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Objective: Increasing evidence suggests that gut microbiota is involved in the
occurrence and progression of urinary system diseases such as clear cell renal
cell carcinoma (ccRCC). However, the mechanism of how alteration of gut
metagenome promotes ccRCC remains unclear. Here we aim to elucidate the
association of specific gut bacteria and their metabolites with ccRCC.

Methods: In a pilot case-control study among 30 ccRCC patients (RCC group)
and 30 healthy controls (Control group), 16S ribosomal RNA (rRNA) gene
sequencing were analyzed from fecal samples collected prior to surgery or
hospitalization. Alpha diversity and beta diversity analysis of the gut microbiota
were performed, and differential taxa were identified by multivariate statistics.
Meanwhile, serum metabolism was measured by UHPLC-MS, and differential
genes were identified based on the TCGA database.

Results: Alpha diversity found there were no significant microbial diversity
differences of gut microbiota between the RCC group and the Control group.
However, beta diversity analysis showed that the overall structures of the
two groups were significantly separated (p = 0.008). Random Forests revealed
the relative abundances of 20 species differed significantly between the RCC
group and the Control group, among which nine species were enriched in the
RCC group such as Desulfovibrionaceae, and 11 species were less abundant
such as four kinds of Lactobacillus. Concomitantly, serum level of taurine,
which was considered to be consumed by Desulfovibrionaceae and released by
Lactobacillus, has decreased in the RCC group. In addition, macrophage-related
genes such as Gabbrl was upregulated in ccRCC patients.

Conclusion: Reduction of protective bacteria, proliferation of sulfide-degrading
bacteria Desulfovibrionaceae, reduction of taurine, and enrichment of
macrophage related genes might be the risk predictors of ccRCC.

clear cell renal cell carcinoma, 16S rRNA, gut microbiota, metabolite, inflammation
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Introduction

The human gut microbiota is a complex micro-ecosystem that
is closely related to human health and disease. Various types of gut
microbes interact with each other and jointly maintain the normal
structure of the gut by forming a bacterial barrier. They protect
human body from microbial infection, participate in digestion,
absorption, and metabolism of nutrients, as well as regulate the gut
immune response (Pope et al,, 2017). Many studies have shown that
the occurrence of renal related diseases is accompanied by changes
in the gut microbiota characteristics, of which the metabolic status
is the key factor affecting the progression of the disease.

Increasing evidence suggests that the interaction between gut
microbiota and metabolic status within host has the potential
to promote or influence chronic kidney disease (CKD). Recent
studies proved a dual-directional regulatory relationship between
gut microbiota and the host with CKD. Abnormal renal function
may result from long-term effects of excess uremic toxins such as
indole sulfate (IS), p-cresol sulfate (PS), and trimethylamine-N-
oxide (TMAO) which are produced due to altered composition
of gut microbiota. It is well known that abnormal renal function,
especially CKD, are associated with oxidative stress, endotoxemia,
inflammation, and a higher prevalence of cardiovascular disease,
where gut dysbiosis is one of the main causes of these symptom.
Additionally, gut microbiota can reduce oxidative stress-induced
kidney damage by secreting short-chain fatty acids (SCFA)
(Mahmoodpoor et al, 2017). The gut dysbiosis and subsequent
leakage of pro-inflammatory products such as interleukin-6 (IL-
6) and monocyte chemoattractant protein-1 (MCP-1) may result
in chronic inflammatory state, which contribute to CKD (Ferrucci
and Fabbri, 2018; Plata et al., 2019). 16S rRNA gene sequencing was
performed to the feces of 13 patients with multiple kidney stones
and 13 healthy controls. Results showed that there were significant
differences in P-diversity and the relative abundance of 20
bacterial genera, for example Phascolarctobacterium, Parasutterella,
Ruminiclostridium, Erysipelatoclostridium, Fusicatenibacter, and
Dorea. These bacterial genera were associated with blood
concentrations of trace elements such as potassium, sodium,
calcium, and chlorine (Tang et al,, 2018). Thus, there may exist
a gut-kidney axis mediated by metabolism and inflammation
whereby alterations in gut microbiota composition can affect the
state of renal physiology and pathology.

The etiology of ccRCC, the most common malignant disease
of the kidney, is still unclear. Studies reveal that metabolism of
tryptophan, arginine and glutamine participates in the progression
of ccRCC, and therapeutic strategies targeting the metabolic
reprogramming of tricarboxylic acid cycle (TCA) that affect
neoplastic biosynthesis has been gradually evolved (Wettersten
et al, 2017). Downregulation of conventional metabolites genes
involved in lipid and amino acid biosynthesis, particularly
succinate, an intermediate in the TCA, is associated with ccRCC
and poor prognosis (Yong et al., 2020). Meanwhile, current studies
have shown that inflammatory factors such as IL-6, IL-10, IL-18,
and estrogen play an important role in the occurrence of ccRCC
(Negrier et al., 2004; Petrella and Vincenti, 2012; Cuadros et al,,
2014; Quan et al, 2017). Increased expression of inflammatory
chemokine IL-8 and its receptor CXCR1 has been demonstrated
to be associated with ccRCC tumorigenesis and decreased overall
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survival via epithelial-mesenchymal transition (EMT) pathway
(Corro et al., 2019).

Differences in gut microbiota compositions and functions
have been proven to influence an individual’s immune system,
for example the expression of inflammatory factors and the
immune system’s response to pathogens (Schirmer et al,, 2016).
Gut microbiota has been verified to systematically regulate the
progression of non-gastrointestinal tumors such as melanoma,
lung cancer, and breast cancer through the metabolism- and
inflammation-related pathways (Goedert et al, 2015; Gui et al,
2015; Spencer et al,, 2021). These previous studies have provided
promising insights into the potential influence of gut microbiota in
ccRCC, but no obvious evidence indicates that a direct and exact
relationship between gut microbiota and ¢ccRCC tumorigenesis
exists.

In this study, specific gut microbiota profiles in ccRCC patients
compared to healthy controls were identified through 16S rRNA
gene sequencing. Additionally, metabolites and blood indices
are detected and analyzed statistically. Bioinformatics analysis
was also carried out to explore the potential mechanisms of
ccRCC pathogenesis.

Materials and methods

Subjects

A clinical trial with 30 ccRCC patients (RCC group) and
30 healthy controls (Control group) was conducted. All ccRCC
patients in the RCC group were diagnosed exactly by pathological
examinations after surgery, and all healthy controls were recruited
from Beijing Friendship Hospital, Capital Medical University
(Beijing, China). The healthy controls at this stage were free of
renal cell carcinoma by medical examinations and had no history
before enrollment. All subjects were Chinese Han ethnic population
to ensure their living and eating habits were basically similar.
All experimental subjects conformed to the following standards.
Inclusion Criteria: (1) no infectious disease or abnormal renal
function, no neurological symptoms, no upper gastrointestinal
disease, (2) performance status (PS) score ranging from 0 to 1.5,
proper functioning of major organs, no other active malignancies
(except non-melanoma skin cancer), (3) no antibiotics, probiotics,
vitamins, minerals, NSAIDs, prokinetics, bismuth, antacids, H2-
receptor antagonists, omeprazole, Sucralfate, or misoprostol intake
within the past 4 weeks, no recent hormone therapy taken, and
(4) no history of gastroduodenal ulcer or major gastrointestinal
surgery. Exclusion criteria: (1) patients with gastrointestinal
discomfort such as acid reflux and nausea, diabetes or other serious
systemic diseases, (2) HIV-infected or hepatitis B surface antigen
positive patients, (3) patients with incomplete heart function,
unstable angina pectoris or recent (within 6 months) myocardial
infarction, (4) patients with history of major organ transplant,
radiotherapy or chemotherapy, and (5) females who are pregnant
or breast-feeding.

The study was approved by the Ethics Committee of Beijing
Friendship Hospital Affiliated to Capital Medical University
(Beijing, China) (Document number: 2021-P2-072-01). All subjects
have signed the informed consent.
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Fecal samples collection and blood index
detection

Patients in the RCC group were all initially diagnosed as
renal carcinoma by CT/MRI scan. After being informed about
the purpose and procedures of the study, sufficient, middle, and
internal fecal samples were freshly collected from both of the
RCC group and Control group by the laboratory personnel with
special fecal sampling tubes, and samples were transported to the
laboratory on ice within 1 h (Xing Kang Medical, Jiangsu). Fecal
samples of patients in the RCC Group were all collected before
surgery, and urine and urinal pollution to the fecal samples were
avoided during collection processes. Samples were stored at —80°C
until further processing.

A fasting blood sample of all subjects were taken before
receiving any medical treatments or surgery. Serum specimens
were separated by centrifugation for a thorough analysis, including
blood routine test, C-reactive protein test, liver and kidney function
test, as well as electrolyte detection.

Note that the fecal and blood sample used for experiments and
analysis are from patients in RCC group that have postoperative
pathological diagnosis confirmation of ccRCC.

Microbial DNA extraction and
sequencing

Total microbial DNA was extracted from the fecal samples
using the OMEGA Soil DNA Kit (Omega BioTek, Norcross,
GA, USA) according to the manufacturer’s instructions. The
DNA concentration were evaluated in a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA), respectively, and all DNA samples were stored at —80°C
prior to further analysis. The A260:A280 ratios were ranging
from 1.8 to 2.0.

PCR amplification of the microbial 16S rRNA V3-V4
hypervariable regions was performed. PCR primers of the V3-V4
hypervariable region were designed as previously described (Wang
et al,, 2016). The forward primer used was 5-TCGTCGGCAGC
GTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-
3/, and the reverse primer was 5-GTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGGACTACHVGG  GTATCTAATCC-
3. Amplification was performed on an ABI 9600 instrument
according to the instruction successively with a denaturation
at 94°C for 4 min, 25 cycles of denaturation at 94°C for 45 s,
annealing at 60°C for 45 s, elongation at 72°C for 45 s and a final
extension cycle at 72°C for 8 min.

Gut microbial 16S rRNA gene V3-V4 region was sequenced
using Illumina MiSeq platform as previously described (Wang
et al, 2016). The high-quality data was obtained after quality
control processing. Bioinformatics analysis of sequencing data was
performed using QIIME2 (Bolyen et al., 2019).

After removal of primers with Cutadapt, the sequences were
denoised, merged and chimera were removed with DADA2. The
remaining high-quality sequences were clustered into amplicon
sequence variants (ASVs). A representative sequence from each
ASV was assigned taxonomically against the SILVA database. Next,
an original ASV table was created which contained a readable
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matrix of the ASV abundance for each sample. Alpha diversity
based on Shannon, Simpson, Chao 1, Observed species, Faith’s
PD, Pielou’s evenness, and Good’s coverage were estimated. Beta-
diversity was calculated based on Euclidean distance, and the
significance of difference between the two groups was assessed by
permutational multivariate analysis of variance (PERMANOVA)
testin MATLAB R2018b (The MathWorks, Inc., Natick, MA, USA).
Random Forest and linear discriminant analysis effect size (LEfSe)
were contrasted based on the relative abundance of ASVs. The
top 20 most important ASVs were shown in Random Forest. The
ASVs with significant changes were found out in LEfSe when
alpha value of the factorial Kruskal-Wallis test was <0.05 and the
logarithmic LDA score was >2.0. The associations between the
differential ASVs and the blood biochemical and metabolic indexes
were performed by Spearman correlation.

Blood metabolites analysis

Blood samples were collected in Vacutainer tubes containing
the chelating agent ethylene diamine tetraacetic acid (EDTA). The
samples were then centrifuged at 1,500 g, 4°C for 15 min. Plasma
samples were stored at —80°C prior to further analysis.

A total of 200 1 of plasma samples were mixed with 400 pl
of cold methanol/acetonitrile (1:1, v/v) to remove the protein.
The mixture was centrifuged 14,000 g, 4°C for 15 min. and the
supernatants were dried in a vacuum centrifuge. The samples were
re-dissolved in 100 .l acetonitrile/water (1:1, v/v) solvent.

Analysis was performed using an UHPLC (1290 Infinity LC,
Agilent Technologies) coupled to a quadrupole time-of-flight
(AB Sciex TripleTOF 6600). Samples were analyzed by HILIC
separation. A 2.1 mm x 100 mm ACQUIY UPLC HSS T3 1.8 pm
column (waters, Ireland) was used. In ESI positive mode, the
mobile phase contained A = water with 0.1% formic acid and
B = acetonitrile with 0.1% formic acid; and in ESI negative mode,
the mobile phase contained A = 0.5 mM ammonium fluoride in
water and B = acetonitrile. The gradient was 1% B for 1.5 min
and was linearly increased to 99% in 11.5 min and kept for
3.5 min. then it was reduced to 1% in 0.1 min and a 3.4 min
of re-equilibration period was employed. The gradients were at a
flow rate of 0.3 ml/min, and the column temperatures were kept
constant at 25°C. 2 .l aliquot of each sample was injected.

The ESI source conditions were set as follows: Ion Source
Gasl (Gasl): 60, Ion Source Gas2 (Gas2): 60, curtain gas (CUR):
30, source temperature: 600°C, IonSpray Voltage Floating (ISVF):
£5,500 V; TOF MS scan m/z range: 60-1,000 Da, product ion scan
accumulation time: 0.20 s/spectra; TOF MS/MS scan m/z range:
25-1,000 Da, product ion scan accumulation time: 0.05 s/spectra.
The product ion scan was acquired using information dependent
acquisition (IDA) with high sensitivity mode selected. The
parameters were set as follows: collision energy (CE): 35V £ 15 eV;
declustering potential (DP): £60 V; exclude isotopes within 4 Da;
candidate ions to monitor per cycle: 10.

The raw MS data were converted from wiff.scan files to
MzXML files using ProteoWizard MSConvert, then data were
imported into freely available SCMS software for peak picking
and grouping. Collection of Algorithms of Metabolite pRofile
Annotation (CAMERA) were used for annotation of isotopes and
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adducts. Compound identification of metabolites was performed
by comparing of accuracy m/z value (<25 ppm), and MS/MS
spectra with an in-house database established with available
authentic standard.

After normalized to total peak intensity, the data were then
analyzed suing R package (v3.2.0) (Chen et al.,, 2018). Univariate
analysis and orthogonal partial least-squares discriminant analysis
(OPLS-DA) were performed to find out the differential metabolites
between the two groups. The sevenfold cross-validation and
response permutation testing was used to evaluate the robustness
of the model. The variable importance in the projection (VIP)
value of each variable in the OPLS-DA model was calculated to
indicate its contribution to the classification. Metabolites with
the VIP value >1 was further applied to Students t-test at
univariate level to measure the significance of each metabolite, the
P-values less than 0.05 were considered as statistically significant.
After combining the differential metabolites screened by positive
and negative ion modes, the KEGG pathway was annotated and
analyzed.

Metabolic subtypes and inflammatory
analysis

In brief, public gene expression data of ccRCC patients was
downloaded from the Cancer Genome Atlas (TCGA) database.
A well-established metabolic signature gene set was adopted in
a previous study (Peng et al,, 2018), which included genes for
amino acid metabolism (348 genes), carbohydrate metabolism (286
genes), energy metabolism (110 genes), lipid metabolism (766
genes), nucleotide metabolism (90 genes), TCA cycle (148 genes),
and vitamin cofactor metabolism (168 genes). A total number of
200 genes that related to inflammatory response were also collected.
Differentially expression genes between tumor and normal tissues
were detected by “limma” R package with fold change >2 and false
discovery rate <0.05. In addition, we performed the prognostic
analysis for selected genes by using univariate Cox regression
model. Finally, all the data was visualized by different R packages.

Statistical analyses

Differences between two groups were compared by Student’s
t-test or Mann-Whitney U test. All statistical tests were performed
using GraphPad Prism Software. Data were considered significant
at P < 0.05.

Results

Variation of gut microbiota between the
RCC group and the Control group

Sixty fecal samples were sequenced from the RCC group
(n = 30) and the Control group (n = 30). Baseline clinical
parameters of subjects were listed in Table 1, with no significant
difference between the RCC group and the Control group
(P > 0.05).
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TABLE 1 Baseline characteristics of all subjects.

Characteristic

RCC group | Control group| P-value

Age (year) 62+ 10 59 £+ 10 0.37
(mean =+ SD)
Gender (ratio) 73% (male) 67% (male) 0.14
BMI (mean + SD) 25.85 £3.42 2423 +£297 0.06
Ethnicity - Han 30 (100%) 30 (100%) N/A
(China) (ratio)
Smoking (ratio) 37% (smoking) 27% (smoking) 0.42
Alcohol (ratio) 23% (alcohol) 33% (alcohol) 0.22
WHO/ISUP (ratio) 1:9 (30%) N/A N/A
2:14 (47%)
3:6 (20%)
41 (3%)
TNM T1aNOMO:19 (63%) N/A N/A
T1bNOMO:7 (23%)
T2aNOMO:1 (3%)
T3aNOMO:3 (10%)

BMI, body mass index; WHO/ISUP, WHO/International Society of Urological Pathology;
N/A, not applicable. Results were expressed as ratio or mean + SD. Non-significant P > 0.05.

1,800,840 valid sequences were obtained from the 60 qualified
fecal samples through sequencing and data processing. The
Shannon and Simpson indices were shown in Figure 1A. Results
indicated that there was no difference in the richness and evenness
of gut microbiota between the RCC group and the Control group.
More alpha diversity indices such as Chao 1, Observed species,
Faith’s PD, Pielou’s evenness, and Good’s coverage confirmed the
same result (Supplementary Figure 1). Beta-diversity analysis
revealed there existed a significant difference in the overall structure
of the gut microbiota between the RCC group and Control group
(Figure 1B).

To further clarify the features of gut microbiota in patients with
ccRCC, we analyzed the relative abundance of specific microbiota,
and classified them at different taxonomic levels. The abundance
distribution of 10 main gut microbiota, including Firmicutes,
Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia,
Tenericutes, Fusobacteria, Cyanobacteria, TM7, and Synergistetes
were described at phyla level (Figure 1C). Detailed taxonomic
abundance difference of gut microbiota at family and phyla levels
was shown according to the sequencing dataset (Supplementary
Figure 2). Moreover, significant difference of 18 genera between
the RCC group and the Control group is identified by Random
Forest analysis (Figure 1D). Results indicated that 11 species
were enriched in ccRCC patients, including Bradyrhizobiaceae,
Desulfovibrionaceae, two kinds of Enterobacteriaceae, Streptophyta,
Peptostreptococcaceae, Allobaculum, Candidatus Aquiluna rubra,
Ruminococcus bromii, Akkermansia muciniphila, and Collinsella
aerofaciens, On the other hand, nine species including Wolbachia,
four kinds of Lactobacillus, Bacteroides, Clostridium perfringens,
Prevotella copri, and Shigella, were down-regulated notably.
Moreover, it can be concluded from the results that Wolbachia,
Bradyrhizobiaceae, and Lactobacillus iners differed most typically
based on the Importance score. LEfSe was then adopted to analyze
the significant microbial variations between the two groups, too
(Supplementary Figure 3). Our data preliminarily suggested that
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patients with ccRCC had alterations of specific bacterial functional
species compared with those of the Control group.

Identification of potential metabolic
biomarkers for clear cell renal cell
carcinoma

To pursue our primary hypothesis that changes of gut
microbiota are associated with ccRCC tumorigenesis, we
examined the potential related differential genes involved in
serum metabolites of the two groups. Except for the undefined
superclass, the “organic acids and derivatives” accounted for
19.832% of all relevant metabolites with the largest proportion,
according to the serum metabolomic analysis, followed by “lipids
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and lipid-like molecules” (Supplementary Figure 4A). Volcano
plots indicated that 256 altered metabolites in positive ion mode
and 102 altered metabolites in negative ion mode are found in the
comparison between the RCC group and the Control group, and
most of these metabolites fell into “organic acids and derivatives”
and “lipids and lipid-like molecules” classes (Supplementary
Figures 4B, C).

A superior OPLS-DA model (Q*> > 0.5 both in positive
and negative ion mode) was generated to analyze the difference
of serum metabolomic profiles (Figures 2A, B). As shown in
Figures 2C, D, majority of the 18 major metabolites altered
significantly in positive ion mode were classified as “organic
acids and derivatives” based on superclass, and majority of the
7 metabolites in negative ion mode were classified as “lipids
and lipid-like molecules.” Heatmap was also used to intuitively
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illustrate the abundance distribution of the 25 metabolites in
all fecal samples screened by OPLS-DA, respectively, in positive
ion mode (Figure 2E) and negative ion mode (Figure 2F). In
general, 15 metabolites (such as taurine) were downregulated and
10 metabolites (for example, arachidonic acid) were upregulated
in the RCC group. In addition, we also found from Figures 1D,
2E that the abundance of Desulfovibrionaceae in high-grade ccRCC
(T3) patients was significantly higher than that in low-grade (T1)
patients, while the level of serum taurine was lower.

In order to explore the potential pathways by which the above
altered metabolites function, a gene-KEGG pathways dot plot
was drawn (Figure 2G). The results showed that the identified
metabolites involved 20 metabolic pathways, among which protein
digestion and absorption, aminoacyl-tRNA biosynthesis, and ATP
binding cassette (ABC) transporter pathways showed the strongest
correlation. Meanwhile, a spearman analysis was conducted
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to investigate the patterns of interactions between metabolites
that might play a role in positive and negative ion mode
(Supplementary Figure 5). In the heatmap, the abundance of
particular metabolites, such as taurine and arachidonic acid was
further analyzed and demonstrated (Supplementary Figure 6).

Association between altered gut
microbiota and clinical indices

Furthermore, clinical indices including blood routine,
C-reactive protein, liver and kidney function, and electrolyte
analysis were performed to evaluate the clinical status difference
between the RCC group and the Control group (Figure 3A and
Supplementary Figure 7). As shown in Figure 3, inflammation

related indices such as WBC, CRP, neutrophil, and MO, were
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FIGURE 3

Association between altered gut microbiota and clinical indices. (A) The differential levels of clinical indices were selectively detected between the
RCC group and the Control group. (B) Correlation between altered genera and clinical indices of ccRCC patients. Red and blue color denoted
positive and negative correlations, respectively. The black dots in the cells of the heatmap indicated the correlations were significant. WBC, white
blood cell; CRP, C-reactive protein; BASO, basophil; A/G, albumin/globulin; Cr, creatinine; GGT, y-glutamyl transpeptidase; MO, monocytes.

*P < 0.05, **P < 0.01.

significantly upregulated in the RCC group. We investigated  clinical indices and altered serum metabolites (Figure 3B).
whether the 20 microbial species differing between the RCC group ~ Remarkably in the two groups, Lactobacillus, known as protective
and the Control group were correlated with well-established  bacteria, was negatively correlated with inflammatory indices such
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Bioinformatics analysis was applied to explore the association of gut microbiota and ccRCC tumorigenesis. (A) A total of 22 inflammatory transcripts
were selected based on overlap between univariate Cox regression and different expression analysis; uniCox, univariate Cox regression analysis; Diff,
different expression analysis. (B) The prognostic analyzes of 22 inflammatory transcripts by univariate Cox regression model. (C) A total of 202
metabolism-related transcripts were selected based on overlap between univariate Cox regression and different expression analysis. (D) Volcano
plots selected 202 metabolism-related genes with significant prognosis from 484 different expression genes. (E) The 202 selected

as WBC, MO, and CRP. Until now, we could draw the conclusion
that there exists a correlation between the altered gut microbiota
and inflammation level in patients with ccRCC.

Correlation and prognostic analysis of
inflammation encoding genes and
ccRCC development

Considering that the significant variation in a subset of gut
microbiota might be closely associated with inflammation in the
RCC group, we search for the possible link between inflammation
encoding genes and ccRCC development. Result showed that
22 genes, including Gabbrl and etc., were identified as putative
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targets, which were overlapped across the univariate Cox regression
and different expression analysis (Figure 4A and Supplementary
Table 1). We then estimated the influence of the 22 inflammatory
factors on the prognosis of ccRCC (Figure 4B). Strikingly, Gabbr1
was also a risk factor associated with poor prognosis of ccRCC.
We also explored serum metabolites associated with ccRCC
through TCGA database, in order to conduct further combined
analysis with previous metabolomics results. The Venn diagram
illustrated the overlap of 202 metabolism-related transcripts both
identified by the univariate Cox regression and different expression
analysis (Figure 4C and Supplementary Table 2). A total of 202
metabolism-related genes were filtrated from different expression
analysis with significant prognosis (Figure 4D). Finally, the
202 selected metabolism-related genes with significant different
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expression and prognosis were clustered into 7 metabolism
processes, including lipid (42%), amino acid (19%), carbohydrate
(17%), vitamin cofactor (8%), nucleotide (5%), energy (5%), and
TCA cycle (4%) (Figure 4E). Results confirmed the crucial role of
lipid metabolism in ccRCC tumorigenesis and development, which
showed strong consistency with our metabolomics results.

Discussion

The clinical features, early diagnosis and pathogenesis of renal
cancer is still not fully understood (Capitanio and Montorsi,
2016; Yong et al.,, 2020). Clear cell renal cell carcinoma, as the
most common pathological type of renal cancer, deserves further
attention and focus research (Jonasch et al, 2021). Recently,
increasing evidence reveals that gut microbiota is closely associated
with development and progression of multiply malignancies
(Sepich-Poore et al., 2021). In this study, we performed the 16S
rRNA gene sequencing to comprehensively elucidate the variations
of gut microbiota between the RCC group and the Control
group. Results showed that in the RCC group, 11 species such
as Bradyrhizobiaceae and Desulfovibrionaceae were enriched, and
9 species such as Wolbachia and four kinds of Lactobacillus
were less abundant. Metabolomics analysis was conducted within
the two groups to identify the difference of serum metabolites,
including taurine and arachidonic acid. Gut microbiota of all
subjects was analyzed based on taxonomic characterization and
correlation with differential clinical indices of ccRCC patients. Our
results indicated that specific component structures and functional
patterns of gut microbiota and metabolites probably result in
ccRCC tumorigenesis and development.

Diversity analysis implied that although similar community
richness and evenness were found in both groups, the overall
structures between the two groups were different, where several
altered bacterial species were detected in the RCC group compared
with the Control group. Despite the perplexing taxonomy and
synergy between the microbe, the effector microbiota that
participated in or dominated the development of ccRCC may only
be a small subset of them. Based on this finding, we particularly
focused on the alteration of Desulfovibrionaceae and Lactobacillus.
Desulfovibrionaceae is a major producer of hydrogen sulfide, which
acts as a poisonous regulator for mucosal function and intestinal
environment. According to previous studies, Desulfovibrionaceae
was considered to be a type of bacteria that posed health risk due to
its positive correlation with intestinal and systematic inflammation
(Zhang et al, 2021a,b). Moreover, clinical data suggested that
the presence of Desulfovibrionaceae was associated with chronic
periodontitis, cell death, and inflammatory bowel diseases (Amado
et al,, 2020; Humbel et al., 2020; Teofani et al., 2022). With regard
to Lactobacillus, it has been generally proved to play an essential
role in maintaining homeostasis. Lactobacillus functions positively
in immune regulation, which can significantly promote antibody
production, activate and enhance macrophages, so as to inhibit
the production of inflammatory factors and further improve the
disease resistance of the body (Ashraf and Shah, 2014; Goldstein
et al,, 2015). The occurrence of multiple cancers including ccRCC
has been proved to be closely related to inflammatory factors
and the pathways they dominate (Coussens and Werb, 2002;
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de Vivar Chevez et al,, 2014). Other altered microbiota such as
Enterobacteriaceae, Streptophyta, and Peptostreptococcaceae have
also been proved to be linked to some urinary system diseases
associated with inflammation such as prostatitis and prostate
cancer (Porter et al, 2018; Huang and Shi, 2019). In summary,
these results were consistent with the hypothesis that ¢ccRCC
tumorigenesis was accompanied by variation in specific gut
microbiota profiles.

In order to verify whether the alteration of gut microbiota
could cause changes in host metabolism, we further conducted a
metabolomic analysis to identify the differential serum metabolites.
A total of 358 altered metabolites
in the RCC group compared with the Control group, both

in total were detected

in positive and negative ion modes. By cluster analysis, we
found that the altered metabolites mainly fell into organic
acids and derivatives class or lipids and lipid-like molecules
class. These results indicated that the abnormality of amino
acid metabolism and lipid metabolism might be involved in
ccRCC tumorigenesis.

Notably, we specifically focused on taurine from 25
altered metabolites screened by OPLS-DA. Kidney is the main
excretion and content regulating organ of taurine, and taurine is
consumed by Desulfovibrionaceae and released by Lactobacillus in
gastrointestinal tract. As a source of sulfur-containing substances,
taurine is decomposed by Desulfovibrionaceae to form H,S to some
extent, which in turn induces intestinal pathology (Hu et al., 2022).
Lactobacillus, one of the crucial components of probiotics, can
promote the activity of bile salt hydrolase to increase the abundance
of taurine in the intestine, thereby stimulating tight junctions and
reducing inflammatory responses (Ahmadi et al., 2020).

Taurine has always been considered as a non-functional
metabolite of sulfur-containing amino acids, widely distributed in
the human body in the form of free amino acids. However, taurine
is involved in cell protection, renal insufficiency, and abnormal
renal development. It has a wide range of biological functions such
as attenuating inflammation and oxidative stress-mediated injuries,
lipid metabolism regulation and immune enhancement (Jakaria
etal., 2019; Maleki et al., 20205 Stacy et al., 2021). Excessive reactive
oxygen species (ROS) formation is one of the determinants in
oncogenesis and has no exception in the development of ccRCC
(Luo et al,, 2009). Taurine can prevent the accumulation of ROS
in tumor cells, enhance immune surveillance, as well as confer its
preventive effect on cancer cells. In addition, taurine induces the
apoptosis of tumor cells by up-regulating the expression of the
P53 transcription factor, down-regulating the expression of B-cell
lymphoma 2 (BCL-2) or inactivating the protein kinase B (Akt)
signaling pathway and etc., thereby may inhibit ccRCC progression
(Baliou et al., 2020). Based on the above findings, we could assume
that the reduction of serum taurine had relevance to the increase in
Desulfovibrionaceae and decrease in Lactobacillus in gut microbe
community, which in turn contributed to ccRCC tumorigenesis
probably.

Chronic inflammation in the tumor microenvironment has
been shown to contribute to ccRCC progression previously. In
ccRCC tumors, IL-18, IL-6, and TNF are essential inflammatory
mediators that induce the activation of vascular endothelial cells
and promoting angiogenesis, and high serum levels of these
cytokines are associated with tumor progress (Diaz-Montero
et al,, 2020). Recently, alteration of gut microbiota is regarded
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as a trigger for systemic inflammation especially in metabolic
diseases, as well as tumorigenesis by modulate the secretion
of inflammation-related products such as SCFA and TMAO
(Boulangé et al., 2016; Brennan and Garrett, 2016).

To shed light on the genetic signature changes that gut
microbiota possibly functioned during ccRCC tumorigenesis, we
performed a bioinformatics analysis of ccRCC-related metabolites
and inflammation in the TCGA database. Combined with cluster
analysis, we established a robust association between altered
microbiota and ccRCC. In our study, correlation analysis indicated
that inflammation related clinical indices were significantly
upregulated in the RCC group even though the values were in
the normal range. Consequently, we screened out 22 inflammatory
genes such as Gabbrl, by univariate Cox regression and different
expression analysis in the TCGA database. Gabbrl was classical
macrophage-related genes which have been confirmed to be the
inextricable link between inflammation and ccRCC (Kovaleva
et al,, 2016; Zhang et al, 2022). Other overlapped genes, such
as FZD5 and STABI, which are known as scavenger receptors
also participate in carcinogenesis, and their potential functions
in ¢ccRCC need to be further revealed (Katoh, 2007; Hollmén
et al.,, 2020). We also found that the altered metabolites mostly
participated in protein digestion and absorption, aminoacyl-
tRNA biosynthesis and ABC transporter pathways. In addition,
we performed prognostic analysis on 202 selected metabolites
associated with ccRCC to refine the above conjecture.

These findings provide evidence for the hypothesis that the
alterations of gut microbial composition are associated with
ccRCC. Reduction of protective bacteria, proliferation of sulfide-
degrading bacteria Desulfovibrionaceae, reduction of taurine, and
enrichment of macrophage related genes more likely to cause
ccRCC tumorigenesis. Systemic low-grade inflammation as well as
abnormal lipid metabolism and amino acid metabolism may be the
functional bridge between dysbiosis and ccRCC.

Several limitations should be taken into account in our study.
First, how changes in gut microbiota regulate the pathogenesis
of ccRCC or whether changes in gut microbiota are caused by
ccRCC remain to be further explored. Second, fecal samples
were not subjected to additional metabolomic analysis, so the
synchronization of metabolite changes in feces and serum could
not be determined.

In future studies, we will validate the effects of taurine and
the two species on ccRCC using fecal microbiota transplantation
(FMT) in vivo by animal experiments. Although clinical indicators
suggested that the altered gut microbiota were related to
inflammation, the detection of specific inflammatory factors, such
as IL-4 and IL-10, and the exploration of more in-depth molecular
mechanisms still needs to be completed.

Conclusion

In conclusion, our study suggests a new avenue that links
the alteration of gut microbial composition and function, and
the systemic inflammatory and metabolic state of ccRCC. The
protective bacteria Lactobacillus and sulfide-degrading bacteria
Desulfovibrionaceae are the main effective microbiota of ccRCC,
and taurine and inflammatory factors may be the mediators
between pathogenic microbiota and ccRCC.
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