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Farmlands fertilized with livestock manure-derived amendments have become a 
hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding 
water connects rice paddies with surrounding water bodies, such as reservoirs, 
rivers, and lakes. However, there is a knowledge gap in understanding whether and 
how manure-borne ARGs can be  transferred from paddy soil into field ponding 
water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-
01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding 
water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, 
Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and 
Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in 
both paddy soil and field ponding water showed robust correlations with ARGs. 
Network co-occurrence analysis showed that mobile genetic elements (MGEs) 
were strongly correlated with ARGs. Our findings highlight that manure-borne 
ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate 
to the surrounding waterbodies through field ponding water, posing a threat to 
public health. This study provides a new perspective for comprehensively assessing 
the risk posed by ARGs in paddy ecosystems.
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1. Introduction

In recent years, the contamination of antibiotic resistance genes (ARGs) caused by misuse 
and overuse of antibiotics in healthcare and animal husbandry has attracted worldwide concern 
(Martínez, 2008; Zhu et al., 2013; Rodriguez-Mozaz et al., 2015; Zhang et al., 2022). Livestock 
manure is a hotspot that harbors abundant ARGs under selective pressure of antibiotics (Zhu 
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et al., 2013; Jia et al., 2017; Congilosi and Aga, 2021; Macedo et al., 
2022). The overuse of chemical fertilizers results in severe soil 
hardening, agricultural nonpoint source pollution, and disruption of 
the ecological balance (Jiao et al., 2017; Zou et al., 2020). Therefore, in 
recent years, some policies have been formulated and implemented to 
alleviate these problems. Of these, the well-known one is that “organic 
fertilizers partially replace chemical fertilizers” (Jiao et  al., 2017; 
Zhang et al., 2021b). Consequently, amounts of livestock manure or 
manure-derived amendments as organic fertilizer have been poured 
into farmland, but the contamination of antibiotics and ARGs in 
farmland has become increasingly severe, attracting increasing 
attention (Ding et  al., 2019; Pu et  al., 2020; Zhang et  al., 2022). 
Farmlands fertilized with manure or manure-derived amendments 
have become important sources of ARG contamination in other 
environments (Zheng et al., 2018; Zhang et al., 2021b). ARGs can 
be transferred from soil to vegetables and fruits, posing a direct threat 
to human health (Marti et al., 2013; Zhu et al., 2017; Mei et al., 2021; 
Zhang et al., 2022). The emergence and spread of antibiotic resistance 
kill approximately 4.95 million people worldwide annually (Ding 
et al., 2022).

Paddy fields are among the largest farmlands in the world. 
Compared with other farmlands, paddy fields are more convenient for 
transferring substances in the soil to other environments through field 
ponding water. Due to irrigation with reclaimed wastewater and 
fertilization with livestock manure amendments, the rice paddy fields 
have become a hotspot of antibiotics and ARGs (Awad et al., 2015; 
Zhou et al., 2019; Guo et al., 2021; Zhang et al., 2021b). Although the 
abundance, diversity and environmental behaviors of ARGs were well 
investigated in these studies, the interaction between the paddy soil 
and field ponding water was poorly understood. If ARGs can 
be transferred into field ponding water from paddy soil, then they will 
easily disseminate to the surrounding waterbodies, such as reservoirs, 
rivers, and lakes, some of which are important sources of drinking 
water (Zhang et al., 2021a). Consequently, the main objective of this 
study was to elucidate whether and how ARGs could be transferred 
into field ponding water from paddy soils fertilized with livestock 
manure. Microbial community is the key factor which determines the 
environmental behavior of ARGs (Hu et al., 2017; Guo et al., 2018; 
Zheng et al., 2018; Zhang et al., 2021a). Therefore, the relationship 
between the microbiome and resistome was investigated in our study. 
Further, to evaluate the direct threat of ARGs to human health, 
we  assessed the correlation between ARGs and opportunistic 
pathogens detected in paddy soil and field ponding water. Horizontal 
gene transfer (HGT) plays an important role in ARG dissemination 
among different bacterial species (Aguila-Arcos et  al., 2017; 
Lerminiaux and Cameron, 2019; Schmidt et al., 2022). Finally, the 
correlation between the mobile genetic elements (MGEs) and ARGs 
was determined.

2. Materials and method

2.1. Sampling site and sample collection

Soil was collected from a rice paddy field located at the Jiangsu 
Academy of Agricultural Sciences, Nanjing, China (32°01N, 118°52E). 
The agricultural soil in this area is classified as yellow-brown soil 
according to the Chinese Soil Taxonomy and as Udalf according to the 

US Soil Taxonomy. Commercial chicken manure was purchased from 
a farmer’s market in Nanjing. Fifty kilograms soil sample was mixed 
with 2.5 kg livestock manure thoroughly. This soil mixture was aged 
for 3 months from March 7, 2021 to June 6, 2021. In our study, six 
customized plastic pots were designed to conduct pot experiments 
(Supplementary Figure S1). Seven kilograms soil/manure mixture 
filled in each plastic pot. Six plastic pots were set as six repetitions. 
Sterile water without ARGs detection was used to steep the soil for 
7 days. Eighteen healthy rice seedings with similar growth condition 
were selected to transplant. Before transplant, the roots of these rice 
seedings were washed with five times. The flushing water was 
collected. An inoculating loop was soaked in the flushing water, and 
then lined on the surface of solid plate of Luria-Bertani broth to detect 
the microbes. When bacteria were not detected, three rice seedings 
were transplanted in each pot. After transplant, the six repetitive 
plastic pots were placed in an artificial climate chamber ZRG-1000A 
(Binglin, China). Gas cylinders filled with sterile air were linked to an 
artificial climate chamber to continuously supply fresh air. This 
avoided contamination by airborne ARGs. During the experiment, the 
sterile water without ARGs detection was used to irrigate the soil 
keeping the water 5 cm above the soil surface. No organic or inorganic 
fertilizers were used during the whole experimental period. The 
temperature was kept at 30°C in daytime and 25°C in night. The 
photoperiod was kept 12 h form 6:00 A.M. to 18:00 P.M every day. The 
light intensity was 30,000 lux. Field ponding water and soil samples 
were collected on June 28, July 21, August 22, September 27, and 
October 22. Each time 200 ml of field ponding water was collected 
from each pot. The water samples were stored in plastic bottles and 
immediately transported to the laboratory and stored at 
4°C. Nitrocellulose membranes (0.45 μm) were used to obtain the 
microorganisms through filtering the water sample. The obtained 
microbes were stored at −20°C. Each time 50 g of paddy soil from 
each pot was collected. After collection, the soil samples were 
immediately transported to the laboratory and stored at −20°C in 
Ziplock bags for extracting DNA. Eighteen ARGs and two MGEs were 
detected in the commercial chicken manure in this study 
(Supplementary Table S1). Among which, eight ARGs aadA1, bla1, 
catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01, and two MGEs 
tnp-01 and -02 were selected as target detecting genes. These eight 
manure-derived ARGs and two MGEs were not detected in the paddy 
soil before mixed with the chicken manure.

2.2. DNA extraction and real-time 
quantitative polymerase chain reaction 
(RT-qPCR)

DNA in paddy soil was extracted from 1.0 g of soil using the 
FastDNA Spin Kit for soil (MP Biomedical, United States), according 
to the manufacturer’s instructions. Field ponding water DNA was 
extracted using a PowerWater DNA isolation kit (Mobio, 
United  States), according to the manufacturer’s instructions. The 
purity, quality, and quantity of extracted DNA were determined using 
the method described by Li et al. (2017). RT-qPCR was conducted 
using a CFX96 Touch Real-time PCR System (Bio-Rad, United States). 
The primers information of ARGs, MGEs, and 16S rRNA were shown 
in Supplementary Table S1. The mixtures were reacted in a 20 μl 
system. All qPCR reactions were conducted in triplicate for each 
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primer set, including the non-template negative control. PCR 
amplification was conducted according to the following program: 
95°C for 10 min to activate enzymes, followed by 40 cycles at 95°C for 
30 s to denature DNA, then annealing at 60°C for 30 s. When the Ct 
value was less than 31 for more than two positive replicates, 
amplification was considered valid (Su et al., 2015). The absolute copy 
numbers of ARGs and MGEs were normalized to the absolute 16S 
rRNA gene copy numbers (Looft et al., 2012; Wang et al., 2014; Guo 
et al., 2018; Zhang et al., 2021b).

2.3. Amplicon high-throughput sequencing 
and data processing

To characterize bacterial communities, the V4 region of the 16S 
rRNA gene was amplified using the primer set 515F/806R (Bates et al., 
2011). The low-quality reads were trimmed using CUTADAPT 
version 1.9.1. According to the unique barcodes, the sample data were 
separated from the reads. After removing the barcodes and primers, 
raw reads were generated. The chimeric sequences of raw reads were 
identified and removed using the UCHIME algorithm (Edgar et al., 
2011) to yield effective tags (clean reads). UPARSE, version 7.0.1001 
was used to cluster the clean sample reads. Sequences with a threshold 
similarity of 97% were binned into operational taxonomic units. The 
National Center for Biotechnology Information (NCBI) database was 
selected to deposit all 16S rRNA gene sequences generated in this 
study under the accession number PRJNA934052.

2.4. Data analysis and visualization

All mathematical operations were performed in Microsoft Office 
365. The Sankey diagram was depicted with Origin 9.0. The 
co-occurrence network was analyzed and visualized using R software 
with the graph package. To detect significant correlations, 
we constructed a correlation matrix by calculating all possible pairwise 
Spearman’s rank correlations between the ARGs and bacterial taxa, 
ARGs and opportunistic pathogens, and ARGs and MGEs. The 
effective Spearman’s correlation coefficient (ρ) was set at > 0.8 on the 
premise of p < 0.05.

3. Results and discussion

3.1. Dynamic distribution of ARGs in rice 
paddy soil and field ponding water

Figure 1 shows that eight ARGs, aadA1, bla1, catA1, cmlA1-01, 
cmx(A), ermB, mepA, and tetPB-01, were both detected in paddy soil 
and field ponding water. These genes confer resistance to 
aminoglycoside, beta-lactamase, MLSB (macrolide, lincosamide, and 
streptogramin B), multidrugs, and tetracycline. In addition, two 
MGEs, tnp-01 and -02, were also detected in both paddy soil and field 
ponding water. These results indicate that ARGs can be  easily 
transferred into field ponding water from paddy soils. Water bodies 
such as reservoirs, rivers, and lakes surrounded by paddy fields suffer 
from ARGs contamination (Yang et al., 2017; Wang et al., 2020; Zhang 
et  al., 2021b). In these studies, the contamination sources mainly 

attributed to domestic sewage, livestock wastewater, aquaculture 
wastewater, and medical wastewater. Field ponding water is an 
important connection between paddy fields and surrounding 
waterbodies (Zhang et al., 2021a). Although the rice paddy fields have 
become a hotspot of antibiotics and ARGs because of irrigation with 
reclaimed wastewater and fertilization with livestock manure 
amendments, the rice paddy fields have become a hotspot of 
antibiotics and ARGs (Awad et al., 2015; Zhou et al., 2019; Guo et al., 
2021; Zhang et al., 2021b), the interaction between the paddy soil and 
field ponding water has not been demonstrated yet. Our study verifies 
that field ponding water is also an important contamination source of 
ARGs to other large-scale water bodies, through facilitating the 
dissemination of manure-derived ARGs in paddy ecosystems.

The abundance of ARGs in paddy soil was three orders of 
magnitude higher than that in field ponding water (Figure2). The 
paddy soil fertilized with chicken manure was the source of the 
antibiotic resistome in field ponding water. The number of genes 
in paddy soil increased from June to October. Specifically, the 
abundances of aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, 

FIGURE 1

Sankey diagram depicting the distribution of antibiotic resistance 
genes (ARGs) in paddy soil fertilized with livestock manure and field 
ponding water (FPW).

FIGURE 2

The dynamic abundances of ARGs in paddy soil fertilized with 
livestock manure amendment and field ponding water (FPW). The 
error bars represent ± SD (n = 6).
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mepA, and tetPB-01 in October were 5.68-, 5.03-, 5.22-, 4.35-, 
2.18-, 5.49-, 12.27-, and 12.44-fold higher than those in June, 
respectively. Compared with other ARGs, the genes catA1, aadA1 
and cmlA1-01 were more abundant in the paddy soil. The genes 
in field ponding water increased from June to August but 
decreased from August to October. The abundance of genes 
cmlA1-01, aadA1 and ermB were higher than the other ARGs. The 
reasons for the two different tendencies of the antibiotic resistome 
in paddy soil and field ponding water are discussed in the 
following sections.

3.2. Microbial mechanisms driving the 
dynamic pattern of antibiotic resistome

Although ARGs can exist in the environment in the form of 
eDNA, microbes are predominant in the prevalence of antibiotic 
resistome (Beaber et al., 2004; Martínez, 2008). The microbiome 
determines the pattern of antibiotic resistome (Hu et al., 2017; Guo 
et al., 2018; Zheng et al., 2018; Zhang et al., 2021a). In this study, 
the absolute abundances of 16S rRNA in paddy soil and field 
ponding water showed a similar tendency to that of the total ARGs 
(Figure 3).

The core bacterial taxa that intensively influenced the ARGs 
pattern have been also investigated in several previous studies 
through co-occurrence network analysis. Hu et al. (2017) found 
that the phyla Cyanobacteria, Actinobacteria, Gemmatimonadetes, 
and Crenarchaeota were the most likely ARG hosts in farmland 
with wheat and maize rotation. Wang et al. (2018) reported that the 
genera Bradyrhizobium, Acidobacteria Gp1, and Gemmatimonas 
were strongly correlated with ARGs in a dryland located in Jiangxi, 
China, whereas the genus Acidobacteria Gp2 was significantly 
correlated with ARGs in a paddy field. Wang et al. (2020) explored 
the relationship between the microbiome and antibiotic resistome 
in an agriculturally disturbed lake and found that the phyla 
Firmicutes, Gemmatimonadetes, Proteobacteria, and 
Verrucomicrobia exhibited a significantly positive correlation with 

ARGs. The results of Zhang et al. (2021a) showed that Acidobacteria, 
Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, and 
Verrucomicrobia were mainly attributed to the prevalence of ARGs 
in paddy fields located in Lake Tai Basin, China. These studies 
indicated that the core bacteria influencing the pattern of ARGs 
varied between biotopes. In this study, although the microbial 
alpha- and beta-diversity showed a significant variance between the 
paddy soil and field ponding water (Supplementary Figures S2, S3), 
the core bacterial taxa influencing the pattern of ARGs were similar 
in the paddy soil and field ponding water. The phyla Crenarchaeota, 
Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, 
Firmicutes, Bacteroidetes, and Actinobacteria had a significantly 
positive relationship with ARGs (Figure 4), indicating that these 
bacterial taxa exerted key roles in the environmental behaviors of 
these ARGs. Interestingly, the phylum Proteobacteria, the 
predomination microbial taxa in both paddy soil and field ponding 
water (Supplementary Figure S3), showed no significant correlation 
with ARGs. Similar phenomena were reported by Hu et al. (2017) 
and  Zhang et al. (2021b), in which the predomination bacterial taxa 
also built weak correlation with ARGs while non-domination 
bacterial taxa showed robust correlations.

3.3. Correlation between ARGs and 
opportunistic pathogens

Pathogens that carry ARGs pose a direct threat to human health 
(Sommer et al., 2009; Martínez et al., 2015; Crits-Christoph et al., 
2022). If humans are infected with antibiotic-resistant pathogens, 
therapy will be intractable (Forsberg et al., 2012; Rajput et al., 2022). 
Numerous ARGs can be  released into the environment, but not 
everyone having a higher risk. Recent studies proposed that the risk 
assessment of ARGs was decided based on three criteria: (1) enriched 
in human-related environments, (2) gene mobility, and (3) host 
pathogenicity (Zhang et al., 2021c; Yu et al., 2023). The genus which 
could be retrieved in the pathogenic bacteria database GlobalPPh and 
the previous references were identified as opportunistic pathogens. 

FIGURE 3

Abundances of 16S rRNA in paddy soil and field ponding water. The error bars represent ± SD (n = 6). FPW, field ponding water.
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In this study, 18 opportunistic pathogens were identified in paddy soil 
and field ponding water. In paddy soil, ermB, catA1, cmlA1-01, 
aadA1, cmx(A), bla1, mepA, and tetPB-01 were positively correlated 
with eight, six, four, two, two, one, and one opportunistic pathogen, 
respectively; in field ponding water, catA1, cmx(A), aadA1, bla1, 
cmlA1-01, mepA, tetPB-01, and ermB were positively correlated with 
six, six, five, five, four, four, three, and two opportunistic pathogens, 
respectively. These results suggest that field ponding water is an 
important pathway to disseminate potential antibiotic-resistant 
pathogens to the surrounding waterbodies (Figure 5).

3.4. Correlation between ARGs and MGEs

Vertical gene transfer (VGT) and horizontal gene transfer (HGT) 
are two ways of disseminating ARGs in nature. Compared with VGT, the 
risk of HGT is higher because of its ability to transfer ARGs between 
different bacterial species (Gogarten and Townsend, 2005; Partridge 

et al., 2018; Abe et al., 2020; Lu et al., 2020; Li et al., 2022). The process 
of HGT is regulated by various of MGEs, including plasmids, 
transposons, and integrons (Zhu et al., 2013; Forsberg et al., 2014; Guo 
et al., 2017; Zhang et al., 2022). In this study, two manure-derived MGEs 
tnp 01 and 02, were detected in both paddy soil and field ponding water. 
As shown in Figure 6, all detected ARGs were significantly correlated 
with the two MGEs, indicating a potential dissemination ability of ARGs 
in both paddy soil and field ponding water. More importantly, once these 
antibiotic resistance bacteria went into the ponds, reservoirs, rivers and 
lakes via field ponding water, ARGs will be  transferred to the 
protogenetic microbes, exacerbating the ARGs contamination.

4. Conclusion

In this study, the environmental behavior and driving 
mechanisms of ARGs in rice paddies fertilized with livestock manure 
were demonstrated. Our results highlighted that field ponding water 

FIGURE 4

Correlation between ARGs and the major phyla. Spearman’s rank correlation was used to test the significance. The effective correlation coefficient (ρ) 
was set as > 0.8 on the premise of p < 0.05. Graphics were generated in R using the graph package. FPW, field ponding water.

A B

FIGURE 5

Heatmap showing the correlations between the opportunistic pathogens and ARGs detected in paddy soil (A) and field ponding water (B). Spearman’s 
rank correlation was used to test the significance. *p < 0.05.
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can easily obtain ARGs from rice paddy soil, indicating that ARGs 
can conveniently disseminate to the surrounding waterbodies. The 
abundance of ARGs increased from June to October in the paddy 
soil; while that increased from June to August, but decreased from 
August to October. Microbiomes play a vital role in the dynamic 
pattern of antibiotic resistance. The phyla Crenarchaeota, 
Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, 
Firmicutes, Bacteroidetes, and Actinobacteria were potential ARG 
hosts. Eighteen opportunistic pathogens detected in both paddy soil 
and field ponding were significantly correlated with the corresponding 
ARGs. Network co-occurrence analysis between MGEs and ARGs in 
field ponding water suggests that ARGs have a strong dissemination 
ability across different bacterial species.
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