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Olive by-products represent a valuable low-price feed supplement for animal
nutrition. In the present study, the effect of the dietary destoned olive cake
supplementation, on both composition and dynamics of the fecal bacterial biota
of cow, was assessed by lllumina MiSeq analysis of the 16S rRNA gene. In
addition, metabolic pathways were predicted by using the PICRUSt2 bioinformatic
tool. Eighteen lactating cows, according to the body condition score, the days
from calving, and the daily milk production were homogeneously allocated
into two groups, control or experimental, and subjected to different dietary
treatments. In detail, the experimental diet contained, along with the components
of the control one, 8% of destoned olive cake. Metagenomics data revealed
significant differences in abundance rather than in richness between the two
groups. Results showed that Bacteroidota and Firmicutes were identified as
the dominant phyla, accounting for over 90% of the total bacterial population.
The Desulfobacterota phylum, able to reduce sulfur compounds, was detected
only in fecal samples of cows allocated to the experimental diet whereas the
Elusimicrobia phylum, a common endosymbiont or ectosymbiont of various
flagellated protists, was detected only in cows subjected to the control diet.
In addition, both Oscillospiraceae and Ruminococcaceae families were mainly
found in the experimental group whereas fecal samples of control cows showed
the presence of Rikenellaceae and Bacteroidaceae families, usually associated
with the high roughage or low concentrate diet. Based on the PICRUSt2
bioinformatic tool, pathways related to carbohydrate, fatty acid, lipid, and amino
acids biosynthesis were mainly up regulated in the experimental group. On the
contrary, in the control group, the metabolic pathways detected with the highest
occurrence were associated with amino acids biosynthesis and degradation,
aromatic compounds degradation, nucleosides and nucleotides biosynthesis.
Hence, the present study confirms that the destoned olive cake is a valuable feed
supplement able to modulate the fecal microbiota of cows. Further studies will be
conducted in order to deepen the inter-relationships between the GIT microbiota
and the host.

olive by-products, stool samples, metagenomics, microbiota, enzymatic pathways
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1. Introduction

Recently, the use of agro-industrial by-products as feed
supplements in animal nutrition represents an interesting and
successfully adopted strategy to reduce feeding costs and satisfy
the nutritional needs of livestock (Chiofalo B. et al., 2020;
Chiofalo V. et al., 2020; El Otmani et al., 2021; Bionda et al.,
2022). In this context, the use of by-products of the olive oil
industry, such as destoned olive cake, became widespread as a
feed supplement since they are rich in nutraceutical molecules
with antioxidant and antimicrobial features, including polyphenols
(flavonoids, anthocyans, cyanidins, and phenolic acids), tyrosol,
hydroxytyrosol, and oleuropein (Mannelli et al, 2018; Foti
et al., 2022). Recent evidence suggests that the use of olive by-
products did not negatively impact nutrients utilization, microbiota
composition, and rumen fermentation variables, such as pH,
ammonia and volatile fatty acids (VFA) concentrations (Ruiz et al.,
2004; Estatin et al., 2014; Pallara et al., 2014; Tzamaloukas et al.,
2021). Differently by influencing the ruminal fermentation and the
rumen pH, the increase of the content of linoleic acid, in both milk
and meat, as well as change in the aromatic and microbiological
profiles of milk are reported (Chiofalo V. et al., 2020; Liotta
et al., 2020; Foti et al., 2021; Tzamaloukas et al., 2021; Rabee
et al., 2022). In fact, the high polyphenol content could modulate
the rumen microbiota biodiversity and, consequently, affect the
rumen metabolism, decreasing dietary protein degradation and
fatty acid biohydrogenation by means of targeting specific groups
of microorganisms (Mannelli et al., 2018; Biondi et al., 2019; Milani
et al., 2020).

To date, modern sequencing technologies, based on culture-
independent methods, represent the most powerful tools available
for elucidating the diversity of animal microbiomes, positioning
the microbial ecology of cattle for its renaissance (Hagey et al,
2019; Vaccalluzzo et al,, 2020). In addition, the significant advances
in sequence data analysis allow deep insights into this ecosystem
(Hagey et al., 2019). The vast majority of available data, related to
the microbial community identification in cattle, is focused on the
rumen microbiota and less attention was paid to the study of fecal
samples (Dowd et al., 2008; Shanks et al., 2011; Tang et al., 2017).
Nevertheless, fecal sampling represents a non-invasive way suitable
to link changes in bacterial abundance and diversity, along with
related functional traits, to bovine rumen microbiome, with a high
level of reproducibility and repeatability (Mott et al., 2022). In fact,
the deepening of the fecal microbiota can provide valuable insights
into the effect of feeding strategies on the nutritional status and
wellbeing of livestock along with helping in manure management
mitigating the environmental impact of pollution (Hagey et al.,
2019). Recently published data, using 16S rRNA gene sequencing-
based approaches, suggest that by studying the fecal microbiota of
cattle is possible to elucidate the effects of a variety of feeds (Dowd
et al., 2008; Callaway et al., 2010; Rice et al., 2012; Li et al., 2017;
Kotz et al., 2021).

According to that, the main goal of the present study was
to investigate the effect of the dietary destoned olive cake
supplementation on fecal microbiota of cows using 16S rRNA
gene amplicon sequencing. In addition, metabolic pathways,
at KEGG level 3, were predicted by using the PICRUSt2
bioinformatic tools.
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2. Materials and methods

2.1. Animal welfare

The Ethical Committee of the Department of Veterinary
Science of the University of Messina approved all procedures
(code 041/2020),
guidelines for the care and use of animals in research
(Directive 2010/63/EU).

conducted according to the European

2.2. Animal management and diet

This experiment was conducted for 100 days (from February to
June 2022) in a commercial dairy farm located 520 m above sea level
in the province of Ragusa (Sicily, Italy). A total of 18 lactating cows,
homogenous for the Body Condition Score (3 &£ 0.5), distance from
calving (90-120 days), and daily milk production (25 £ 3 kg/day)
were randomly allocated in two groups, control (CTRL; 9 cows)
or experimental (TRT; 9 cows). In detail, all cows were fed as
total mixed ration (TMR) once daily at 0700 h where diet was
composed by concentrate and meadow hay. The CTRL group
received a concentrate without any olive cake integration, whereas
the TRT group received a concentrate integrated with the enriched
olive cake at the inclusion of 8%. The chemical composition of
concentrates is reported in Table 1. The enriched olive cake, used as
supplement, was obtained by mechanical pressing of olives carried
out through a two-stage process, applied to produce extra virgin
olive oil, by adding about 5% of a concentrate of vegetation waters,
subsequently pitted by centrifugation and dried in the open air.
The chemical composition (on DM basis) of the olive cake used
in the present experiment was as follow: 95.6% of dry matter, 8.6%
of crude protein, 30.3% of ether extract, 49.4% of neutral detergent
fiber, 39.4% of acid detergent fiber, 23.1% of acid detergent lignin,
4.1% of ash, 1.5% of starch, and 9.360 mg/kg of polyphenols.
A flowchart of olive cake production is reported in Figure 1.

TABLE 1 Nutritional characteristics of concentrates used
in the experiment.

Diet CTRL TRT
Chemical composition, g/kg of dray matter (DM)
Moisture 109 107
Starch 407 407
Crude protein 194 196
Ether extract 45.8 51.1
Non-fiber carbohydrates 465 440
Crude fiber 60.0 72.0
Acid detergent fiber 78.2 105
Ash 64.1 70.2
Calculated nutrient composition

NE, milk UFL/kg of DM 1.09 1.07

NEL, net energy lactation. Milk production efficiency was calculated based on the net energy
system, where one milk forage unit (UFL) of energy is defined as the net energy content of
1 kg of standard barley for milk production, equivalent to 1700 kcal.
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2.3. Fecal samples collection and DNA

extraction

Fecal samples were collected, from each cow, 100 days after the
start of the control or experimental diet administration. Samples
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were aseptically collected from the rectal ampoule by using sterile

gloves then placed in sterile containers and transferred under

refrigerated conditions to the Laboratory of Microbiology of the

03

Department of Agricultural Food and Environment (University of

Catania, Italy) and immediately frozen at —80°C until analysis.
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Total genomic DNA was extracted using the commercial QIAamp®
DNA Stool Mini Kit (QIAgen, Hilden, Germany) following the
manufacturer instructions with a slight modification consisting
of a repeated bead beating (RBB) pre-treatment step (Randazzo
et al., 2015). In detail, after melted on ice, 0.25 g of feces was
weighted under sterile conditions and transferred into a 2 ml
screw-cap tube containing four glass-beads (2.7 mm, Biospec
Products, Inc., USA) and 0.5 g of zirconia beads (0.1 mm,
Biospec Products, Inc., USA). After the addition of 1 ml of
lysis buffer (50 mM Tris-HCl, 500 mM NaCl, 50 mM EDTA,
4% w/v sodium dodecyl sulfate), the sample was subjected to
mechanical cell lysis by performing three rounds of bead-beating
with Precellys 24 Tissue Homogenizer (Bertin Technologies,
Montigny-le-Bretonneux, France). Treatment time was 3 min for
each bead-beating round and samples were cool on ice in between.
After the RBB treatment the samples were centrifuged at + 4°C
for 5 min at full speed and the collected supernatant was used for
the DNA extraction following the kit manufacturer’s instructions.
DNA concentration was evaluated using the fluorimeter Qubit 4.0
(Invitrogen, Carlsbad, CA, United States) before storing at —20°C
until use.

2.4.16S rRNA gene library construction
and sequencing

The fecal microbiome composition was determined by 16S
rRNA gene sequencing as previously described (Milani et al., 2013;
Vaccalluzzo et al., 2022). Briefly, the V3 region of the 16S rRNA
gene was amplified using PCR to build qualified libraries, which
were subjected to MiSeq (Illumina) sequencing at the facilities of
GenProbio Srl.! The obtained 16S rRNA raw data were deposited
at NCBI Sequence Read Archive (SRA)?> under accession code
PRJNA909483.

2.5. Bioinformatic analysis

The raw reads were processed using Quantitative Insights
Into Microbial Ecology (QIIME2) version 2022.2 (Bolyen et al,
2019). The sequences were quality filtered, trimmed, and denoised
using Divisive Amplicon Denoising Algorithms 2 (DADA2). The
high-quality sequences were then used to construct the amplicon
sequence variant (ASV) feature table. Taxonomic classification was
made through the SILVA reference database (v138) (Robeson et al.,
2021) with a percentage of identity of 75, 87, and 95% for phylum,
family, and genus levels, respectively (Henderson et al., 2019). ASV's
with relative abundance lower than 0.1% were grouped as “others.”

2.6. Alpha and beta diversity, differential
analysis, and enzymatic prediction

The determination of diversity and differences in the
abundance of the fecal bacterial community was performed using

1 www.genprobio.com

2 https://www.ncbi.nlm.nih.gov/sra
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TABLE 2 Overall microbiota composition of fecal samples collected
from cows subjected to control (CTRL) and experimental (TRT) diet.

10 10

Phylum 75%
Family 87% 51 44
Genus 95% 78 78

RStudio software (version 4.1.2). The phyloseq packing of R
(McMurdie and Holmes, 2013) was used for alpha and beta
diversity. The alpha diversity, based on genus level, was evaluated
considering three measures: observed richness, Chaol index, and
Shannon index. The box plot of alpha diversity was generated
using the ggplot2 package (Wickham, 2016). Beta diversity, based
on genus level, was evaluated with the Bray-Curtis distance and
plotted with the Principal Coordinate Analysis (PCoA). Differential
analysis, based on genus level, was performed using the DESeq2
package in R (Love et al., 2014) and the differences between CTRL
and TRT groups were evaluated.

The Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt2) v2.5.0 (Douglas
et al., 2020) was used to predict the functional abundances at
KEGG level 3 (i.e., Environmental Information Processing) based
on 16S rRNA gene sequencing data obtained during the denoise
step by QIIME2. Statistical analysis of taxonomic and functional
profiles (STAMP) (v2.1.3) (Parks et al., 2014) was used to illustrate,
based on the PICRUSt2 outputs, the difference in the predicting
microbial functions associated with the diet.

2.7. Statistical analysis

The alpha diversity, according to observed richness, Chaol
and Shannon indices, between CTRL and TRT groups was
compared with one-way non-parametric Wilcoxon test. Beta
diversity, according to Bray Curtis distance, was evaluated through
permutational multivariate analysis of variance (PERMANOVA)
with 999 permutations with the vegan package.

Differential abundance (DA) was considered with a false
discovery rate (FDR) cut-off of 0.05 and a fold-change (FC) higher
than 1.5 or lower than —1.5 (i.e,, |log2FC| > 0.59). The difference
in the prediction of microbial functions associated with the diet
(CTRL vs. TRT) was detected with Welch’s ¢-test with a confidence
interval of 95% and the data were corrected with Benjamini-
Hochberg FDR. Significance was determined at P < 0.05.

3. Results

3.1. Taxonomy classification

After trimming, denoising, chimera-removal and merging with
QIIME2, the obtained high-quality sequences were used for the
taxonomic classification. Sample metadata, denoising statistics,
taxonomy classification and the relative abundances for each
taxonomic level are reported in Supplementary Data 1. As
reported in Table 2, the total ASVs were assigned to 10 phyla,
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51 families and 78 genera in CTRL group, whereas 10 phyla, 44
families and 78 genera were detected in TRT group. The relative
abundance of bacteria, detected in both CTRL and TRT groups,
at phylum, family, and genus levels is shown in Figures 2A-C.
In detail, Firmicutes, Bacteroidota, Actinobacteriota, Spirochaetota,

Frontiers in Microbiology

Proteobacteria, Verrucomicrobiota, Patescibacteria, Cyanobacteria,
and Fibrobacterota phyla were detected in both CTRL and TRT
groups with relative abundance higher than 0.1%. Although
Firmicutes and Bacteroidota were the most abundant phyla in
both CTRL and TRT groups, the Firmicutes phylum showed
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TABLE 3 Different taxa identified by comparing the fecal microbiota of cows allocated to control (CTRL) and experimental (TRT) groups.

Log2 fold change

p-value-adj

Firmicutes Christensenellaceae Christensenellaceae_R- 0.92098* 0.001 0.006
7_group

RF39 RF39 1.72107* 0.001 0.001

Clostridia_UCG-014 Clostridia_UCG-014 1.12519* 0.001 0.001

Lachnospiraceae Acetitomaculum —1.95689** 0.001 0.005

Bacteroidota Bacteroidales_RF16_group Bacteroidales_RF16_group —0.69586** 0.001 0.001

*More prevalent in TRT group. **Less prevalent in TRT group.

higher relative abundance in TRT samples compared with CTRL.
Moreover, the Desulfobacterota and Elusimicrobia phyla were not
detected in CTRL and TRT groups, respectively (Figure 2A).

Overall, at family level, the ASVs of CTRL group were classified
into 51 families, whereas the ASVs of TRT group were classified
into 44 families (Figure 2B). In fact, compared with CTRL
group, the Peptococcaceae, Defluviitaleaceae, Elusimicrobiaceae,
Succinivibrionaceae, Veillonellaceae, Pseudomonadaceae, and
WCHBI-41 families where not detected in TRT group. As
reported in Figure 3, showing the ten most abundant families,
Oscillospiraceae and Ruminococcaceae were dominant in in TRT
group, whereas Rikenellaceae and Bacteroidaceae were most
abundant in CTRL group.

At genus level, 78 genera were overall identified in both
CTRL and TRT groups (Figure 2C) and the most abundant are
reported in Figure 4. In particular, Rikenellaceae_RC9_gut_group,
UCG-010 and Monoglobus showed higher relative abundance in
CTRL group, while UCG-005, Prevotellaceae_UCG-003 and p-2534-
18B5_gut_group were prevalent in TRT group (Figure 4).

Moreover, Roseburia, Prevotellaceae_Ga6Al_g
-roup, Cellulosilyticum, Gastranaerophilales,
[Eubacterium]_siraeum_group, Lachnospiraceae_UCG-009,
Dielma, Odoribacter, Anaeroplasma, Faecalibacterium,

Chloroplast and Desulfovibrio were not found in CTRL
group whereas Negativibacillus, Acinetobacter, Agathobacter,
Erysipelotrichaceae_UCG-002, Defluviitaleaceae_UCG-011,
Anaerovorax, Elusimicrobium, Anaerovibrio,  Succinivibrio,
Syntrophococcus, Psychrobacter, and Pseudomonas were not found

in TRT group (Figure 2C).

3.2. Alpha and beta diversity, differential
analysis, and enzymatic prediction

Observed richness, Chaol, and Shannon indices are plotted
in Supplementary Figures 1A-C. Based on the Wilcoxon test, no
difference in richness was detected between CTRL and TRT groups.

The beta diversity (Figure 5), based on the Bray-Curtis distance
method, allowed to group the analyzed samples in relation to the
dietary treatment (CTRL or TRT). Based on PERMANOVA results,
the diet significantly affected the fecal microbial communities
(p < 0.001).

The model used in the differential analysis allowed to detect the
genera, occurring in both CTRL and TRT groups, with significant
differences in terms of percentage of occurrence (Table 3).

Frontiers in Microbiology

Overall, 366 pathways were detected based on KEGG
prediction (Supplementary Data 2) and 58 of them, with different
abundance between CTRL and TRT groups, are shown in Figure 6.
In detail, in TRT group, the metabolic pathways mainly identified
were involved in the biosynthesis of carbohydrates (Glycogen
biosynthesis 1,
I, O-antigen building blocks biosynthesis), fatty acids and

UDP-N-acetyl-D-glucosamine  biosynthesis
lipids (Phosphatidylglycerol biosynthesis I and II), and amino
acids (Superpathway of aromatic amino acid biosynthesis,
L-histidine
biosynthesis, Superpathway of L-isoleucine biosynthesis I and
L-lysine biosynthesis III). In the CTRL group, the identified
pathways were mainly involved in amino acids degradation

Superpathway  of  L-threonine  biosynthesis,

(L-histidine degradation I and III) and biosynthesis (L-arginine
biosynthesis III and Superpathway of L-methionine biosynthesis)
as well as in aromatic compounds degradation and nucleosides and
nucleotides biosynthesis (Figure 6).

4. Discussion

The development of alternative feedstuffs and the use of
by-products, as feed supplements, represent a challenge for
animal nutrition researchers to boost farm livestock wellbeing
as well as increase both the production and quality of animal-
derived products. The diet becomes a key factor contributing to
changes in the composition of the gastrointestinal tract (GIT)
microbiota (Zhang et al., 2021; Welch et al., 2022). According
to that, the present study, by applying a metagenomic approach,
aimed to deepen the effect of the dietary destoned olive cake
supplementation on both composition and dynamics of the fecal
bacterial biota of cow as well as on the KEGGs functional profile.

Consistent with previously reported data, our study confirmed
that polyphenols rich diet is able to modulate the microbial
community affecting, in turn, the fecal microbiota composition
(Mao et al., 2013; Plaizier et al., 2017; Hagey et al., 2019). In fact,
although no significant difference in richness was detected, beta
diversity allowed to discriminate the analyzed samples based on
the diet regime. Metagenomics approaches revealed that the fecal
microbiota of cattle is dominated by Firmicutes and Bacteroidetes
phyla, commonly recognized as health-promoting (Henderson
et al., 2015; Mannelli et al., 2019; Conte et al., 2022; Welch et al.,
2022). More in depth, Firmicutes are involved in the degradation
of oligosaccharide, fiber, and starch, helping the host intestinal
tract in the absorption of energy from food. In addition, members
of the Firmicutes phylum are able to produce volatile fatty acids
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I CTRL HEE TRT 95% confidence intervals
glycogen biosynthesis | (from ADP-D-Glucose) ——&—— : 0.042
UDP-N-acetyl-D-glucosamine biosynthesis | —e— | 0.031
TCA cycle VIII (helicobacter) | —e— 0.033
O-antigen building blocks biosynthesis (E. coli) —e— | 0.030
phosphatidylglycerol biosynthesis Il (non-plastidic) —e— | 0.031
phosphatidylglycerol biosynthesis | (plastidic) —e— | 0.030
pentose phosphate pathway (non-oxidative branch) —e— | 0.030
L-histidine degradation | | —e— 0.030
chorismate biosynthesis | —o— | 0.022
pyridoxal 5'-phosphate biosynthesis | [ 0.025
superpathway of aromatic amino acid biosynthesis o ! 0.021
methylerythritol phosphate pathway | = o ' 9.50e-3
methylerythritol phosphate pathway Il I a : 0.011
superpathway of L-methionine biosynthesis (by sulfhydrylation) : = 9.03e-3
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis | —o— 0.025
L-arginine biosynthesis Il (via N-acetyl-L-citrulline) | —o— 0.016
superpathway of sulfate assimilation and cysteine biosynthesis | e 0.030
starch degradation V e | 0.044
superpathway of geranylgeranyl diphosphate biosynthesis Il (via MEP) e 8.34e-3
cob(ll)yrinate a,c-diamide biosynthesis | (early cobalt insertion) | Hed 7.28e-3
UDP-N-acetylmuramoyl-pentapeptide biosynthesis | (meso-diaminopimelate con... FeH | 7.07e-3
UDP-N-acetylmuramoyl-pentapeptide biosynthesis Il (lysine-containing) o | 8.47e-3
flavin biosynthesis | (bacteria and plants) | o 0.019
adenosine ribonucleotides de novo biosynthesis e+ | 9.60e-3
5-aminoimidazole ribonucleotide biosynthesis I e+ | 8.64e-3
superpathway of 5-aminoimidazole ribonucleotide biosynthesis ro- | 9.26e-3
peptidoglycan biosynthesis | (meso-diaminopimelate containing) rod ! 6.50e-3 §
peptidoglycan biosynthesis Ill (mycobacteria) o ! 7.40e-3 'g
superpathway of histidine, purine, and pyrimidine biosynthesis l o 0.039 E
pyruvate fermentation to acetate and lactate Il o l 0.041 %
sulfate reduction | (assimilatory) : o 0.031 %
superpathway of L-threonine biosynthesis o | 0.045 E_
L-histidine biosynthesis o | 0.029
superpathway of adenosine nucleotides de novo biosynthesis Il e | 0.013
5-aminoimidazole ribonucleotide biosynthesis | X o 7.02e-3
guanosine ribonucleotides de novo biosynthesis o | 0.012
superpathway of adenosine nucleotides de novo biosynthesis | & | 9.90e-3
inosine-5'-phosphate biosynthesis | & | 5.80e-3
formaldehyde assimilation Il (RuMP Cycle) e | 0.023
superpathway of L-isoleucine biosynthesis | e | 0.042
chorismate biosynthesis from 3-dehydroquinate Fod | 0.017
superpathway of pyrimidine nucleobases salvage e | 0.013
UMP biosynthesis o ! 8.44e-3
glycolysis Ill (from glucose)  al I 0.028
tRNA charging ror ! 0.011
NAD biosynthesis Il (from tryptophan) I}-0-1 0.036
teichoic acid (poly-glycerol) biosynthesis m: 0.036
formaldehyde oxidation | gl | 0.021
L-lysine biosynthesis IlI wl 0.033
purine nucleobases degradation | (anaerobic) g 0.049
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde g 0.037
myo-, chiro- and scillo-inositol degradation L] 0.026
L-histidine degradation Il [ ) 0.044
methanogenesis from acetate ® 0.029
3-phenylpropanoate degradation ® 0.022
protocatechuate degradation | (meta-cleavage pathway) ® 9.82e-3
methylgallate degradation ® 9.76e-3
gallate degradation Il ® 9.28e-3
| | ! |
—0.10-0.05 0.00 0.05 0.10
Difference in mean proportions (%)
FIGURE 6
Differentially metabolic pathways between control (CTRL) and experimental (TRT) groups.
such as butyrate, which is linked with gut health (Kim et al,  as complex plant cell walls, as well as production of butyrate, a

2011). Similarly, members of the Bacteroidetes phylum have many  significant player in energy metabolism in the rumen (Thomas
functions in the gut, including degradation of carbohydrates, such  etal,, 2011; Miguel et al., 2019). It is well known that the Firmicutes
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phylum acts by increasing the nutrients availability whereas the
Bacteroidetes one is energetically less favorable to the host (Xu et al.,
2021).

According to previous studies, suggesting that dietary changes
significantly affect the Firmicutes:Bacteroidota ratio (Mao et al,
2013; Plaizier et al., 2017, 2018), our data revealed increased
abundance of Firmicutes and decreased occurrence of Bacteroidota
in fecal samples of cows subjected to destoned olive cake
supplementation. In addition, the Desulfobacterota phylum was
detected only in fecal samples of treated cows. Noteworthy,
the aforementioned phylum includes microorganisms able to
reduce sulfur compounds via the sulfite reductase pathway,
followed by butyrate degradation, playing a significant role in
energy metabolism (Miguel et al., 2019). Moreover, Elusimicrobia,
a recently defined animal-associated phylum, occurring as
endosymbiont or ectosymbiont of various flagellated protists
(Méheust et al,, 2020), was detected only in cows subjected
to control diet. The presence of both Oscillospiraceae and
Ruminococcaceae families mainly in experimental group can be
associate to the diet regime. In fact, as recently reported by
Yang et al. (2021), polyphenols can increase the abundance of
the families mentioned above which are able to ferment complex
plant carbohydrates and to produce short chain fatty acids
competing with activation of energy metabolism. Conversely, fecal
samples of control cows showed the presence of Rikenellaceae
and Bacteroidaceae families, usually associated with the high
roughage or low concentrate diet (Mpanza et al., 2022), playing
a key role in carbohydrates degradation and in the production
of VFAs, including succinate, acetate and propionate (Wang
et al,, 2020). Consistent with metagenetic data, in the present
study, most of the predicted metabolic pathways are involved
in biosynthetic processes. Among these, pathways related to
carbohydrate, fatty acid, lipid and amino acids biosynthesis were
mainly present in experimental group than in control one. This
finding is in accordance with the observed dominance of both
Bacteroidota and Firmicutes phyla in fecal microbiota. In fact, it
is well known that Firmicutes are involved in the degradation
of complex polysaccharides, with subsequent synthesis of VFA,
whereas Bacteroidetes mainly degrades carbohydrates, fats, and
proteins (Jami et al., 2013; Yildirim et al., 2021). On the contrary,
in control group, the metabolic pathways detected with highest
occurrence were associated to amino acids biosynthesis and
degradation, aromatic compounds degradation, nucleosides and
nucleotides biosynthesis. It is well known that bacteria require the
synthesis and/or acquisition of purines and pyrimidines, which
form the basis of nucleotides, to survive, even having strong
links with the virulence factors of opportunistic and bacterial
pathogens (Goncheva et al., 2022). In fact, in most bacteria,
the nucleotides are synthesized de novo and the products are
used in many cell functions, including DNA replication, energy
storage, and as signaling molecules (Goncheva et al, 2022).
Our results confirm that the feeding regime significantly affect
the composition and dynamics of the fecal microbiota as well
as the microbial metabolism. Further studies will be conducted
in order to in depth investigate the molecular functions of
microbiota by using insightful methods, such as metabolomics and
metatranscriptomics.
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5. Conclusion

The present study confirms that, among olive by-products,
destoned olive cake is a valuable feed supplement for cow’s
nutrition. The destoned olive cake supplementation was able
to modulate the fecal microbiota determining the increase of
Firmicutes phylum, associated to growing nutrients availability,
and the reduction of Bacteroidetes, energetically less favorable
to the host. The prediction of metabolic pathways revealed a
significant effect of the regime diet on carbohydrate, fatty acid, lipid
and amino acids biosynthesis. Further studies will be conducted
in order to deepen the inter-relationships between the GIT
microbiota and the host.
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