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Biotic interactions contribute 
more than environmental factors 
and geographic distance to 
biogeographic patterns of soil 
prokaryotic and fungal 
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Recent studies have shown distinct soil microbial assembly patterns across 
taxonomic types, habitat types and regions, but little is known about which 
factors play a dominant role in soil microbial communities. To bridge this gap, 
we compared the differences in microbial diversity and community composition 
across two taxonomic types (prokaryotes and fungi), two habitat types (Artemisia 
and Poaceae) and three geographic regions in the arid ecosystem of northwest 
China. To determine the main driving factors shaping the prokaryotic and fungal 
community assembly, we  carried out diverse analyses including null model, 
partial mantel test and variance partitioning analysis etc. The findings suggested 
that the processes of community assembly were more diverse among taxonomic 
categories in comparison to habitats or geographical regions. The predominant 
driving factor of soil microbial community assembly in arid ecosystem was biotic 
interactions between microorganisms, followed by environmental filtering and 
dispersal limitation. Network vertex, positive cohesion and negative cohesion 
showed the most significant correlations with prokaryotic and fungal diversity and 
community dissimilarity. Salinity was the major environmental variable structuring 
the prokaryotic community. Although prokaryotic and fungal communities 
were jointly regulated by the three factors, the effects of biotic interactions and 
environmental variables (both are deterministic processes) on the community 
structure of prokaryotes were stronger than that of fungi. The null model revealed 
that prokaryotic community assembly was more deterministic, whereas fungal 
community assembly was structured by stochastic processes. Taken together, 
these findings unravel the predominant drivers governing microbial community 
assembly across taxonomic types, habitat types and geographic regions and 
highlight the impacts of biotic interactions on disentangling soil microbial 
assembly mechanisms.
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1. Introduction

Arid and semiarid ecosystems occupy more than one third of the 
Earth’s terrestrial surface (Nielsen and Ball, 2015). The soil microbes 
present in arid ecosystems play a significant part in numerous 
ecological functions such as nutrient cycling and biomass production 
(Pointing and Belnap, 2012). Additionally, given highly susceptible of 
microbes to fluctuations in the environment, variations in the soil 
microbial community can serve as indicators of changes in the arid 
ecosystem (Neilson et al., 2012). Thus, disentangling the biogeographic 
patterns of soil microorganisms and the factors that shape their 
communities can enhance our predictive capacity for understanding 
the dynamics and functions of arid ecosystems.

The study of microbial biogeography aims to uncover the forces 
that determine the distribution of microorganisms across space and 
time (Martiny et al., 2006). Deterministic and stochastic processes are 
two fundamental and separate ecological mechanisms that shape the 
biogeographic patterns of microbial communities (Nemergut et al., 
2013; Stegen et al., 2015). The traditional viewpoint of the “everything 
is everywhere, but the environment selects” theory suggests that species 
are selected by the environment, known as environmental filtering (De 
Wit and Bouvier, 2006). In contrast, the neutral theory holds that there 
is no difference in suitability or niche among species, and that dispersal 
processes or ecological drift are crucial in determining microbial 
community structure at various spatial and temporal scales (Chave, 
2004; Venkataraman et al., 2015). Although both niche and neutral 
processes contribute to the formation of microbial biogeographic 
patterns (Yuan et  al., 2019), debates persist regarding the relative 
influence of deterministic and stochastic processes in shaping microbial 
communities within a specific ecosystem. For instance, Jiao et al. (2021) 
proposed that fungal communities in arid ecosystems are mainly 
influenced by stochastic processes, while Guo et al. (2020) found that 
microbial communities are mainly governed by deterministic processes 
with strong connections to nutrients.

Prokaryotes and eukaryotes show notable distinctions in their 
morphological traits, growth rates, environmental adjustability and life 
strategies (Hannula et  al., 2017). An intriguing finding is that the 
microbial community assembly mechanisms differ from prokaryotes 
to fungi subjected to the same environmental perturbation. For 
example, a study on the continental scale reported the distinct 
biogeographic patterns across microbial taxonomic types in forest soils 
in which bacterial community variations were regulated by dispersal 
limitation, while the fungal communities were mainly influenced by 
environmental filtering (Ma et al., 2017). However, Wang et al. (2022) 
reported that both soil bacterial and fungal community assembly were 
governed by deterministic processes during environmental disturbance. 
Given the significance of prokaryotes and fungi on soil ecosystems and 
possible distinct community assemblies, studies focusing on a certain 
community provide insufficient evidence for ecologists to characterize 
microbial biogeographic patterns. In addition, the relative contributions 
of deterministic and stochastic processes on microbial biogeographic 
patterns do not differ in taxonomic types, but are also habitat-
dependent (Jiao et al., 2022). Therefore, distinguishing differences in 
community assembly of different taxonomic types across habitats is 
vital to disentangle the relative importance of deterministic and 
stochastic processes in regulating microbial biogeography (Sutherland 
et al., 2013; Zhou and Ning, 2017) and is still subject to ongoing debate 
(Antwis et al., 2017).

Deterministic processes of microbial community assembly are 
consisted by environmental filtering and biotic interactions etc. 
(Chase and Myers, 2011; Isabwe et al., 2018; García‐Girón et al., 2020). 
Environmental filtering has been proved to have numerous effects on 
mircobial community assembly in a set of studies while the 
contributions of biotic interactions still remains rare understand. 
Biotic interactions, such as competition and mutualisms, could lead 
to niche partitioning of community members under environmental 
heterogeneity (Bruno et al., 2003; Kraft et al., 2008). For example, the 
limited availability of nutrients and the negative impact of one species 
on another has been proposed as a factor that restricts the coexistence 
of various species (Becker et al., 2012; Li et al., 2020), which affects the 
biogeographic patterns of microorganisms (Zhou and Ning, 2017). 
Metabolic cross-feeding among microorganisms could induce species 
coexistence that leads to aggregations of microbes (Zelezniak et al., 
2015). The priority effect can give an advantage to the first organisms 
to settle, allowing them to adapt and control resources, making it 
difficult for later organisms to establish themselves or survive 
(Gillespie, 2004; De Meester et al., 2016). These studies suggest that 
microbial interspecific interactions affect community assembly via 
diverse mechanisms. In addition, it is believed that the significant 
amount of unexplained variation in the change of microbial 
communities can be  attributed to the diverse range of microbial 
co-occurrence networks and diverse network topological features (Shi 
et al., 2016; Fierer, 2017). Despite their importance in community 
assembly, biological interspecific interactions receive less 
understanding relative to environmental selection.

Previous studies investigating microbial biogeography typically 
sampled plots in a single region, which may limit the assessment of 
the impact of climate and terrain features. In this study, we examined 
the community assembly mechanisms of prokaryotic and fungal 
communities in 69 plots among three regions with different climates 
and elevations within a typical arid region in northwest China. The 
sample sites were further divided into two habitats according to the 
dominant plant species: Poaceae and Artemisia. Specifically, we aimed 
to answer two questions: (i) Does a distinct community assembly 
mechanism exist across taxonomic types, habitat types and spatial 
distance? (ii) What are the main (environmental selection, dispersal 
limitation and biotic interaction) factors driving these changes?

Considering the significantly different traits [e.g., cell size affect 
the dispersal capacity (Shurin et al., 2009; Farjalla et al., 2012)] and 
environmental sensitivity between prokaryotes and fungi, 
we hypothesized that (1) the differences in the relative contributions 
of deterministic and stochastic processes between taxonomic types 
would be larger than that between habitat types or spatial distance; (2) 
Environmental filtering (deterministic processes) have more effects 
on prokaryotes community assembly, dispersal limitation (stochastic 
processes) is the dominant factor shaping fungal community assembly, 
and biotic interactions contribute to both microorganisms.

2. Method and materials

2.1. Site description and soil sampling

The experimental area is located in northwest China between 
95°1′ and 108°18′E latitude and 36°40′ and 40°19′N longitude and is 
the predominant arid area in China. The mean annual temperature in 
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the region ranges from 1.6 to 7°C, and the mean annual precipitation 
ranges from 50 to 250 mm (Table 1).

Three arid regions were selected from different provinces, 
including Haixi in Qinghai Province (HX), Jiuquan in Gansu Province 
(JQ) and Etoke in Inner Mongolia Province (ET) in northwest China 
(Figure 1A). The climates are classified as continental plateau climate, 
continental arid climate and temperate arid climate for HX, JQ and 
ET, respectively. The ecosystem types are alpine desert grassland, 
desert grassland and desert grassland for HX, JQ and ET, respectively. 
The soil types are alpine meadow soil, aeolian sand soil and meadow 
chestnut soil for HX, JQ and ET, respectively. In each study region 
(Figure 1B), 24 soil plots were selected (only 21 plots in JQ due to the 
loss of 3 samples) and all plots were divided into two habitats based 
on the dominant plant species: Artemisia habitat (37 plots) dominated 
by Artemisia ordosica and Artemisia annua and Poaceae habitat (32 
plots) dominated by Stipa spp., Leymus spp., and Achnatherum spp. 
The distance between sites in a region is approximately 20 km. At each 

plot 5 soil cores (5 cm diametre) from the upper 10 cm were sampled 
and combined into a single bulk sample, and a total of 69 bulk samples 
were collected for further analysis. All soil samples were sampled in 
August 2020 and divided into two subsamples and transported to the 
laboratory on ice. One subsample was stored at 4°C for measuring soil 
physicochemical properties, and the other was kept at −80°C for 
measuring the soil microbial matrix.

2.2. Soil physicochemical, plant properties 
and climate factors

The air-dried soils were used to measure soil total organic matter 
(SOM) with K2Cr2O7–H2SO4 titrimetric method, soil total nitrogen 
(TN) and total phosphorus (TP) contents using Kjeldahl digestion and 
vanadium molybdate yellow colorimetry, respectively. Fresh soils 
(2.5 g) were extracted with 2 M KCl and filtered to determine soil 

TABLE 1 The environmental variations across three regions and two habitats.

Environmental 
variables

JQ (21) ET (24) HX (24) Artemisia (37) Poaceae (32)

MAP-G (mm) 29.02 ± 9.3b 43.79 ± 7.51a 43.52 ± 8.27a 34.95 ± 10.17B 41.19 ± 10.4A

MAP (mm) 170.19 ± 54.77b 251.2 ± 41.79a 267.96 ± 51.25a 208.78 ± 62.31B 243.41 ± 62.76A

MAT-G (°C) 19.24 ± 2.69a 19.69 ± 0.42a 12.13 ± 2.6b 6.35 ± 3.28A 6.31 ± 3.65A

MAT (°C) 8.24 ± 2.35b 8.5 ± 0.38a 2.51 ± 2.27c 17 ± 4.02A 16.74 ± 4.41A

PET-G (mm/month) 1527.99 ± 66.15a 1241.02 ± 102.81c 1498.90 ± 41.77b 1417.76 ± 151.28A 1418.40 ± 151.30A

PET (mm/month) 911.10 ± 39.51a 701.29 ± 74.91c 894.66 ± 27.76b 835.07 ± 110.80A 829.32 ± 109.42A

AI-G 59.10 ± 15.16a 28.22 ± 4.66c 35.85 ± 9.22b 38.80 ± 15.32A 41.97 ± 17.81A

AI 5.99 ± 1.43a 2.78 ± 0.50c 3.47 ± 0.95b 3.87 ± 1.56A 4.15 ± 1.83A

NDVI 0.32 ± 0.22a 0.32 ± 0.12a 0.27 ± 0.12a 0.22 ± 0.08B 0.5 ± 0.1A

Altitude (m) 1,545 ± 475b 1,392 ± 94b 3,052 ± 392a 2036 ± 844A 1974 ± 848A

SBD (g·cm−3) 1.48 ± 0.14b 1.55 ± 0.11a 1.47 ± 0.11b 1.51 ± 0.12A 1.49 ± 0.13A

SWC (%) 5.89 ± 2.53b 7.97 ± 3.41a 10.16 ± 4.6a 8.03 ± 3.54A 8.24 ± 4.93A

FWC (%) 44.27 ± 5.14a 41.4 ± 4.06b 44.67 ± 4.22a 43.17 ± 4.47A 43.93 ± 5.06A

KS (cm·min−1) 0.08 ± 0.07a 0.11 ± 0.08a 0.09 ± 0.08a 0.11 ± 0.08A 0.07 ± 0.05B

EC (μs·cm−1) 0.31 ± 0.24a 0.15 ± 0.07b 0.33 ± 0.23a 0.24 ± 0.18A 0.31 ± 0.26A

Salinity (g·kg−1) 0.16 ± 0.12a 0.07 ± 0.04b 0.31 ± 0.33a 0.18 ± 0.25A 0.18 ± 0.18A

Clay (%) 5.18 ± 2.93a 3.35 ± 1.53b 5.05 ± 2.43ab 4.03 ± 2.28B 5.51 ± 2.56A

Silt (%) 23.88 ± 15.29a 16.45 ± 6.97a 24.76 ± 14.04a 18.32 ± 11.16B 28.61 ± 13.79A

Sand (%) 70.94 ± 18.04ab 80.2 ± 8.38a 70.19 ± 16.32b 77.66 ± 13.24A 65.88 ± 16.29B

pH 8.19 ± 0.35b 7.85 ± 0.27c 8.47 ± 0.34a 8.17 ± 0.43A 8.16 ± 0.39A

SOM (g·kg−1) 10.87 ± 5.57b 7.41 ± 4.41c 13.26 ± 4.4a 9.97 ± 4.31A 11.63 ± 7.01A

TN (g·kg−1) 0.81 ± 0.37b 0.91 ± 0.44b 1.33 ± 0.5a 1.12 ± 0.51A 0.82 ± 0.38B

NH4
+ (mg·kg−1) 5.6 ± 3a 5.54 ± 3.81ab 4.58 ± 5.58b 4.72 ± 3.53A 6.3 ± 5.5A

NO3
− (mg·kg−1) 3.81 ± 1.28c 5.13 ± 0.64a 4.61 ± 1.1b 4.6 ± 1.11A 4.44 ± 1.24A

AP (mg·kg−1) 9.14 ± 7.27b 11.94 ± 6.01a 15.2 ± 7.34a 12.91 ± 7.27A 10.73 ± 7.03A

AK (mg·kg−1) 127.56 ± 66.15b 151.26 ± 41.14b 186.25 ± 81.24a 146.06 ± 62.65A 177.92 ± 76.2A

The numbers in parenthesis are the site numbers of each group; the lowercase letters (a–c) indicate significant differences across the three regions; the capital letters (A–B) indicate significant 
differences between the two habitats. MAP-G, MAT-G, PET-G, AI-G, average precipitation, air temperature, potential evapotranspiration and arid index from June to September. MAP, MAT, 
PET, AI annual average precipitation, air temperature, potential evapotranspiration and arid index. NDVI, normalized vegetation index; SBD, soil bulk density; SWC, soil water content; FWC, 
filed water content; KS, hydraulic conductivity conductivity; EC, electricity conductivity; SOM, soil organic content; TN, soil total nitrogen content; TP, soil total phosphorus content; NH4

+, 
soil ammonium nitrogen contentcontent; NO3−, soil nitrate nitrogen content; AP, soil available phosphorus content; AK, soil available potassium content.
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nitrate (NO3
−) and ammonium (NH4

+) contents using Clever Chem 
200+. The particle size composition was determined using a laser 
particle size analyser (mastersizer2000, Malvern Instruments, 
United Kingdom). Soil electrical conductivity was measured with a 
DDS-307 conductivity metre (INESA Scientific Instrument, China). 
Soil pH was determined using a Sartorius pH meter (PB-10, from 
Sartorius Corporate Administration GmbH in Göttingen, Germany) 
by mixing fresh soil with water in a 1:5 ratio. The soil soluble salt 
content (Salinity) was measured using the residue drying method 
(Zhang et al., 2019). Soil water content (SWC) was determined as the 
ratio of the mass of water in the soil sample to the mass of dried soil. 
Field water capacity (FWC) was calculated as the maximum water 
content divided by the volume of the soil core. Soil bulk density (SBD) 
was measured by dividing the mass of oven-dried soil by the volume 
of the soil core. The saturated hydraulic conductivity (KS) was 
estimated in the laboratory using a permeameter (Eijkelkamp 
Agrisearch Equipments, The Netherlands), and the constant head 
method was used. Data for mean annual air temperature (MAT) and 
mean annual precipitation (MAP) were obtained from the WorldClim 
database, while the potential evapotranspiration was obtained from a 
monthly 1 km dataset (Shouzhang, 2022). The arid index was 
calculated by dividing the potential evapotranspiration by the mean 
annual air temperature. The plant index was calculated using 
Normalized Difference Vegetation Index (NDVI), which was derived 
from the atmospherically corrected bi-directional surface reflectance 
data obtained from NASA Land Processes Distributed Active Archive 
Center’s MOD13Q1 products. The data, which had been masked to 
exclude water, clouds, heavy aerosols, and cloud shadows, was used to 
compute NDVI between 9 May and 30 September. The NDVI was 
calculated using the following equation.

 
NDVI NIR RED

NIR RED
�

�
�

� �
� �

where ÁNIR  is the reflectance in the near-infrared band 
(841–876 nm), ÁRed  is the reflectance in the red band 
(620–670 nm).

2.3. DNA extraction and sequence 
processing

Soil DNA was extracted from 0.5 g of frozen soil samples using the 
FastDNA SPIN Kit for Soil by MP Biomedicals. The quantity of the 
extracted DNA was determined using a NanoDrop  2000 
Spectrophotometer from Bio-Rad Laboratories. Polymerase chain 
reaction (PCR) was performed using specific primer sets for 
prokaryotes (515F and 806R) and fungi (ITS1F and ITS2) targeting 
the ITS1 region. The resulting amplicon was sequenced using the 
Illumina MiSeq platform and generated approximately 250 bp 
paired-end reads. The raw sequencing data was analyzed using the 
QIIME2 software (version 2020.6; Bolyen et al., 2019). The DADA2 
plugin in QIIME2 (Callahan et al., 2016) was used to filter low-quality 
sequences and eliminate chimeras, producing amplicon sequence 
variants (ASVs). These ASVs were classified using the QIIME2 naive 
Bayes classifier (Bokulich et al., 2018), which was trained on 99% 
operational taxonomic units from the SILVA rRNA database (v 132) 
(Quast et al., 2012) for prokaryotes and the UNITE database for fungi 
(Nilsson et al., 2019). The raw sequence results were presented in 
Supplementary Table S1.

A B

FIGURE 1

(A) The locations of the sample sites. (B) The distributions of sampling plots in each regions.
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2.4. Data filtering and alpha and beta 
diversity analysis

To ensure a more stringent analysis, ASVs with small counts in a 
limited number of samples were removed given they are likely the 
results of sequencing errors or low-level contamination. The analysis 
was based on filtered data, which only included ASVs that occurred 
in at least 20% of the total samples and had at least 4 counts per 
sample. The diversity of both the prokaryotic and fungal communities 
was calculated using the Shannon index for each individual sample. 
The community dissimilarity, or beta diversity, was estimated using 
the Bray-Curtis index and was visualized using principal coordinate 
analysis (PCoA). The statistical differences were calculated using a 
permutation analysis of variance (PERMANOVA). All of these 
analyses were performed using R 4.0.1 with the vegan package 
(Oksanen et al., 2013).

2.5. Microbial co-occurrences network 
analyses

The co-occurrence networks in previous studies were often 
constructed using subjective thresholds, leading to a lack of objectivity. 
To address this issue, a random matrix theory (RMT)-based approach 
was employed to construct prokaryotic and fungal co-occurrence 
networks objectively using the Molecular Ecological Network 
Analyses Pipeline1 and the constructed networks were visualized using 
Gephi2. The network analysis followed the protocols established in 
studies by Deng et al. (2012) and Zhou et al. (2010). The network’s 
topological features were evaluated to determine its complexity. 
Keystone nodes were identified based on hub nodes including network 
hubs, connectors, and module hubs, which were classified based on 
within-module connectivity (Zi) and among-module connectivity (Pi) 
(Olesen et al., 2007).

Cohesion, a metric based on abundance-weighted pairwise 
correlations, was calculated using the protocol outlined by Herren and 
Mcmahon (2017). The metric is calculated as follows:

 
cohesion abundance conneceness

i

m
i i� �

�
�

1

where m is the total number of taxa in a community and i is the 
taxa in each sample.

This protocol measures the interconnectedness of a community 
using a Pearson correlation matrix. The strength of each pairwise 
correlation was verified using a null model. The average positive and 
negative null model-corrected correlations were calculated for each 
sample to obtain a connectedness matrix. Finally, positive and negative 
cohesions were calculated for each sample using the above formula. 
Cohesion reflects the degree of cooperative behavior or competition 
within a community and can serve as a proxy for the strength of biotic 
interactions if taxa are subject to similar environmental drivers and 

1 http://ieg2.ou.edu/MENA

2 https://gephi.org/

influenced differently by species interactions. The community 
cohesions were then used for analyses to determine βNTI and 
stability measurements.

2.6. Community assembly analysis

We adopted a null-model-based approach to assess the role of 
niche versus neutral processes in shaping microbial communities. This 
approach has been widely used in previous studies (Stegen et al., 2015; 
Zhou and Ning, 2017). The Mantel correlogram (using the “mantel.
correlog” function in the R package “vegan”) was employed to estimate 
the correlation between niche differences (calculated as the pairwise 
Euclidean distances of the environmental optima of ASVs) and 
phylogenetic distances. The stronger signal observed at short 
phylogenetic distances (as shown in Supplementary Figure S2) 
indicated the potential for quantifying phylogenetic turnover 
using βNTI.

The standardized effect size of this correlation, known as the beta 
nearest taxon index (βNTI), was calculated as the difference between 
the observed value and the mean of the null distribution, normalized 
by its standard deviation (Stegen et  al., 2013, 2015).To further 
distinguish the processes driving community assembly, we calculated 
the Bray–Curtis based Raup-Crick metric (RCbray). This metric is 
based on the difference between the observed Bray–Curtis 
dissimilarity and its null distribution (Dini-Andreote et  al., 2015; 
Stegen et al., 2015). Values of |βNTI| <2 and RCbray > 0.95 indicate 
dispersal limitation, |βNTI| <2 and RCbray < −0.95 indicate 
homogenizing dispersal, and |βNTI| <2 and |RCbray| < 0.95 indicate 
drift. We  estimated the relative importance of each process by 
calculating the fraction of values of βNTI and RCbray within 
different categories.

2.7. Distance-based Moran’s eigenvector 
maps

Spatial variables are determined by distance-based Moran’s 
eigenvector maps (dbMEM), which were called principal coordinates 
of neighbor matrices (PCNM; Borcard and Legendre, 2002), is a 
standard method for partitioning the effects of the space in ecological 
studies. First of all, a matrix of dbMEM variables was constructed 
based on latitude and longitude with the adespatial package (Dray 
et al., 2017).

The Moran’s I  test (Moran, 1950) was utilized to assess the 
spatial correlation, and only eigenfunctions from dbMEM that 
showed a positive correlation were included in further analysis 
(Borcard et al., 2011). Redundancy between Hellinger-transformed 
prokaryotic and fungal community data (ASVs) and geographic 
coordinates were used to determine if there are significant linear 
trend. If there were significant linear trends, detrended analysis 
was conducted because linear trends masked all other spatial 
structures during variation partitioning analysis (VPA). The 
significance of the coefficients of the detrended matrix regression 
on the dbMEM matrix was tested by conducting 999 permutations 
of the residuals (Borcard et al., 2011). The selection of significant 
dbMEM variables was performed through a forward selection 
process, based on the 999 Monte Carlo permutation procedure of 
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the residuals, using the “packfor” package (Blanchet et al., 2008). 
The variation partitioning analysis was then conducted using the 
significant dbMEM variables, in order to determine the relative 
impact of dispersal limitation on the dissimilarity of 
microbial communities.

2.8. Statistical analysis

The driving factors of microbial community dissimilarity can 
be divided into three categories, environmental variables, spatial 
variables (significant dbMEM) and biotic interactions (network 
topological features). The environmental characteristics included 
soil properties (i.e., pH and SWC), plant index (i.e., NDVI) and 
climatic factors (i.e., MAT and MAP). Random forest analysis was 
conducted to estimate the explained variations in driving factors to 
prokaryotic and fungal alpha diversity across two biomes based on 
R2 with the randomforest package (Liaw and Wiener, 2002). The 
significance and impact of each predictor were determined based on 
the increase in mean square error (MSE) using 999 permutation tests 
with the rfpermute package (Archer, 2016). Meanwhile, the best 
regression model based on AIC was used to select the primary 
factors with the stats package. Then, the line regression model was 
used to determine their relative influence on microbial Shannon 
diversity. The distance-decay relationship was measured using 
ordinary least-squares regressions and Mantel tests between 
geographic distances and community dissimilarities, and the 
geographic distances among sites were calculated with the geosphere 
package (Hijmans et  al., 2017). The connection between the 
variability in the environment and the differences in the microbial 
communities was calculated using a linear model analysis based on 
distances with the ecodist package (Goslee and Urban, 2007). The 
significance of the slope in the relationship between the distance and 
dissimilarity was evaluated through 999 permutations of residuals. 
Finally, the relative impact of environmental factors, spatial 
variables, and biological interactions were determined through a 
variation partitioning analysis (VPA), which was performed using 
the vegan package (Oksanen et al., 2013).

3. Results

3.1. Variations in environmental properties

As shown in Table  1, most of the 26 environmental variables 
significantly differed across the three regions and two habitats. JQ had 
the lowest MAP and MAP-G but the highest PET, PET-G, AI and 
AI-G. HX had the lowest MAT and MAT-G. No significant differences 
in NDVI were observed among three regions. The altitude of HX was 
significantly higher than that of the other regions. HX had the highest 
soil nutrient contents including SWC, SOM, TN, NH4

+, AP and AK, 
while ET had the highest NO3

− contents. Soil textures also differed 
among three regions. ET had the largest percentage of sand 
(80.2 ± 8.38%) and silt (16.45 ± 6.97%) while the lowest percentage of 
clay (3.35 ± 1.53%). The highest EC, salinity and pH were 
observed in HX.

Artemisia and Poaceae had significant differences in MAP and 
MAP-G while no differences in MAT, MAT-G, PET-G, PET, AI-G and 

AI. The NDVI was significantly higher in Poaceae (0.5 ± 0.1) than in 
Artemisia (0.22 ± 0.08). Poaceae had higher NDVI, SWC, EC, Clay, 
Silt, SOM, NH4

+, and AK contents. Artemisia had higher KS, sand, 
TN, NO3-and AP contents. No significant differences in pH were 
observed between habitats.

3.2. Microbial community composition and 
diversity across three region and two 
habitats

The most abundant prokaryotic phyla were Actinobacteria, 
Proteobacteria, Acidobacteria and Crenarchaeota, which showed 
distinct distributions among regions but showed no significant 
differences between biomes (Supplementary Figure S1B). 
Acidobacteria and Crenarchaeota were more abundant in HX, while 
the relative abundance of Gemmatimonadetes was significantly higher 
in ET (Supplementary Figure S1A). Fungal communities also 
exhibited compositional differences in regions but no differences in 
habitats. JQ harboured a relatively higher abundance of Ascomycota 
but had the least abundance of Mortierellomycota, which was 
highest in ET.

Shannon’s diversity measurements indicated that prokaryotic 
communities in the ET were the highest diverse, followed by JQ and 
HX (Figure 2A). Poaceae had a greater α-diversity than Artemisia 
(Figure 2C). We found similar patterns in the fungal matrix, and ET 
had a greater α-diversity in comparison with other regions (Figure 2B). 
Shannon’s diversity in Poaceae was greater than that in Artemisia 
(Figure 2D).

PCoA results showed that prokaryotic communities in HX were 
far away from those in the other samples (Figure 2E), while no distinct 
separation among the three fungal communities was observed 
(Figure 2F). We observed no apparent separation of prokaryotic and 
fungal communities between Poaceae and Artemisia (Figures 2G,H). 
The results of the PERMANOVA test showed that the composition of 
both the soil prokaryotic and fungal communities were significantly 
different across the three regions (R2 = 0.15, p < 0.001 for prokaryotic 
communities; R2 = 0.06, p < 0.001 for fungal communities) and 
between two habitats (R2 = 0.02, p < 0.001 for prokaryotic communities; 
R2 = 0.06, p < 0.001 for fungal communities).

3.3. Soil microbial community assembly 
patterns

The null model revealed distinct assembly patterns between types 
of microorganisms but similar patterns between regions or habitats. 
As shown in Figure 3, prokaryotic community assembly in all regions 
and habitats was mainly regulated by homogeneous selection, with 
some impact from ecological drift. For fungi, community assembly 
was largely influenced by ecological drift. This was indicated by the 
βNTI and Rcbray values, with most of the βNTI values for prokaryotes 
less than−2 and most for fungi between−2 and 2, and the absolute 
values of Rcbray less than 0.95 for both prokaryotes and fungi 
(Figure 3). These findings suggest that deterministic processes were 
the primary drivers of prokaryotic community assembly, while 
stochastic processes played a more prominent role in fungal 
community assembly.
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3.4. The intra–and cross–kingdom 
microbial co-occurrence network

We found distinct differences in network structures between 
prokaryotic and fungal communities (Figure 4A), whereas relatively 
few differences were found among regions and between biomes 
(Supplementary Table S2). Meanwhile, we observed more edges and 
higher average degrees in prokaryotic networks while more modules 

in fungal networks, indicating that prokaryotic networks were more 
connected and fungal networks were more modularized 
(Supplementary Table S2). We then explored the biotic interactions of 
soil microorganisms by establishing cross-kingdom co-occurrence 
networks consisting of prokaryotes and fungal taxa based on 
correlation matrix. These results showed that fungi-prokaryotes 
network in Artemisia was more connected and clustered than that 
in Poaceae.

A C E G

B D F H

FIGURE 2

Alpha diversity of prokaryotic and fungal phyla across three regions (A,B) and two habitats (C,D). PCoA of prokaryotic and fungal phyla across three 
regions (E,F) and two habitats (G,H). *, **, *** indicate significance at the 0.05, 0.01 and 0.001 levels, respectively.

FIGURE 3

The βNTI, rcbray and the fraction of turnover in the assembly of soil microorganism communities.
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3.5. Primary predictor of soil microbial 
species diversity

We found that most network attributes played crucial roles in both 
prokaryotic and fungal α-diversity, and network vertices had the 
largest observed effect (Figure 5A). Of the environmental factors, only 
salinity and MAT affected both prokaryotic and fungal α-diversity. 
Clay and EC had significant effects on the prokaryotic diversity of 
Artemisia and Poaceae, respectively. SOM and KS influenced the 
fungal diversity of Poaceae and Artemisia, respectively (Figure 5A). 
The species diversity between prokaryotes and fungi had no significant 
relationship, whereas prokaryotic network vertex increased linearly 
with fungal network vertex in Artemisia (Figure 5B). Based on the 
results of the best regression model with the lowest AIC, we found that 
network attributes including vertex, positive cohesion, negative 

cohesion were the best predictors for microbial Shannon diversity 
(Figure 5C).

3.6. The relative contributions of 
environmental variables, geographic 
distance and biotic interactions To soil 
microbial community dissimilarity

The results of Mantel Tests showed biotic interactions (Inter) had 
higher correlations than environmental matrix (Env) and geographic 
distance (Disp) with prokaryotic community dissimilarity across all 
three regions and two habitats (Figure 6A). In the entire dataset and 
in the Artemisia habitat, the dissimilarity of the fungal community 
showed stronger associations with geographic distance, whereas the 

A B

C

D

FIGURE 4

(A) Co-occurrence network of prokaryotic and fungal communities across three regions and two habitats. (B) Cross-kingdom co-occurrence 
networks of prokaryotic and fungal communities, blue nodes represent fungal taxa, and red nodes represent prokaryotic taxa. (C) Keystone nodes of 
cross-kingdom network. (D) Topological features of the cross-kingdom network. n indicates vertex, L indicates edge, AvgD indicates average degree, 
AvgCC indicates average cluster coefficient, Heter indicates network heterogeneity, N-Cor indicates the number of negative correlations, and P-Cor 
indicates the number of positive correlations.
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strongest correlations were observed between biotic interactions and 
fungal community dissimilarity across three regions and in the 
Proaceae habitat (Figure 6A). Furthermore, the results of the Variance 
Decomposition Analysis showed that biotic interactions played a 
greater role in shaping both the prokaryotic and fungal communities 
than environmental factors and geographic distance, both in the 
overall dataset, habitats of Poaceae and Artemisia (Figure 6B) and 
three regions (Supplementary Figure S3).

The results of Partial Mantel Test showed that biotic interactions 
showed the strongest correlation with both bray–curtis dissimilarity 
(bray) and phylogenetic turnover (βNTI) of prokaryotic community, 
followed by environmental factors and geographic distance. Fungal 
βNTI showed the highest correlation with biotic interactions but 
fungal bray-curits dissimilarity had higher correlations with 
geographic distance than biotic interactions (Table 2).

4. Discussion

Soil prokaryotes and fungi play primary but distinct roles in 
ecosystem functioning. Therefore, we separately analyzed them to 
identify common and differential impacts on species diversity, 
community turnover, and assembly patterns on a regional scale. 
Deterministic and stochastic processes are the two most common 
drivers that shape soil microbial diversity and community structure 
(the diversity and biogeography of soil bacterial communities). 
Multiple approaches have been used previously to estimate their 
relative contributions in soil metacommunities, including variation 
partitioning analysis (Duan et al., 2022), distance-decay relationships 

(Hanson et al., 2012) and null-model partitioning (Gotelli, 2000). 
Given that no certain strategy is inherently superior, we have here 
adopted diverse methods to determine the relative influence of 
environmental selection and dispersal limitation on the formation of 
the microbial community to increase the confidence in the results.

4.1. Distinct community assembly patterns 
of the soil prokaryotes and fungi.

The null model analysis based on βNTI and Rcbray could 
distinguish the relative contributions of the deterministic process and 
stochastic process in governing the microbial communities (Stegen 
et al., 2013, 2015). In this study, most of the βNTI values for prokaryotes 
were less than−2 and most for fungi were between−2 and 2, suggesting 
that deterministic processes played a stronger role in prokaryotic 
community assembly, whereas fungal community assembly was 
structured by stochastic processes (Figure 3). |Rcbray| < 0.95 further 
indicated that stochastic processes were dominanted by ecological drift 
(random proliferation or death of microorganisms). Such differential 
responses across taxonomic types have also been observed in various 
habitats, such as soil (Powell et al., 2015), glaciers (Jiang et al., 2018), 
sediment (Zhao et  al., 2022) and freshwater (Logares et  al., 2018). 
Despite significant differences in soil physicochemical properties and 
spatial distance (Table 1), microorganisms belonging to the same groups 
of soil microorganisms showed similar assembly modes in different 
geographic regions or habitats (Figure 3). These results support our first 
hypothesis that taxonomic type plays a greater role than habitats types 
and geographic distance on soil microbial community structures.

A B C

FIGURE 5

Driving factors of microbial α-diversity across habitats. (A) Contributions of different factors to prokaryotic and fungal α-diversity based on random 
forest model. Circle size and colour represent the variables’ importance. The abbreviations of environmental variables are in accordance with the 
Table 1. (B) Relationships of α-diversity and vertex number between prokaryotic and fungal communities were estimated using linear least-squares 
regression. (C) Relationships between microbial α-diversity and the predominant factors based on the results of the best regression model with the 
least AIC. Pos Cohesion indicates positive cohesion, Neg Cohesion indicates the negative cohesion.
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One possible explanation for the differential response of 
prokaryotic and fungal communities to geographic distance and 
habitat types is that they have distinct sensitivities to environmental 
selection. In addition, increasing environmental heterogeneity can 
result in greater dissimilarity among microbial communities with 
increasing geographic scale. The VPA and Partial mantel test showed 
that changes in habitat environments have a greater impact on 
community turnover in prokaryotes compared to fungi (Figure 6; 
Supplementary Table S3), suggesting that prokaryotes are more 
susceptible to environmental changes than fungi. Moreover, the 
differences in dispersal capacity of the two groups of microorganisms 
could also foster the distinct assembly models. Propagule sizes of fungi 
are typically within the range 5–50 μm diametre (Ingold, 1971) while 
those of bacteria are usually within 0.2–20 μm diametre (Young, 
2006), organisms with smaller propagule size and larger number are 

typically thought to be easier to spread. Mantel test between distance 
and community structure revealed the differences of Prokaryotes and 
fungi in dispersal capacity (Figure 6A). However, large spatial distance 
could weaken the difference in dispersal capacity in soil between 
prokaryotes and fungi. A survey reported the limited impact of 
dispersal capacity in determining the distributions of soil bacteria at 
global scale (Bahram et al., 2018). The weaker correlations between 
geographic distances and both prokaryotic and fungal dissimilarities 
further supported less effects of dispersal limitation on soil microbial 
community assembly at region or bigger scale (Figure 6A).

Ecological drift, a stochastic process referring to random births and 
deaths in a population (Vellend, 2010), is expected to be more significant 
with decreasing population size because random demographic events play 
a significant role in smaller populations (Fodelianakis et al., 2021). Fungi 
with a smaller population size relative to prokaryotes hence tend to 

A B

FIGURE 6

(A) Mantel correlations between bray–curtis dissimilarity and βNTI of microorganism and the distance matrix of environmental variables (Env), 
geographic distance (Disp) and biotic interactions (Inter); (B) The variation partition analysis of prokaryotic and fungal communities that can 
be explained by environmental filtering (Env), dispersal limitation (Disp) and biological interactions (Inter).

TABLE 2 Partial mantel test results showing comparisons between microbial community dissimilarity, βNTI, and a one-distance matrix while controlling 
for the other two distance matrices.

Organism Test Parameter Inter (Controlling 
for Env and Disp)

Env (Controlling 
for Inter and Disp)

Disp (Controlling 
for Env and Inter)

Prokaryotes βNTI r 0.40 0.24 0.038

P <0.001 <0.001 0.06

Bray r 0.34 0.33 0.10

P <0.001 <0.001 <0.001

Fungi βNTI r 0.21 0.13 0.08

P <0.001 <0.001 <0.001

Bray r 0.08 0.05 0.14

P <0.001 <0.001 <0.001

Inter, Env and Disp indicate the distance matrix of network attributes, environmental variables and geographic locations, respectively.
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be affected by the greater role of ecological drift. The results based on null 
model analysis also suggested that fungal community assembly was 
dominated by ecological drift. The large part of the unexplained variance 
of fungal community turnover in VPA may also be  due to the 
unmeasurable stochastic process.

4.2. The effects of environmental filtering 
on microbial community assembly

A recent global-scale study reported that environmental filtering 
was the predominant driver of soil prokaryotic community turnover 
(Fierer and Jackson, 2006). We also observed that the community 
turnover of prokaryotes showed a more significant relationship with 
the aggregate environmental matrix than that of fungi (Figure 5B). 
VPA revealed that the environmental matrix explained more variance 
in community dissimilarity of prokaryotes than that of fungi, further 
demonstrating the great role of environmental selection in prokaryotic 
community assembly (Figure 6A). These results further indicate that 
deterministic processes (environmental filtering) have more impacts 
on soil prokaryotic community, while soil fungal community were 
mainly structured by stochastic processes.

The results of the Mantel analysis indicated that salinity was the 
strongest factor affecting both the βNTI and β-diversity 
(Supplementary Table S3), which is consistent with results found in 
desert (Zhang et al., 2019) and lake ecosystems (Yang et al., 2019). The 
OLS model indicated that higher salinity levels were associated with a 
reduction in species diversity. This negative relationship possibly due 
to the heightened extracellular osmolarity resulting from excessive salt 
concentrations (Oren, 2011; Rath and Rousk, 2015), which could cause 
the death or inactivity of taxa that cannot tolerate osmotic stress 
(Pontarp et al., 2012). Furthermore, significant correlations were found 
between the prokaryotic community and multiple environmental 
variables (e.g., MAT and AP, Figure 5A; Supplementary Table S3), 
suggesting that the formation of prokaryotic communities is influenced 
by various niches. However, it should be noted that a considerable 
amount of variation in the soil microbial community observed in our 
study was not accounted for. Possible reasons for this include 
unmeasured environmental variables, the limited scope of our 
sampling, and potential biotic interactions (Jiao et al., 2020).

4.3. The effects of biotic interactions on 
microbial alpha and beta diversity

Notably, evaluations of the relative contributions of determinism to 
community assembly largely concentrate on the set of environmental 
factors. However, the dominant processes refer not only to environmental 
selection but also to all ecological forces driving community turnover, 
such as biotic interactions (Singh et al., 2009). The results of the null 
model showed that homogeneous selection was dominant in the 
prokaryotic community assembly, which demonstrated that the biotic 
interactions existed (Danczak et al., 2018). However, elucidating microbial 
spatial–temporal distribution from the perspective of interspecific 
interactions is a tremendous challenge because it is more difficult to 
directly quantify the interactive patterns of microorganisms relative to 
macroorganisms. A typical way of including species interactions into an 
explanation matrix is to apply correlation-based cooccurrence network 
analysis (Layeghifard et al., 2017).

Random forest analysis revealed that network topological parameters 
had better prediction performance in both prokaryotic and fungal alpha 
diversity than environmental variables (Figure 5A). Linear regression 
analysis found that the number of network vertices and positive cohesion 
could explain more variance in microbial Shannon diversity (Figure 5C). 
These findings indicated that network topological features could be an 
effective proxy for biotic interactions and that biotic interactions play a 
critical role in driving microbial alpha diversity.

Biotic interactions have been reported a predominant factor in the 
β-diversity of diazotrophic and bacterial communities in paddy soil 
(Gao et al., 2019). In this study, the network topological feature matrix 
had stronger correlations with prokaryotic and fungal β diversity 
(Figure  6A), which indicates biotic interactions may also be  the 
primary driving in structuring soil prokaryotic and fungal community 
composition. In addition, we found network attributes had stronger 
correlations (Figure 6A; Table 2) and explained more variance of both 
prokaryotic and fungal community structure dissimilarity and 
phylogenetic turnover than environmental factors and geographic 
distance (Figure  6B). These results suggested that taxa-taxa 
interactions may play a more important roles than environmental 
filtering or dispersal limitation in both soil prokaryotic and fungal 
community assembly processes.

Community complexity was investigated by relating a recently 
published measure of cohesion of biotic interactive network to 
ecological structuring processes (Herren and Mcmahon, 2017). 
Negative cohesion of microbial co-occurrence network has been 
reported to be significantly correlated with the β-diversity of bacteria 
(Herren and Mcmahon, 2017). A study in aquifers found that 
microbial communities with more negative cohesion values 
experienced lower turnover and were more likely to regulated by 
homogenizing selection, whereas less complexity communities 
experienced higher turnover and susceptibility to stochastic processes 
(Danczak et  al., 2018). In this study, we  also found significantly 
positive correlations between negative cohesion and βNTI values of 
prokaryotic communities in arid ecosystem (Supplementary Figure S4), 
indicating not only the connectivity but also the complexity of biotic 
interactions could affect the microbial community turnover and 
community assembly processes.

A previous study reported that fungal richness could affect the 
relative contributions of deterministic and stochastic to bacterial 
community assembly processes (Jiao et al., 2021). Complex interactions 
between soil fungi and prokaryotes in the cross-kingdom network were 
observed in this study (Figure 4). These results may indicate that the 
assembly mechanism of prokaryotic and fungal communities was 
influenced not only by intra-kingdom interaction but also by the biotic 
interactions across taxonomic types (Duan et  al., 2022). Despite no 
significant correlation between the species diversity of fungi and 
prokaryotes in Artemisia habitat, we  found significant positive 
correlations between their vertex (Figure 5B), which implies the potential 
facilitation or symbiosis between prokaryotic and fungal taxa (Duan et al., 
2022). Therefore, estimation based only on intra-kingdom biotic 
interactions may introduce bias, and incorporation of cross-kingdom 
interaction could facilitate the understanding of community assembly, 
especially in networks with intense inter-kingdom interactions.

It is noteworthy that the effects of biotic interactions were estimated 
based on the microbial co-occurrence network, which is only a putative 
species interaction network yielding statistical associations between 
taxa (Carr et al., 2019). It cannot be too prudent to infer the actual 
microbial interactions and their ecological meaning. Despite 
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unavoidable defects, the spatiotemporal dynamics of co-occurrence 
networks hold the potential to affect community assembly and 
topological features could serve as an effective proxy to estimate the 
relationships between biotic interactions and ecological processes.

Together, our study revealed the potential of microbial biotic 
interactions to serve as predictors or interpreters for prokaryotic and 
fungal α-and β-diversity, built the linkage between diverse microbial 
co-occurrence network topological features and mechanisms 
underlying microbial community assembly, and highlighted the 
importance of biotic interactions including intra-and cross–kingdom 
interactions, in regulating microbial diversity and microbial 
community assembly processes across terrestrial ecosystems.

5. Conclusion

Our study found that taxonomic differences had a greater impact 
on community assembly than habitat types or geographic distances. 
Prokaryotic community assembly was mainly determined by 
deterministic processes, while fungal community assembly was 
dominated by stochastic processes. Biotic interactions and 
environmental filtering were crucial factors in driving deterministic 
processes for soil prokaryotic communities, with salinity being the 
main environmental factor affecting prokaryotic diversity and 
community structure. The strongest correlation with microbial 
diversity and community structure was observed with network vertex 
and cohesion, which served as a proxy for biotic interactions. 
Ecological drift, rather than dispersal limitation, was the main factor 
driving the stochastic assembly of fungi. This study provides explicit 
evidence to reveal the major roles of biotic interactions in shaping the 
assembly processes of microbial communities in region scales. 
Considering the significant effects of interspecific interactions on 
microbial community assembly patterns, future empirical and 
theoretical research are needed to disentangle how taxa-taxa 
interactions structuring microbial species diversity and community 
structure facing the increasing global climate changes.

Data availability statement

The data presented in the study are deposited in the Genome 
Sequence Archive repository (https://ngdc.cncb.ac.cn/gsa/s/
YzfCA6B1), accession number PRJCA014156.

Author contributions

CD investigated plant ecological diversity and collected soil 
samples. YL contributed to soil characterization, statistical analysis, 
data visualization, and wrote the first draft. DS and JH improved the 
manuscript. All authors contributed to the article and approved the 
submitted version.

Funding

This work was supported by the Qinghai Province “Kunlun 
talents high-end innovation and entrepreneurship talents” project, 
Independent Research Project of Basic Scientific Research Business 
Expenses of Qinghai Academy of Animal Husbandry and Veterinary 
Sciences (mky-2019-03), “Study on the ecological environment 
monitoring and evaluation system of grassland water-saving in 
western pastoral areas (2016YFC040030705)” of National key 
research and development project.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1134440/
full#supplementary-material

References
Antwis, R. E., Griffiths, S. M., Harrison, X. A., Aranega-Bou, P., Arce, A., 

Bettridge, A. S., et al. (2017). Fifty important research questions in microbial ecology. 
FEMS Microbiol. Ecol. 93:44. doi: 10.1093/femsec/fix044

Archer, E.. (2016). RfPermute: estimate permutation p-values for random forest 
importance metrics. R Package Version No. 1.

Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., 
Bodegom, P. M., et al. (2018). Structure and function of the global topsoil microbiome. 
Nature 560, 233–237. doi: 10.1038/s41586-018-0386-6

Becker, J., Eisenhauer, N., Scheu, S., and Jousset, A. (2012). Increasing antagonistic 
interactions cause bacterial communities to collapse at high diversity. Ecol. Lett. 15, 
468–474. doi: 10.1111/j.1461-0248.2012.01759.x

Blanchet, F. G., Legendre, P., and Borcard, D. (2008). Forward selection of explanatory 
variables. Ecology 89, 2623–2632. doi: 10.1890/07-0986.1

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., et al. 
(2018). Optimizing taxonomic classification of marker-gene amplicon sequences with 

QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17. doi: 10.1186/
s40168-018-0470-z

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., 
et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science 
using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9

Borcard, D., Gillet, F., and Legendre, P.. (2011). Numerical Ecology with R. Berlin: 
Springer.

Borcard, D., and Legendre, P. (2002). All-scale spatial analysis of ecological data by 
means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68. doi: 
10.1016/S0304-3800(01)00501-4

Bruno, J. F., Stachowicz, J. J., and Bertness, M. D. (2003). Inclusion of facilitation into 
ecological theory. Trends Ecol. Evol. 18, 119–125. doi: 10.1016/S0169-5347(02)00045-9

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and 
Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon 
data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869

https://doi.org/10.3389/fmicb.2023.1134440
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://ngdc.cncb.ac.cn/gsa/s/YzfCA6B1
https://ngdc.cncb.ac.cn/gsa/s/YzfCA6B1
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1134440/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1134440/full#supplementary-material
https://doi.org/10.1093/femsec/fix044
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1111/j.1461-0248.2012.01759.x
https://doi.org/10.1890/07-0986.1
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1016/S0304-3800(01)00501-4
https://doi.org/10.1016/S0169-5347(02)00045-9
https://doi.org/10.1038/nmeth.3869


Liu et al. 10.3389/fmicb.2023.1134440

Frontiers in Microbiology 13 frontiersin.org

Carr, A., Diener, C., Baliga, N. S., and Gibbons, S. M. (2019). Use and abuse of 
correlation analyses in microbial ecology. ISME J. 13, 2647–2655. doi: 10.1038/
s41396-019-0459-z

Chase, J. M., and Myers, J. A. (2011). Disentangling the importance of ecological 
niches from stochastic processes across scales[J]. Philosophical transactions of the Royal 
Society B: Biological sciences. 366, 2351–2363.

Chave, J. (2004). Neutral theory and community ecology. Ecol. Lett. 7, 241–253. doi: 
10.1111/j.1461-0248.2003.00566.x

Danczak, R. E., Johnston, M. D., Kenah, C., Slattery, M., and Wilkins, M. J. (2018). 
Microbial community cohesion mediates community turnover in unperturbed aquifers. 
Msystems 3, e18–e66. doi: 10.1128/mSystems.00066-18

De Meester, L., Vanoverbeke, J., Kilsdonk, L. J., and Urban, M. C. (2016). Evolving 
perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146. doi: 
10.1016/j.tree.2015.12.009

De Wit, R., and Bouvier, T. (2006). Everything is everywhere, but, the environment 
selects'; what did baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758. 
doi: 10.1111/j.1462-2920.2006.01017.x

Deng, Y., Jiang, Y., Yang, Y., He, Z., Luo, F., and Zhou, J. (2012). Molecular ecological 
network analyses. BMC Bioinformatics 13, 1–20. doi: 10.1186/1471-2105-13-113

Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D., and Salles, J. F. (2015). Disentangling 
mechanisms that mediate the balance between stochastic and deterministic processes in 
microbial succession. Proc. Natl. Acad. Sci. 112, E1326–E1332. doi: 10.1073/pnas.1414261112

Dray, S., Blanchet, G., Borcard, D., Guenard, G., Jombart, T., Larocque, G., et al. 
(2017). Adespatial: Multivariate Multiscale Spatial Analysis. R Package Version 0.0-9.

Duan, Y., Wang, X., Wang, L., Lian, J., Wang, W., Wu, F., et al. (2022). Biogeographic 
patterns of soil microbe communities in the deserts of the Hexi corridor, Northern 
China. Catena 211:106026. doi: 10.1016/j.catena.2022.106026

Farjalla, V. F., Srivastava, D. S., Marino, N. A., Azevedo, F. D., Dib, V., Lopes, P. M., 
et al. (2012). Ecological determinism increases with organism size. Ecology 93, 
1752–1759. doi: 10.1890/11-1144.1

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil 
microbiome. Nat. Rev. Microbiol. 15, 579–590. doi: 10.1038/nrmicro.2017.87

Fierer, N., and Jackson, R. B. (2006). The diversity and biogeography of soil bacterial 
communities. Proc. Natl. Acad. Sci. 103, 626–631. doi: 10.1073/pnas.0507535103

Fodelianakis, S., Valenzuela-Cuevas, A., Barozzi, A., and Daffonchio, D. (2021). Direct 
quantification of ecological drift at the population level in synthetic bacterial 
communities. ISME J. 15, 55–66. doi: 10.1038/s41396-020-00754-4

Gao, Q., Yang, Y., Feng, J., Tian, R., Guo, X., Ning, D., et al. (2019). The spatial scale 
dependence of diazotrophic and bacterial community assembly in paddy soil. Glob. Ecol. 
Biogeogr. 28, 1093–1105. doi: 10.1111/geb.12917

García‐Girón, J., Heino, J., García‐Criado, F., et al. (2020). Biotic interactions hold the 
key to understanding metacommunity organisation[J]. Ecography. 43, 1180–1190.

Gillespie, R. (2004). Community assembly through adaptive radiation in Hawaiian 
spiders. Science 303, 356–359. doi: 10.1126/science.1091875

Goslee, S. C., and Urban, D. L. (2007). The ecodist package for dissimilarity-based 
analysis of ecological data. J. Stat. Softw. 22, 1–19. doi: 10.18637/jss.v022.i07

Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology 
81, 2606–2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2

Guo, J., Ling, N., Chen, Z., Xue, C., Li, L., Liu, L., et al. (2020). Soil fungal assemblage 
complexity is dependent on soil fertility and dominated by deterministic processes. New 
Phytol. 226, 232–243. doi: 10.1111/nph.16345

Hannula, S. E., Morriën, E., de Hollander, M., van der Putten, W. H., van Veen, J. A., 
and de Boer, W. (2017). Shifts in rhizosphere fungal community during secondary 
succession following abandonment from agriculture. ISME J. 11, 2294–2304. doi: 
10.1038/ismej.2017.90

Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., and Martiny, J. B. (2012). 
Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. 
Microbiol. 10, 497–506. doi: 10.1038/nrmicro2795

Herren, C. M., and Mcmahon, K. D. (2017). Cohesion: a method for quantifying the 
connectivity of microbial communities. ISME J. 11, 2426–2438. doi: 10.1038/
ismej.2017.91

Hijmans, R. J., Williams, E., Vennes, C., and Hijmans, M. R. J. (2017). Package 
‘Geosphere’. Spherical Trigonometry No. 1.

Ingold, C.. (1971). T Fungal Spores. Their Libération and Dispersal. T Fungal Spores. 
Their Liberation and Dispersal, No. 4.

Isabwe, G. A. C., Neuer, M. G., de las Vecillas Sanchez, L., et al. (2018). Hypersensitivity 
reactions to therapeutic monoclonal antibodies: phenotypes and endotypes[J]. Journal 
of Allergy and Clinical Immunology. 142, 159–170.

Jiang, Y., Lei, Y., Yang, Y., Korpelainen, H., Niinemets, Ü., and Li, C. (2018). Divergent 
assemblage patterns and driving forces for bacterial and fungal communities along a glacier 
forefield chronosequence. Soil Biol. Biochem. 118, 207–216. doi: 10.1016/j.soilbio.2017.12.019

Jiao, S., Chu, H., Zhang, B., Wei, X., Chen, W., and Wei, G. (2022). Linking soil fungi 
to bacterial community assembly in arid ecosystems. IMeta 1:e2. doi: 10.1002/imt2.2

Jiao, S., Yang, Y., Xu, Y., Zhang, J., and Lu, Y. (2020). Balance between community 
assembly processes mediates species coexistence in agricultural soil microbiomes across 
eastern China. ISME J. 14, 202–216. doi: 10.1038/s41396-019-0522-9

Jiao, S., Zhang, B., Zhang, G., Chen, W., and Wei, G. (2021). Stochastic community 
assembly decreases soil fungal richness in arid ecosystems. Mol. Ecol. 30, 4338–4348. 
doi: 10.1111/mec.16047

Kraft, N. J., Valencia, R., and Ackerly, D. D. (2008). Functional traits and niche-based 
tree community assembly in an Amazonian forest. Science 322, 580–582. doi: 10.1126/
science.1160662

Layeghifard, M., Hwang, D. M., and Guttman, D. S. (2017). Disentangling interactions 
in the microbiome: a network perspective. Trends Microbiol. 25, 217–228. doi: 10.1016/j.
tim.2016.11.008

Li, X., Garbeva, P., Liu, X., Klein Gunnewiek, P. J., Clocchiatti, A., Hundscheid, M. P., 
et al. (2020). Volatile-mediated antagonism of soil bacterial communities against fungi. 
Environ. Microbiol. 22, 1025–1035. doi: 10.1111/1462-2920.14808

Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. R 
News 2, 18–22.

Logares, R., Tesson, S. V., Canbäck, B., Pontarp, M., Hedlund, K., and Rengefors, K. 
(2018). Contrasting prevalence of selection and drift in the community structuring of 
bacteria and microbial eukaryotes. Environ. Microbiol. 20, 2231–2240. doi: 
10.1111/1462-2920.14265

Ma, B., Dai, Z., Wang, H., Dsouza, M., Liu, X., He, Y., et al. (2017). Distinct biogeographic 
patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental 
scale in eastern China. Msystems 2, e116–e174. doi: 10.1128/mSystems.00174-16

Martiny, J. B. H., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., 
Green, J. L., et al. (2006). Microbial biogeography: putting microorganisms on the map. 
Nat. Rev. Microbiol. 4, 102–112. doi: 10.1038/nrmicro1341

Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika 37, 
17–23. doi: 10.1093/biomet/37.1-2.17

Neilson, J. W., Quade, J., Ortiz, M., Nelson, W. M., Legatzki, A., Tian, F., et al. (2012). 
Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, 
Chile. Extremophiles 16, 553–566. doi: 10.1007/s00792-012-0454-z

Nemergut, D. R., Schmidt, S. K., Fukami, T., O’Neill, S. P., Bilinski, T. M., Stanish, L. F., 
et al. (2013). Patterns and processes of microbial community assembly. Microbiol. Mol. 
Biol. Rev. 77, 342–356. doi: 10.1128/MMBR.00051-12

Nielsen, U. N., and Ball, B. A. (2015). Impacts of altered precipitation regimes on soil 
communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Chang. Biol. 
21, 1407–1421. doi: 10.1111/gcb.12789

Nilsson, R. H., Larsson, K., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., 
Schigel, D., et al. (2019). The UNITE database for molecular identification of fungi: 
handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–
D264. doi: 10.1093/nar/gky1022

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. 
(2013). Package ‘Vegan’. Community Ecology Package, Version, No. 2, pp. 1–295.

Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007). The modularity of 
pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896. doi: 10.1073/
pnas.0706375104

Oren, A. (2011). Thermodynamic limits to microbial life at high salt concentrations. 
Environ. Microbiol. 13, 1908–1923. doi: 10.1111/j.1462-2920.2010.02365.x

Pointing, S. B., and Belnap, J. (2012). Microbial colonization and controls in dryland 
systems. Nat. Rev. Microbiol. 10, 551–562. doi: 10.1038/nrmicro2831

Pontarp, M., Canbäck, B., Tunlid, A., and Lundberg, P. (2012). Phylogenetic analysis 
suggests that habitat filtering is structuring marine bacterial communities across the 
globe. Microb. Ecol. 64, 8–17. doi: 10.1007/s00248-011-0005-7

Powell, J. R., Karunaratne, S., Campbell, C. D., Yao, H., Robinson, L., and Singh, B. K. 
(2015). Deterministic processes vary during community assembly for ecologically 
dissimilar taxa. Nat. Commun. 6, 1–10. doi: 10.1038/ncomms9444

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012). The 
SILVA ribosomal RNA gene database project: improved data processing and web-based 
tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219

Rath, K. M., and Rousk, J. (2015). Salt effects on the soil microbial decomposer 
community and their role in organic carbon cycling: a review. Soil Biol. Biochem. 81, 
108–123. doi: 10.1016/j.soilbio.2014.11.001

Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J., and Firestone, M. K. (2016). The 
interconnected rhizosphere: high network complexity dominates rhizosphere 
assemblages. Ecol. Lett. 19, 926–936. doi: 10.1111/ele.12630

Shouzhang, P.. (2022). 1 km Monthly Potential Evapotranspiration Dataset in China 
(1990-2021) T.P.D.C. National. (National Tibetan Plateau Data Center).

Shurin, J. B., Cottenie, K., and Hillebrand, H. (2009). Spatial autocorrelation and 
dispersal limitation in freshwater organisms. Oecologia 159, 151–159. doi: 10.1007/
s00442-008-1174-z

Singh, B. K., Dawson, L. A., Macdonald, C. A., and Buckland, S. M. (2009). Impact of 
biotic and abiotic interaction on soil microbial communities and functions: a field study. 
Appl. Soil Ecol. 41, 239–248. doi: 10.1016/j.apsoil.2008.10.003

https://doi.org/10.3389/fmicb.2023.1134440
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1038/s41396-019-0459-z
https://doi.org/10.1038/s41396-019-0459-z
https://doi.org/10.1111/j.1461-0248.2003.00566.x
https://doi.org/10.1128/mSystems.00066-18
https://doi.org/10.1016/j.tree.2015.12.009
https://doi.org/10.1111/j.1462-2920.2006.01017.x
https://doi.org/10.1186/1471-2105-13-113
https://doi.org/10.1073/pnas.1414261112
https://doi.org/10.1016/j.catena.2022.106026
https://doi.org/10.1890/11-1144.1
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1073/pnas.0507535103
https://doi.org/10.1038/s41396-020-00754-4
https://doi.org/10.1111/geb.12917
https://doi.org/10.1126/science.1091875
https://doi.org/10.18637/jss.v022.i07
https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
https://doi.org/10.1111/nph.16345
https://doi.org/10.1038/ismej.2017.90
https://doi.org/10.1038/nrmicro2795
https://doi.org/10.1038/ismej.2017.91
https://doi.org/10.1038/ismej.2017.91
https://doi.org/10.1016/j.soilbio.2017.12.019
https://doi.org/10.1002/imt2.2
https://doi.org/10.1038/s41396-019-0522-9
https://doi.org/10.1111/mec.16047
https://doi.org/10.1126/science.1160662
https://doi.org/10.1126/science.1160662
https://doi.org/10.1016/j.tim.2016.11.008
https://doi.org/10.1016/j.tim.2016.11.008
https://doi.org/10.1111/1462-2920.14808
https://doi.org/10.1111/1462-2920.14265
https://doi.org/10.1128/mSystems.00174-16
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1093/biomet/37.1-2.17
https://doi.org/10.1007/s00792-012-0454-z
https://doi.org/10.1128/MMBR.00051-12
https://doi.org/10.1111/gcb.12789
https://doi.org/10.1093/nar/gky1022
https://doi.org/10.1073/pnas.0706375104
https://doi.org/10.1073/pnas.0706375104
https://doi.org/10.1111/j.1462-2920.2010.02365.x
https://doi.org/10.1038/nrmicro2831
https://doi.org/10.1007/s00248-011-0005-7
https://doi.org/10.1038/ncomms9444
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1016/j.soilbio.2014.11.001
https://doi.org/10.1111/ele.12630
https://doi.org/10.1007/s00442-008-1174-z
https://doi.org/10.1007/s00442-008-1174-z
https://doi.org/10.1016/j.apsoil.2008.10.003


Liu et al. 10.3389/fmicb.2023.1134440

Frontiers in Microbiology 14 frontiersin.org

Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., et al. 
(2013). Quantifying community assembly processes and identifying features that impose 
them. ISME J. 7, 2069–2079. doi: 10.1038/ISMEJ.2013.93

Stegen, J. C., Lin, X., Fredrickson, J. K., and Konopka, A. E. (2015). Estimating and 
mapping ecological processes influencing microbial community assembly. Front. 
Microbiol. 6:370. doi: 10.3389/fmicb.2015.00370

Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., Beissinger, S. R., Benton, T., 
Cameron, D. D., et al. (2013). Identification of 100 fundamental ecological questions. J. 
Ecol. 101, 58–67. doi: 10.1111/1365-2745.12025

Vellend, M. (2010). Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 
183–206. doi: 10.1086/652373

Venkataraman, A., Bassis, C. M., Beck, J. M., Young, V. B., Curtis, J. L., Huffnagle, G. B., 
et al. (2015). Application of a neutral community model to assess structuring of the 
human lung microbiome. MBio 6, e2214–e2284. doi: 10.1128/mBio.02284-14

Wang, W., Wang, H., Cheng, X., Wu, M., Song, Y., Liu, X., et al. (2022). Different 
responses of bacteria and fungi to environmental variables and corresponding 
community assembly in Sb-contaminated soil. Environ. Pollut. 298:118812. doi: 
10.1016/j.envpol.2022.118812

Yang, J., Jiang, H., Dong, H., and Liu, Y. (2019). A comprehensive census of lake 
microbial diversity on a global scale. Sci. China Life Sci. 62, 1320–1331. doi: 10.1007/
s11427-018-9525-9

Young, K. D. (2006). The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 
70, 660–703. doi: 10.1128/MMBR.00001-06

Yuan, H., Mei, R., Liao, J., and Liu, W. (2019). Nexus of stochastic and deterministic 
processes on microbial community assembly in biological systems. Front. Microbiol. 
10:1536. doi: 10.3389/fmicb.2019.01536

Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., and 
Patil, K. R. (2015). Metabolic dependencies drive species co-occurrence in diverse 
microbial communities. Proc. Natl. Acad. Sci. 112, 6449–6454. doi: 10.1073/
pnas.1421834112

Zhang, K., Shi, Y., Cui, X., Yue, P., Li, K., Liu, X., et al. (2019). Salinity is a key 
determinant for soil microbial communities in a desert ecosystem. Msystems 4, e218–
e225. doi: 10.1128/mSystems.00225-18

Zhao, B., Jiao, C., Wang, S., Zhao, D., Jiang, C., Zeng, J., et al. (2022). Contrasting assembly 
mechanisms explain the biogeographic patterns of benthic bacterial and fungal communities 
on the Tibetan plateau. Environ. Res. 214:113836. doi: 10.1016/j.envres.2022.113836

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., and Zhi, X. (2010). Functional molecular 
ecological networks. MBio 1, e110–e169. doi: 10.1128/mBio.00169-10

Zhou, J., and Ning, D. (2017). Stochastic community assembly: does it matter in 
microbial ecology? Microbiol. Mol. Biol. Rev. 81, e2–e17. doi: 10.1128/
MMBR.00002-17

https://doi.org/10.3389/fmicb.2023.1134440
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1038/ISMEJ.2013.93
https://doi.org/10.3389/fmicb.2015.00370
https://doi.org/10.1111/1365-2745.12025
https://doi.org/10.1086/652373
https://doi.org/10.1128/mBio.02284-14
https://doi.org/10.1016/j.envpol.2022.118812
https://doi.org/10.1007/s11427-018-9525-9
https://doi.org/10.1007/s11427-018-9525-9
https://doi.org/10.1128/MMBR.00001-06
https://doi.org/10.3389/fmicb.2019.01536
https://doi.org/10.1073/pnas.1421834112
https://doi.org/10.1073/pnas.1421834112
https://doi.org/10.1128/mSystems.00225-18
https://doi.org/10.1016/j.envres.2022.113836
https://doi.org/10.1128/mBio.00169-10
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1128/MMBR.00002-17

	Biotic interactions contribute more than environmental factors and geographic distance to biogeographic patterns of soil prokaryotic and fungal communities
	1. Introduction
	2. Method and materials
	2.1. Site description and soil sampling
	2.2. Soil physicochemical, plant properties and climate factors
	2.3. DNA extraction and sequence processing
	2.4. Data filtering and alpha and beta diversity analysis
	2.5. Microbial co-occurrences network analyses
	2.6. Community assembly analysis
	2.7. Distance-based Moran’s eigenvector maps
	2.8. Statistical analysis

	3. Results
	3.1. Variations in environmental properties
	3.2. Microbial community composition and diversity across three region and two habitats
	3.3. Soil microbial community assembly patterns
	3.4. The intra–and cross–kingdom microbial co-occurrence network
	3.5. Primary predictor of soil microbial species diversity
	3.6. The relative contributions of environmental variables, geographic distance and biotic interactions To soil microbial community dissimilarity

	4. Discussion
	4.1. Distinct community assembly patterns of the soil prokaryotes and fungi.
	4.2. The effects of environmental filtering on microbial community assembly
	4.3. The effects of biotic interactions on microbial alpha and beta diversity

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material

	 References

