscriptase inhibitors and NNRTI-non-nucleoside reverstranscriptase inhibitors), INSTI-integrase inhibitors, PI-protease inhibitors. In light color-
newly approved antiretrovirals-fostemsavir (CD4 attachement inhibitor), ibalizumab (mAb gp120 post attachment inhibitor), lenacapavir (capsid inhibitor) 
and antiretrovirals in advanced clinical trials: leronlimab (mAb CCR5 antagonist), islatravir (NNRTTI-nucleoside reverstranscriptase translocation inhibitor) 
and maturation inhibitors. Created with BioRender.com, with a license to publish.
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This review highlight the current progress in the management of 
salvage therapy for patients with multidrug-resistant HIV-1 infection, 
discussing antiretroviral agents that are recently approved and those 
under development, as well as the new drug targets providing a different 
avenue for the development of therapeutic interventions in 
HIV infection.

Recently approved and in clinical 
development antiretroviral agents for 
the treatment of drug resistant HIV-1

Novel types of antiretrovirals with new mechanisms of action have 
been developed in the recent years, offering additional therapeutic 
options for patients with multiclass drug-resistant HIV infection 
(Figure 1).

Fostemsavir-CD4 attachment inhibitor

Fostemsavir (FTR) is the first FDA-approved attachment inhibitor 
indicated for heavily treated adults with multidrug-resistant HIV-1 
(Gulick, 2018). FTR is a prodrug of the active molecule temsavir, which 
inhibits the HIV-1 gp 120 conformational changes needed for CD4 
attachment, preventing viral entry into susceptible cells (Cahn et al., 
2018). The efficacy and safety of fostemsavir has been evaluated in a 
partially randomized, double-blind, placebo-controlled clinical trial 
(BRIGHTE), which enrolled 371 highly treatment-experienced patients 
who have failed their current regimen (Kozal et al., 2020; Lataillade 
et al., 2020). FTR showed sustained rates of virologic suppression over 
the 96 weeks of clinical trial: the proportion of participants who achieved 
undetectable HIV viral load was 53% at week 24, 54% at week 48, and 
60% at week 96 and CD4+ T-cell recovery was recorded even in the most 
immunocompromised patients (participants with less than 20 cells/mm3 
at baseline had a mean CD4+ T-cell increase of 240 cells/mm3 at week 
96) (Ackerman et al., 2021).

The most commonly reported adverse effects for FTR included 
nausea, vomiting, diarrhea, and headache. Temsavir is partly metabolized 
by CYP3A4 enzyme, and it is contraindicated with any strong CYP3A4 
inducers (carbamazepine, rifampin) (Hiryak and Koren, 2021).

Resistance
A study published in 2020 analyzed HIV-1 env gp120 sequences 

from both ART-naïve and ART-treated patients and identified 
several genomic positions with mutations associated with decreased 
susceptibility to fostemsavir (Bouba et  al., 2020), however, the 
BRIGHTE trial did not find consistent associations between virologic 
failure and gp120 substitutions (Kozal et  al., 2020; Lataillade 
et al., 2020).

No cross-resistance with other antiretroviral agents have been 
reported (Rose et al., 2022), fostemsavir being considered a life-saving 
option for patients with drug-resistant HIV.

Antibody-based strategies

Monoclonal antibodies are becoming attractive strategies for HIV 
treatment, with good resistance profile, ability to restore CD4 T-cell 
count and lack of toxicity.

Ibalizumab- post-attachment inhibitor

Ibalizumab (IBA)- the first monoclonal antibody approved for the 
treatment of HIV-1 infection (Markham, 2018)- is a long-acting post-
attachment inhibitor, which binds to the extracellular CD4 domain, leading 
to conformational changes of the CD4 T cell receptor–gp120 complex and 
blocking HIV entry (Chahine and Durham, 2021). Importantly, the 
binding of IBA to CD4 cell receptors does not induce an 
immunosuppressive response. Ibalizumab, in combination with other 
antiretrovirals, is indicated for the treatment of heavily treatment-
experienced adults with multidrug-resistant HIV-1 infection with limited 
or no other treatment options (Markham, 2018) and it is designed for 
twice-monthly intravenous administration (Chahine and Durham, 2021).

The approval of ibalizumab was based on a phase III, single-group, 
open-label study (TMB-301), that enrolled 40 heavily treatment-
experienced HIV patients who had failed several antiretroviral regimens, 
had >1,000 copies/mL HIV viral load and resistance to at least one NRTI, 
NNRTI, and a PI (Emu et al., 2018). The results showed that ibalizumab 
significantly decreased the viral load 7 days after being added to the failing 
antiretroviral regimen. Furthermore, ibalizumab plus an individually 
optimized background regimen significantly reduced the HIV-1 viral load 
at week 25, viral suppression being reported in 43% of the study participants 
and increased the CD4 T cell count with a mean of 62 cells/mm3.

Ibalizumab was well tolerated in the TMB-301 clinical trial, the 
most common adverse reactions included diarrhea, dizziness, nausea, 
and rash. There were no significant drug–drug interactions or adverse 
interactions between ibalizumab and other antiretroviral agents.

Resistance
Resistance to ibalizumab is conferred by decreased viral expression of 

specific binding sites in the HIV gp120 envelope protein (Pace et al., 2013). 
This mechanism of resistance was observed in the TMB-301 study for 8 out 
of 10 patients who had virologic failure or rebound at week 25 and showed 
a lower degree of susceptibility to ibalizumab than at baseline (Emu et al., 
2018). Currently, there are no commercially available resistance testing 
methods for patients with suspected resistance to IBA (Blair, 2020).

No cross resistance was reported between ibalizumab and all the 
other approved antiretroviral drugs, including fostemsavir and 
maraviroc (Muccini et  al., 2022; Rose et  al., 2022). A recent article 
described the case of a heavily treatment-experienced patient with a 
pan-resistant HIV-1 infection (reduced susceptibility to NRTIs, 
NNRTIs, PIs and INSTIs) who achieved virological control after 
introducing ibalizumab in association with recycling enfuvirtide and an 
optimized background regimen (Canetti et al., 2022), confirming that 
IBA represents an important advance in the management of multidrug-
resistant HIV-1 infection.

Leronlimab (Pro 140)-long-acting CCR5 
antagonist

Leronlimab (PRO 140), a humanized IgG4 monoclonal antibody 
(mAb), acts as an HIV-1 CCR5 antagonist; it binds to hydrophilic 
extracellular domains on CCR5, inhibiting HIV-1 viral entry in a 
competitive manner (Thompson, 2018).

The safety and effectiveness of leronlimab is currently, evaluated in 
phase IIb/III clinical trials. In CD 02 trial (PRO 140_CD 02; 
NCT02483078), leronlimab was tested in treatment-experienced 
patients with multidrug resistant HIV. In the first week, participants 

https://doi.org/10.3389/fmicb.2023.1133407
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received 350 mg of PRO 140 subcutaneously or placebo together with 
their regular medication and 1 week later, they received PRO 140 with 
an optimized regimen. The primary endpoint of the trial was achieved: 
patients in the PRO 140 arm showed a statistically significant reduction 
in HIV RNA viral load of greater than 0.5log from baseline versus 
patients in the placebo arm.4 A recent report showed that all CCR5-
tropic strains were fully susceptible to PRO 140 in a group of heavily 
treatment-experienced HIV-1-positive patients harboring 4-class drug-
resistance to NRTIs, NNRTIs, PIs, and InSTIs; current exposure to 
maraviroc (68% of the participants) was not associated with different 
PRO 140 activity (Rusconi et al., 2022).

CD03 clinical trial has evaluated weekly subcutaneous PRO 140 as 
monotherapy maintenance in patients with viral suppression (PRO 
140_CD03; NCT02859961). The rate of virological failure was lower in 
the group of participants receiving 700 mg dose comparing with 525 mg 
and 350 mg dose groups (13.8, 33 and 65.9%, respectively); no evidence 
of treatment-emergent resistance to leronlimab was observed. A report 
published on March 31, 2022, showed that weekly injections of 
Leronlimab (700 mg dose) maintained viral suppression in the five 
HIV+ participants for over seven years (ClinicalTrials.gov NCT02175680 
and NCT02355184) (Chang et al., 2022).

UB-421-CD4 attachment inhibitor

UB-421, a humanized IgG1 monoclonal antibody (mAb), acts as a 
CD4 attachment inhibitor. UB-421 targets domain 1 of CD4 receptor, 
blocking HIV entry into the cells via a competitive binding inhibition 
(Wang et al., 2019).

Several collaborative studies showed the efficacy of UB-421 against 
HIV strains resistant to broadly neutralizing HIV antibodies, entry 
inhibitors, and other ARV drugs [ClinicalTrials.gov NCT03164447]. 
Currently, UB-421 is in phase 2/phase 3 clinical trials for ART 
substitution (ClinicalTrials.gov NCT03149211), treatment of patients 
with multi-drug resistant HIV infection (ClinicalTrials.gov 
NCT04406727), as well as for HIV functional cure (ClinicalTrials.
gov NCT04404049).

Islatravir-nucleoside reverse transcriptase 
translocation inhibitor

Islatravir (ISL, MK-8591) is an investigational drug belonging to a 
new class of antiretrovirals called nucleoside reverse transcriptase 
translocation inhibitors (NRTTIs) (Markowitz and Sarafianos, 2018). 
The active form of islatravir (islatravir-triphosphate) inhibits HIV 
reverse transcriptase (RT) by multiple mechanisms, including RT 
translocation inhibition and delayed chain termination through viral 
DNA structural changes (Salie et al., 2016). ISL showed potent activity 
against HIV-1, HIV-2, and HIV viral strains with multi-drug resistant 
mutations (Wu et  al., 2017). Due to an unexpected decline in total 
lymphocyte and CD4+ T-cell counts, clinical studies of injectable 
islatravir for treatment and all formulations of islatravir for pre-exposure 

4 https://content.equisolve.net/_0fabb8b784fee97a4a4b390ab5453a6b/

cytodyn/db/193/2464/pdf/CytoDyn+-+ASM+2019+Poster+Presentation+r

e+CD02_Final.pdf

prophylaxis (PrEP) are on full or partial clinical holds, still, arms testing 
lower dosage are ongoing (ClinicalTrials.gov NCT03272347; 
NCT04564547; NCT05052996).

Lenacapavir-long-acting capsid inhibitor

Lenacapavir, the first-in-class long-acting HIV capsid inhibitor, was 
approved in August, 2022 in the European Union and in December, 
2022 in US, for the treatment of HIV infection, in combination with 
other antiretroviral(s), in patients with multi-drug resistant HIV who 
have very limited treatment choices.5 Lenacapavir is the only HIV 
treatment option that can be administered twice-yearly, in a long acting 
subcutaneous formulation (Dvory-Sobol et al., 2022). The novel long-
acting agent targets multiple stages of the HIV life cycle: it binds directly 
to the HIV capsid protein and interferes with capsid-mediated nuclear 
import of HIV DNA, virion production and proper capsid core 
formation (Figure 1; Bester et al., 2020; Link et al., 2020). The approval 
of lenacapavir was supported by the results of the Phase 2/3, double-
blinded, placebo-controlled global multicenter CAPELLA trial, that 
involved heavily treatment-experienced patients with multi-drug 
resistant HIV-1 (Segal-Maurer et al., 2022). Eighty three percent of the 
participants that received lenacapavir in combination with an optimized 
background regimen achieved viral suppression at week 52; a mean 
increase in CD4 count of 83 cells/μL was reported. Lenacapavir was well 
tolerated, no drug-related serious side effects being identified.

Resistance
Lenacapavir has no overlapping resistance with any currently 

approved antiretroviral therapy; additional studies have not shown any 
preexisting resistance mutations or naturally occurring polymorphisms 
that reduce viral susceptibility to lenacapavir (Margot et al., 2022).

Another capsid inhibitor-VH4004280- is currently investigated in 
phase I  clinical trial for safety, tolerability, and pharmacokinetic 
properties in HIV-negative volunteers.

GSK2838232-maturation inhibitor

Maturation inhibitors-a new class of antiretroviral agents in clinical 
development-disrupt the proteases cleavage of the HIV-1 gag protein 
immediate precursor, leading to immature, noninfectious virus particles 
(Sundquist and Krausslich, 2012; Wang et al., 2015).

Bevirimat and BMS-955176 (GSK3532795), the first 2 maturation 
inhibitors, demonstrated antiviral activity but no efficacy against some 
polymorphisms in the HIV gag region (Wainberg and Albert, 2010) and 
had associated side effects in phase 2b clinical studies.6

GSK2838232 is a second-generation HIV-1 maturation inhibitor in 
phase IIa clinical trial evaluation; it allows for once-daily administration 
boosted with a pharmacoenhancer (DeJesus et al., 2020). GSK2838232 
was well tolerated, and generated a significant viral load decrease in the 
group of participants receiving the highest dosage. GSK2838232 is active 
against HIV isolates resistant to bevirimat.

5 https://www.ema.europa.eu/en/documents/product-information/

sunlenca-epar-product-information_en.pdf

6 http://i-base.info/htb/30865
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Others long-acting HIV maturation inhibitors (GSK3640254 and 
GSK3739937) are in earlier stages of development (Joshi et al., 2020; 
Spinner et al., 2022).

New potential targets for HIV treatment

To overcome the resistance to HIV-1 antiretroviral therapy, novel 
drug targets (both virus and host-related) are being investigated 
(Figure 2).

Host-related targets

Host factors play an important role in HIV infection (Friedrich 
et al., 2011). The potential host targets can interfere with HIV entry, 
replication and spread of HIV infection, and may lead to a higher barrier 
to antiretroviral drug resistance.

Inhibitors targeting HIV viral entry are among the most 
attractive targets due to their potential to limit de novo infected 
cells. Several studies showed that HIV-1 entry is dependent on 
redox control and the compounds that inhibit thiol/disulfide 
exchange reactions could suppress HIV-1 viral entry (Moolla et al., 
2016; Reiser et al., 2016).

Protein disulfide isomerase, thioredoxin-1, and 
galectin-9

Human protein disulfide isomerase (PDI) catalyzes reduction of 
disulfides in HIV gp120 necessary for virus entry (Markovic et al., 2004). 

Several PDI inhibitors and anti-PDI antibodies were described, but none 
has been used therapeutically due to their toxicity (Khan et al., 2011). 
The interaction of PDI with human protein Galectin-9 regulates the 
redox environment and enhance T-cell migration and HIV entry (Bi 
et al., 2011). Moreover, Galectin-9 was reported to be an important 
mediator of HIV transcription and reactivation of latent HIV in CD4 + T 
cells and may be explored for novel HIV cure strategies (Abdel-Mohsen 
et al., 2016; Colomb et al., 2019).

A host protein-oxidoreductase glutaredoxin 1 (Grx1)- was shown 
to catalyze the reduction of HIV gp120 and CD4 disulfides and its 
inhition reduced HIV replication (Auwerx et al., 2009). More recent 
studies reported that the host thioredoxin-1 (Trx1) is also a very efficient 
reductase of disulfides of gp120 and CD4 in vitro and may represent a 
future host target for HIV-1 treatment (Moolla et al., 2016; Lundberg 
et  al., 2019); inhibition of thioredoxin-1 with anti-Trx1 antibodies, 
inhibited HIV-1 entry by >80% in cell cultures.

CD4 mimics
Several small molecule CD4 mimics have been reported as HIV-1 

entry inhibitors, which are blocking the interaction of gp120 with CD4 
(Curreli et al., 2016). Recently, novel soluble-type CD4 molecule mimics 
have been developed with a high anti-HIV activity and synergistic 
anti-HIV activity with a neutralizing antibody (Kobayakawa et al., 2019; 
Tsuji et al., 2022).

C-type lectin receptors
C-type lectin receptors (CLRs) (galectin-1, DC-SIGN, dendritic cell 

immunoreceptor-DCIR, etc.), expressed on the surface of dendritic cells 
(DCs) are binding to HIV gp120 glycoprotein playing an important role 

FIGURE 2

Potential host and viral targets for HIV replication inhibition. Created with BioRender.com, with a license to publish.
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in the pathogenesis of HIV infection (Mesman and Geijtenbeek, 2012). 
Several CLR inhibitors, that modulate protective immune responses and 
block receptor binding have been described (Varga et  al., 2014; 
Cardinaud et al., 2017; Porkolab et al., 2018). Competitive inhibitions of 
galectin-1, DC-SIGN and DCIR have shown efficacy in blocking CD4+T 
cells viral infection and HIV propagation, being considered a promising 
therapeutic target for HIV treatment (Porkolab et al., 2018).

Inhibition of cellular restriction factors is also studied as a 
potential host target. The human cyclophilin A (CypA) binds HIV-1 
viral capsid (CA) and promotes capsid uncoating and viral infectivity 
(Colgan et al., 1996; Gamble et al., 1996). Disruption of CypA-capsid 
interactions inhibits HIV-1 replication in cell cultures (Sokolskaja 
et  al., 2004). A recent study showed that Cyclophilin A prevents 
HIV-1 restriction in lymphocytes by blocking TRIM5α (human 
tripartite motif-containing protein 5) binding to the viral core 
(Selyutina et al., 2020). TRIM5α is an antiretroviral restriction factor, 
that induces premature uncoating, inhibiting reverse transcription 
and nuclear import (Ganser-Pornillos and Pornillos, 2019). Several 
compounds were described as HIV-1 assembly and disassembly dual 
inhibitors, targeting both HIV-1 capsid protein and cyclophilin A 
(Liu et al., 2016; Obubeid et al., 2022).

Virus-related targets

Non-conventional viral inhibitors might act on multidrug resistant 
HIV strains.

Inhibitors of RT RNAse H activity
HIV-1 RT possess a ribonuclease activity (RNase H) essential for 

viral replication (Menéndez-Arias et al., 2017). Two types of RNase H 
inhibitors have been developed, but none has reached the clinical phase: 
active site inhibitors, which chelate the two Mg2+ within the active site, 
and Rnase H allosteric inhibitors (Wang et al., 2018; Xi et al., 2019; 
Martín-Alonso et al., 2022).

Tat inhibitors
HIV-1 transcription factor Tat is required for transcription of the 

integrated viral genome (Selby et al., 1989). Tat-mediated transcription 
is conserved and is distinguishable from cellular transcription, being an 
important therapeutic target against HIV replication and the resistance 
emergence (Ott et al., 2011; Mousseau and Valente, 2012). The HIV-1 

Tat protein regulates the passage from viral latency to active transcription 
and its inhibition can prevent HIV-1 reactivation and facilitate 
permanent HIV-1 suppression (Karn, 2011). Several Tat inhibitors have 
been described, including didehydro-cortistatin A (dCA), that can 
prevent HIV-1 reactivation from latency (Li et al., 2019; Nchioua et al., 
2020) and is studied, together with other latency blocking agents, for the 
induction of a functional cure. Recently, several 3-oxindole derivatives-
with heterocyclic structures have been shown to specifically inhibit the 
Tat-mediated viral transcription acting on the HIV-1 LTR promoter 
(Kim et al., 2022). Future strategies focused on agents targeting latent 
HIV-1 reservoirs are explored to achieve a functional cure.

Conclusion

Life-long HIV treatment and drug resistance are still a challenge 
that requires constant efforts to identify new generations of antiretroviral 
agents. Significant progress has been made for the treatment of HIV 
drug resistant infection, but new targets are needed for a salvage therapy.
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