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Stress granules (SGs) are distinct RNA granules induced by various stresses, which 
are evolutionarily conserved across species. In general, SGs act as a conservative 
and essential self-protection mechanism during stress responses. Viruses have a 
long evolutionary history and viral infections can trigger a series of cellular stress 
responses, which may interact with SG formation. Targeting SGs is believed as 
one of the critical and conservative measures for viruses to tackle the inhibition 
of host cells. In this systematic review, we  have summarized the role of SGs 
in viral infection and categorized their relationships into three tables, with a 
particular focus on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) infection. Moreover, we have outlined several kinds of drugs targeting SGs 
according to different pathways, most of which are potentially effective against 
SARS-CoV-2. We believe this review would offer a new view for the researchers 
and clinicians to attempt to develop more efficacious treatments for virus 
infection, particularly for the treatment of SARS-CoV-2 infection.
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1. Introduction

In eukaryotic cells, the membraneless organelles composed of mRNA and proteins are 
called RNA granules (Anderson and Kedersha, 2009). Stress granules (SGs), one type of RNA 
granules, transiently form in the cytoplasm during cellular stress and are evolutionarily 
conservative in animals and plants (Spector, 2006; Reineke and Neilson, 2019). SGs are involved 
in the regulation of transcription and translation which is essential for maintaining cellular 
homeostasis. Life is full of transient stress, and eukaryotic cells have developed sophisticated 
coping mechanisms to deal with a bombardment of cellular challenges (Morimoto, 2011; Li 
et al., 2013). SG formation appears to be a prudent and essential mechanism during stress 
responses; it reduces energy use, restores cellular homeostasis, and increases cell viability under 
damaging conditions (Mahboubi and Stochaj, 2017).

SGs are composed of multiple factors including translation initiation factors, polyadenylated 
RNA, small ribosomal subunits, and numerous RNA binding proteins (RBPs; Thomas et al., 
2011; Aulas and Vande Velde, 2015). These components can be divided into three grades (Fan 
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and Leung, 2016). The innermost part exists in almost all SGs induced 
by various stress conditions. It consists of a 48S pre-initiation complex, 
along with stalled mRNA transcripts, such as poly (A)-binding 
protein-1 (PABP-1), eukaryotic initiation factor 3 (eIF3), eukaryotic 
initiation factor 4B (eIF4B), eukaryotic initiation factor 4F (eIF4F), 
and eukaryotic initiation factor 4A (eIF4A), etc., (Anderson and 
Kedersha, 2002). The middle part contains some scaffold proteins, 
such as GTPase-activating protein SH3 domain-binding protein 1/2 
(G3BP1/2) and T cell intracellular antigen 1 (TIA-1; Matsuki et al., 
2013). The outermost part contains variant signaling proteins based on 
the various cellular environment. Various amounts and sizes of SGs 
with specific stress-related components (i.e., protein and RNA) would 
be formed differently depending on the cell types, stress situations, and 
changes in action time (Moeller et  al., 2004). In brief, as a rapid 
response signaling hub, SG with complex structures plays an important 
regulatory role in a variety of stress injuries. Along with this, it is 
reasonable to speculate that misregulated SG dynamics may induce an 
inaccurate cellular state of physiological activity of both RNA 
metabolism and protein homeostasis (Li et al., 2013; Portz et al., 2021).

Abnormal metabolism of SGs has been found in a variety of 
diseases, including but not limited to cancer, neurodegenerative 
diseases (NDs), viral infections, autoimmune disease, cataracts, 
glaucoma, diabetes, and brain ischemia (Moujaber et al., 2017). Given 
that SGs have drawn widespread concern in recent years, the 
correlations between cancer or NDs and SGs have already been widely 
described (Chen and Liu, 2017; Gao et al., 2019; Hu et al., 2022), while 
reviews about the role of SGs in viral infections are less understood. 
Some studies point out that viral infections can trigger a series of 
cellular stress reactions and consequently regulate the assembly or 
disassembly of SGs (McInerney et  al., 2005), suggesting the 
importance of SGs in balancing the translation of host-and virus-
encoded mRNAs (Reineke and Neilson, 2019; Eiermann et al., 2020). 
In this review, we mainly focus on recent advances in the correlation 
between viruses and SGs, which may provide insight into developing 
new effective antiviral treatments in clinical application.

To better understand the relationship between SGs and anti-virus, 
this review first briefly describes the background of SGs and the 
information about viruses. Based on the interactions between SG and 
viruses, viruses were categorized into three main groups, i.e., 
inhibition, promotion, and temporary promotion of SG formation. 
Secondly, this review further recapitulates the role of SGs in the 
regulation of antiviral response, especially for several important 
antiviral function pathways of SGs are also highlighted. In particular, 
given that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) has made the most far-reaching impact in the world since 
2019, this review also summarizes the current evidence regarding the 
connection between SARS-CoV-2 and SGs, aiming to provide insights 
into developing novel SG-based drugs for clinical treatment of SARS-
CoV-2 infection.

2. The dynamic processes of SGs

SG formation appears to be a conservative and essential mechanism 
during stress responses. Once the cell recovers to its normal situation, 
SGs would transiently disassemble. The assembly and disassembly of 
SGs are regulated by environmental and physiological factors (Protter 
and Parker, 2016; Moujaber et  al., 2017). By adjusting the balance 

between the translational repression mRNA and translating mRNAs, 
SG formation can handle the timely and appropriate response to stress 
conditions (Protter and Parker, 2016). The biogenesis of SGs under 
normal physiological conditions is usually divided into five phases 
based on the specific composition and localization of mRNPs 
(Anderson and Kedersha, 2008). Phase one: stalled initiation and 
ribosome runoff. Phase two: primary aggregation and nucleation. Phase 
three: secondary aggregation. Phase four: integration and signaling. 
Phase five: mRNA triage. SG disassembly is the reverse process. Large 
SGs are decomposed into small particles, and these small particles are 
subsequently depolymerized or removed (Kedersha et al., 2005). Along 
with the disappearance of stress, SGs are decomposed rapidly from the 
cytoplasm of cells through the chaperone pathway or autophagy 
pathway (Wheeler et  al., 2016). These phases occur sequentially in 
normal conditions (the flow chart shown in Figure 1). Moreover, in 
some pathological conditions, such as hypoxia, a common feature of 
numerous pathological conditions, including myocardial infarction, 
stroke, inflammation, and malignant tumors, SG formation may inhibit 
cell apoptosis through translation arrest, prevention of unfolded 
proteins accumulation (Arimoto et al., 2008). Besides, SGs share many 
components with neuronal granules in neurons, which clearly indicates 
that SGs affect neurodegenerative diseases, amyotrophic lateral sclerosis 
(ALS) disease, frontotemporal lobar degeneration (FTLD), Alzheimer’s 
disease (AD) and Spinal muscular atrophy (SMA; Anderson et al., 2015; 
Brownsword and Locker, 2022; Hu et al., 2022).

Once SGs are absent in cells for some reasons, it may cause various 
abnormal physiological activities and even the occurrence of diseases 
(Gao et  al., 2019). For instance, the deficiency of G3BP1 leads to 
abnormal synaptic plasticity, calcium homeostasis in neurons, and 
increases apoptotic cell death (Zekri et al., 2005; Martin et al., 2013). 
TIA-1 knockout (KO) mice worsen hepatic steatosis and fibrosis 
(Dolicka et al., 2022) and dysregulate expression of lipid storage and 
membrane dynamics factors in nervous tissue (Heck et al., 2014). In 
the case of viral infections, in G3BP1 KO cells, the replication 
efficiency of mammalian orthoreovirus (MRV) is significantly 
improved (Carroll et  al., 2014). In murine TIA-1-related protein 
(TIAR) KO cells, West Nile virus (WNV) growth is decreased (Li 
et  al., 2002). In the following texts, we  will mainly focus on the 
relationship between SGs and viral infection.

3. Viral infection regulates the SG 
formation in double ended manners

During the process of viral infection, the assembly and 
disassembly of SGs are intensively regulated (McCormick and 
Khaperskyy, 2017). There has been evidence showing that viral 
infection could interfere with SG formation through various 
mechanisms (White and Lloyd, 2012), such as inhibiting translational 
initiation (Linero et al., 2011), sequestering SG components (such as 
TIA-1, and G3BP1/2) (Nikolic et al., 2016), and interacting with key 
SG proteins to form stable viral ribonucleoprotein (RNP) complexes 
(Abrahamyan et al., 2010). However, some viruses have developed 
mechanisms to blunt host responses and manipulate SGs to evade host 
defenses (Kim et al., 2016). Viruses can regulate SG formation by three 
major manners: inducing SG formation, inducing SG transient 
formation, or inhibiting SG formation. Protein kinase R (PKR), one 
of the major innate immune mechanisms, is the primary sensor 
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responsible for host defense against invading viral pathogens via rapid 
inhibition of SG formation upon viral infection (Gao et al., 2022). And 
PKR is activated by double-stranded RNA (dsRNA) viruses. For the 
specific way of inducing SG transient formation, some RNA viruses 
activate the PKR pathway, resulting in the phosphorylation of 
eukaryotic initiator factor 2A (eIF2α) and promoting SG formation at 
the early stage of viral infection. Nevertheless, in the later stage of 
infection, they utilize several mechanisms to antagonize SG formation, 
such as G3BP1/2 cleavage and PKR inactivation to inhibit SG 
formation in turn (Ng et al., 2013; Okonski and Samuel, 2013). In the 
following text, we describe these three categories of viruses in detail.

3.1. Viruses induce SG formation

The first type of virus induces SG formation to aid viral RNA 
replication (Table  1). The “induced SGs” viruses are dedicated to 
activating eIF2α and/or recruiting SGs’ core components.

Many viruses target the PKR/eIF2α pathway to trigger SG 
assembly and destroy the homeostasis of cells. For example, Sindbis 

virus (SINV) and Respiratory syncytial virus (RSV) infection activate 
PKR and induce eIF2α phosphorylation, which lead to SG assembly 
(Lindquist et al., 2011; Jefferson et al., 2019). Under oxidative stress 
and RSV infection, exposure to polyhexamethylene guanidine 
phosphate (PHMG-p) remarkably increases eIF2α phosphorylation 
and significantly increases SG formation (Choi et al., 2022). Given the 
limited space available, more targeted proteins of viruses are listed in 
Table 1. Beyond PKR, the virus can also activate other eIF2α kinases 
in cells. Porcine reproductive and respiratory syndrome virus 
(PRRSV) alternatively activates PKR-like endoplasmic reticulum 
kinase (PERK) to phosphorylate eIF2α and consequently stimulates 
cells to produce SGs (Zhou et al., 2017). Porcine hemagglutinating 
encephalomyelitis virus (PHEV) infection induces endoplasmic 
reticulum (ER) stress, activates the UPR, then activate PERK/
PKR-eIF2α axis, as a result, promoting SG formation (Shi et al., 2022). 
Rift Valley fever virus (RVFV) reduces the PKB/mTOR (the protein 
kinase B, mechanistic target of rapamycin) signaling pathway, thereby 
increasing the activity of eIF4E binding protein 1/2 (4EBP1/2) to 
inhibit the translation process, and then cause transient SG assembly 
(Hopkins et al., 2015). Vesicular stomatitis virus (VSV) infection of 

FIGURE 1

SGs-targeted antiviral drugs. The dynamic change of SGs is a complex process regulated by many post-translational modifications, protein remodeling 
complexes, and microtubule networks. The assembly of SG is divided into five phases. Phase one: SG assembly begins with stalled translation initiation, 
and ribosomes flow out to convert into mRNPs. Phase two: primary aggregation and nucleation occur when heterogeneous 48S-bound transcripts 
bind to self-aggregation RNA-binding proteins, such as G3BP1/2, TIA-1, tristetraprolin (TTP), and fragile X mental retardation protein (FMRP). Phase 
three: secondary aggregation and crosslinking occur when PABP-1 is bound to poly(A)-containing transcripts and smaller oligomers crosslink to 
assemble microscopic invisible aggregates. Phase four: some transcripts bind to multiple SG nucleating proteins, which enhance the cross-linking 
process to form progressively larger SGs, and then recruit non-RNA-binding proteins (e.g., TRAF2, plakophilins, SRC3, FAST). Phase five: specific 
transcripts are sorted out of SGs by translation initiation, assembling into other RNA granules. The disassembly of SGs is the reverse process. Novel 
drugs have been identified to affect the process of SGs assembly via different mechanisms.
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host cells will induce elF2α phosphorylation and promote SG-like 
particle formation and assembly (Dinh et al., 2013).

Besides, TIA-1/TIAR can be recruited to their replication sites to 
form SGs when host cells are infected by tick-borne encephalitis virus 
(TBEV) (Albornoz et al., 2014). Porcine transmissible gastroenteritis 
virus (TGEV) infection will also induce TIA-1/TIAR aggregation and 
elF2α phosphorylation, resulting in SG assembly at the late stage (Sola 
et al., 2011). Given that the regulation of SG formation is crucial for 
the replication of infected viruses, drugs that inhibit SGs by bypassing 
PKR (or other kinases) and/or eIF2α phosphorylation may have 
therapeutic potential to control the virus replication.

3.2. Viruses trigger SG formation 
temporarily

The second type of virus is featured to temporarily trigger SG 
formation in the early replication cycle but limit SG formation in the 
late replication cycle (Table 2).

The vast majority of these viruses regulate SG dynamics by 
regulating elF2α phosphorylation. Hepatitis C virus (HCV) 
infection rapidly induces the production of SGs in the early stage, 
and then the depolymerization of SGs occurs later, and this change 
happens depending on the phosphorylation level of elF2α (Ruggieri 
et  al., 2012). In the early stage of infection, mouse hepatitis 
coronavirus (MHV) causes SG formation by promoting the 

elF2α  phosphorylation (Raaben et  al., 2007). MRV induces SG 
formation (Qin et al., 2009) in the early stage of infection, but the 
SG formation is reduced in the late stage of infection, regardless of 
the high elF2α phosphorylation (Qin et al., 2011). Although natural 
WNV infection does not induce SGs, the W956IC (a lineage 2/1 
chimeric WNV infectious clone) efficiently induces SGs through 
PKR activation to phosphorylate elF2α at the early infection stage 
(Courtney et al., 2012).

Overexpression of G3BP may induce spontaneous SG formation 
(White and Lloyd, 2012). It has also been reported that MRV can 
recruit the viral non-structural protein μNS to interact with G3BP1, 
which interferes with SG assembly (Carroll et al., 2014). Epidemic 
diarrhea virus (PEDV) infection results in the cleavage of G3BP1 and 
this process is mediated by caspase-8 (Sun et al., 2021). And PEDV 
replication is significantly enhanced when SG assembly is impaired 
by silencing G3BP1 (Guo et  al., 2022). Besides, protease 2A of 
poliovirus (PV) induces the generation of SGs at first, and the 
cleavage of G3BP1 by PV3C protease leads to SG disassembly later 
(Yang et al., 2018).

3.3. Viruses inhibit SG formation

Contrary to the above mechanisms, a prevalent group of viruses 
impinges on SG formation throughout the process of infection in 
Table 3.

TABLE 1 Viruses induce SG formation.

Species Type Mechanism of formation Refs

CSFV (+) ssRNA PKR phosphorylation, eIF2α phosphorylation Liu et al. (2015)

HSV-2 dsDNA Deletion of virion host shutoff protein (Vhs) inhibits elF2α phosphorylation Finnen et al. (2014)

PRRSV (+) ssRNA eIF2α phosphorylation by PERK activation Zhou et al. (2017)

PHEV (+) ssRNA activated PERK/PKR-eIF2α axis Shi et al. (2022)

RSV (−) ssRNA PKR-mediated aggregation of SGs Lindquist et al. (2011)

RVFV (−) ssRNA Down-regulation of PKB/mTOR signaling pathways and increased the activity of 4EBP1/2 proteins Hopkins et al. (2015)

SINV (+) ssRNA Activation of GCN2 through its viral RNA; infection induces eIF2α phosphorylation, which leads to SG assembly Jefferson et al. (2019)

TBEV (+) ssRNA Recruitment of TIA-1 and TIAR Albornoz et al. (2014)

TGEV (+) ssRNA TIA-1/TIAR aggregation and elF2α phosphorylation Sola et al. (2011)

VSV (−) ssRNA elF2α phosphorylation and SG-like particle formation and aggregation Dinh et al. (2013)

VV dsDNA Deletion of E3L activates PKR Simpson-Holley et al. (2011)

HSV-2, Herpes simplex virus type 2

TABLE 2 Viruses trigger SG formation temporarily.

Species Type Mechanism of formation Refs

HCV (+) ssRNA Phosphorylation level of elF2α determines SG formation and depolymerization Ruggieri et al. (2012)

MHV (+) ssRNA Addition of eIF2α phosphorylation Raaben et al. (2007)

MRV dsRNA The high phosphorylation level of elF2α and interaction between G3BP1 and μNS Qin et al. (2009), Qin et al. (2011) and 

Carroll et al. (2014)

PEDV (+) ssRNA Caspase-8-mediated cleavage of G3BP1 inhibits SG assembly and SG assembly is impaired by 

silencing G3BP1

Sun et al. (2021) and Guo et al. (2022)

PV (+) ssRNA Protease 2A can induce the generation of SGs at first, and the cleavage of G3BP1 by PV3C 

protease leads to SG depolymerization later

Dougherty et al. (2015) and Yang et al. 

(2018)

WNV (+) ssRNA W956IC can efficiently induce SGs through PKR activation Courtney et al. (2012)
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Some viruses encode PKR inhibitors, thereby avoiding 
PKR-mediated phosphorylation of eIF2α and SG formation 
(Malinowska et al., 2016). Given the limited space available, only 
some mediate proteins of viruses were described in detail, and 
we have listed more target proteins of viruses in Table 3. For example, 
influenza A virus (IAV) and infectious bronchitis virus (IBV) inhibit 
the activity of PKR to block the phosphorylation of eIF2α by the 
non-structural protein 1 (NSP1) and non-structural protein 2 
(NSP2), respectively, which in turn inhibits SG formation 
(Khaperskyy et  al., 2014; Burgess and Mohr, 2018). Intriguingly, 
Middle East respiratory syndrome Coronavirus (MERS-CoV) 
inhibits the SG formation by inhibiting PKR-mediated elF2α 
phosphorylation, while lacking subunits 4a and 4b MERS-CoV 
induces the SG formation (Nakagawa et al., 2018). For rotavirus-
infected host cells, it blocks host protein synthesis, PKR activation, 
eIF2α phosphorylation, and modification of cellular translation 
machinery (Lopez and Arias, 2012). Beyond the PKR pathway, there 

are other pathways, e.g., PERK pathway, regulating the 
phosphorylation of eIF2α. Herpes simplex virus (HSV), as a dsDNA 
virus, inhibits the activation of PERK and hinders the eIF2α 
phosphorylation through the surface glycoprotein B (Mulvey et al., 
2007). In addition, several other viruses regulate the eIF2α 
dephosphorylation. Chikungunya virus (CHIKV) induces the 
expression of DNA-damage-inducible 34 (GADD34) to increase the 
dephosphorylation of eIF2α (Clavarino et  al., 2012). And 
Pseudorabies virus (PRV) infection significantly inhibits the SG 
formation by dephosphorylating eIF2α, such as Chikungunya virus 
(CHIKV) and Pseudorabies virus (PRV; Xu et al., 2020).

Moreover, except for regulating the phosphorylation of eIF2α, 
viruses can inhibit SG formation via interaction with SG components, 
especially the scaffold proteins, e.g., G3BP1 and TIA-1. For example, 
Theiler’s murine encephalomyelitis virus (TMEV) and foot-and-
mouth disease virus (FMDV; Visser et al., 2019) interfere with SG 
formation by leader (L) protein to stably sequester G3BP1. Similarity, 

TABLE 3 Viruses inhibit SG formation.

Species Type Mechanism of inhibition Refs

CHIKV (+) ssRNA GADD34 to enhance the dephosphorylation of elF2α Clavarino et al. (2012)

CVB3 (+) ssRNA G3BP1 cleavage Fung et al. (2013)

DENV (+) ssRNA recruit TIA/TIAR to replication complexes Emara and Brinton (2007)

EBOV (−) ssRNA Inhibition of PKR pathway by VP35 Le Sage et al. (2017)

EMCV (+) ssRNA G3BP1 cleavage Ng et al. (2013)

FCV (+) ssRNA The viral protease NSP6 to cleave G3BP1 Humoud et al. (2016)

FMDV (+) ssRNA L protein to stably interact with G3BP1 Visser et al. (2019)

HCMV dsDNA Encodement of pTRS1 to interact with PKR Vincent et al. (2017)

HIV-1 ssRNA-RT Assembly of SHRNP Abrahamyan et al. (2010)

HSV dsDNA Inhibition of PERK activation and elF2α phosphorylation by surface 

glycoprotein gB; UL41 interferes with SG formation through its 

endoribonuclease activity

Mulvey et al. (2007) and Finnen et al. (2016)

HTLV-1 ssRNA-RT Interaction with HDAC6 through Tax Legros et al. (2011)

IAV (−) ssRNA Inhibition of PKR activation by NS1; Regulation of SGs assembly by DDX3X Khaperskyy et al. (2012), Khaperskyy et al. (2014) 

and Kesavardhana et al. (2021)

IBV (+) ssRNA Inhibition of PKR activation through NSP2；Up-regulation of GADD34

；Increase dephosphorylated activity of PP1

Wang et al. (2009) and Burgess and Mohr (2018)

JEV (+) ssRNA G3BP1 isolation and interaction with CAPRIN1 Katoh et al. (2013)

KSHV dsDNA Expression of ORF57 to bind to PKR Sharma et al. (2017) and Sharma and Zheng (2021)

Mengovirus (+) ssRNA PKR-dependent aggregation of G3BP1 by L protein Reineke et al. (2015)

MERS-CoV (+) ssRNA Inhibition of PKR-mediated elF2α phosphorylation Nakagawa et al. (2018)

MeV (−) ssRNA Inhibition of PKR-dependent SG aggregation by protein-C Randall and Goodbourn (2008)

PRV dsRNA Dephosphorylation of elF2α Xu et al. (2020)

Rotavirus dsRNA Block the PKR-eIF2α phosphorylation; Transferation of PABP from cytoplasm 

to nucleus

Montero et al. (2008), Lopez and Arias (2012) and 

Dhillon and Rao (2018)

SARS-CoV-2 (+) ssRNA The N protein attenuates SG formation by localizing to the SGs and 

sequestering G3BP1/2 from their interacting proteins

Bouhaddou et al. (2020) and Gordon et al. (2020b)

SEV ssRNA-RT The transcription product interacts with TIAR to inhibit the generation of SGs Iseni et al. (2002)

TMEV (+) ssRNA Expression of leader (L) protein to stably interact with G3BP1 Borghese and Michiels (2011)

WNV (+) ssRNA Interaction with TIA-1 and TIAR to inhibit SG formation Li et al. (2002) and Emara and Brinton (2007)

ZIKV (+) ssRNA Hijack of G3BP1 and CAPRIN1 Hou et al. (2017)
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the Japanese encephalitis virus (JEV) and Zika virus (ZIKV) sequester 
G3BP1 by interacting with the cell cycle-associated protein 1 
(CAPRIN1; Hou et  al., 2017). Moreover, feline calicivirus (FCV), 
encephalomyocarditis virus (EMCV; Ng et  al., 2013), and 
coxsackievirus B3 (CVB3; Fung et al., 2013) can produce the viral 
protease to cleave G3BP1, thereby disrupting the assembly of SGs 
(Humoud et al., 2016). In addition to G3BP1, TIA-1/TIAR are also 
targeted by viruses to interfere with SG formation. The 3′ stem-loop 
structure in WNV, Sendai virus’s (SEV) transcription product, and 
dengue virus (DENV) could interact with TIA/TIAR which inhibit SG 
formation (Li et al., 2002; Emara and Brinton, 2007). Beyond scaffold 
proteins, other SG core components are also involved in viral infection 
(Iseni et al., 2002; Emara and Brinton, 2007; more detail in Table 1). 
Human immunodeficiency virus type 1 (HIV-1) significantly inhibits 
SG formation by assembling the Staufen1-containing HIV-1-
dependent ribonucleoproteins (SHRNP) in host cells (Abrahamyan 
et al., 2010). Moreover, the host DEAD-box box helicase 3X-linked 
protein (DDX3X) also coordinates various antiviral responses in IAV 
infection, including regulation of SG assembly (Kesavardhana et al., 
2021). Taken together, the core components of SGs (G3BP1, TIA-1/
TIAR, HDAC6, SHRNP, DDX3X, GADD34, PP1) can be regulated by 
viruses to eventually affect SG formation.

It is worth mentioning that SARS-CoV-2 can also inhibit SG 
formation. Given the global pandemic caused by SARS-CoV-2, this 
review makes effort to elaborate on the interactive relationship 
between SARS-CoV-2 and SGs. SARS-CoV-2, a positive-sense single-
stranded RNA (ssRNA) virus (Zhang et al., 2019), includes 30 kb of 
genomic RNA and four structural proteins (the crown spike (S) 
glycoprotein, the membrane (M) protein, ion channels envelope (E) 
protein, and nucleocapsid (N) protein; Wang Q. et al., 2020). And post-
translational modifications (PTMs) related to SARS-CoV-2, like 
glycosylation and phosphorylation, are also pathogenic (Cheng et al., 
2022). The S protein consists of two subunits, S1 and S2, which play a 
key role in receptor recognition and virus-cell membrane fusion. The 
glycosylation of SARS-CoV-2 mainly occurs on the S protein, which 
mediates the interaction with cellular receptors angiotensin-converting 
enzyme 2 (ACE2). After binding to ACE2, the S protein would alter its 
conformation, then resulting in viral membrane fusion (Zhou et al., 
2020). As for the N protein, it has two distinct RNA-binding domains, 
involved in multiple aspects of the viral life cycle, including viral 
genomic RNA replication and virion assembly. The RNA intercalator 
mitoxantrone disrupts N protein assembly in vitro and in cells 
(Somasekharan and Gleave, 2021). Furthermore, the N protein is 
highly produced in infected cells to increase the efficiency of 
subgenomic viral RNA transcription, regulate host cell metabolism 
(Liu W. et al., 2020), and mediate the suppression of host antiviral 
responses (Nabeel-Shah et al., 2022; Wang et al., 2022). The interaction 
between the N protein and G3BP1/2 supports SARS-CoV-2 infection. 
Some studies agree that the N protein could disrupt SG formation by 
sequestering G3BP1/2 from interacting with other proteins (Stukalov 
et al., 2021; Kim et al., 2022). The non-structural protein 1 (Nsp1) of 
the virus can decrease the level of G3BP1, which is associated with 
nuclear accumulation of the SG-nucleating protein TIAR (Dolliver 
et al., 2022). Besides, methyltransferases 1 (PRMT1) methylates SARS-
CoV-2 N protein at residues R95 and R177. It is reported that the 
methylation of R95 can regulate the ability of N protein to suppress SG 
formation (Cai T. et al., 2021). Meanwhile, the phosphorylation of the 
N protein can also interfere with the SG formation (Cheng et al., 2022). 

For instance, the inhibition of SG formation by SARS-CoV-2 may 
be mediated through the interaction of N protein with casein kinase 2 
(CK2) subunits, like G3BP1/2, casein kinase 2 beta/casein kinase 2 
alpha 2 (CSNK2B/CSNK2A2; Gordon et al., 2020b).

To summarize, viruses have evolved several mechanisms to 
counteract the restrictive effect of translational repression. Some 
viruses, mainly ssRNA viruses, replicate by inducing or controlling SG 
formation (Tables 1, 2). Other viruses achieve efficient replication by 
preventing SG formation via a variety of mechanisms. This strategy is 
the most popular choice for viruses, including ssRNA viruses, dsRNA 
viruses, dsDNA viruses, and retroviruses (Table 3).

4. The antiviral effect of SGs

As described above, SGs can interact with virus replication via 
multiple mechanisms, which might be promising targets for antiviral 
intervention. Given that SARS-CoV-2 belongs to the type of virus that 
inhibits SG formation, in this section, we outline the reported small 
molecules that can trigger SG formation and discuss the prospects for 
developing antiviral drugs (Figure 1).

4.1. The pathways involved in anti-virus

It is generally believed that SG formation can affect translation, 
which will inhibit viral replication (Nikolic et al., 2016). The translation 
of some viruses is strictly dependent on the 40S subunit and eIF4G, 
and these translation initiation factors are retained in SGs, which is not 
conducive to the translation of viral proteins (Liu Y. et al., 2020). PKR 
and PERK are the two enzymes related to translation and PKR 
activation during certain viral infections. Meanwhile, the assembly of 
the viral replication complex is affected when G3BP1 or TIA-1/TIAR 
remains in the SG, (Fritzlar et al., 2019). For instance, the 3′ terminal 
neck structure of WNV, TBEV, ZIKV, and JEV can interact with TIA-1/
TIAR to regulate viral replication (Bonenfant et al., 2019). Some viruses 
like Vaccinia virus (VV), MRV, and DENV recruit G3BP1 to assist the 
replication of viruses around the viral replication complex. The RNA 
recognition receptor retinoic acid-inducible gene-I (RIG-I) is retained 
in SG and activated by dsRNA in SG to activate the innate immune 
response of cells (McInerney et al., 2005). In both human and mouse 
cells, the deletion of G3BP1 leads to insufficient binding of RNA by 
RIG-I (Cai H. et al., 2021). In conclusion, the cell can sense the virus 
from multiple aspects, inhibit its translation, and resist viral infection. 
It is the SG that can provide a platform for the recognition of 
pathogene-related molecular patterns, activates the immune signaling 
pathway of host cells. Therefore, SGs are generally considered to 
have antiviral effects upon viral infection (Yang et  al., 2019; 
Zhang et al., 2019).

4.2. SG-targeted antiviral small molecules

4.2.1. miRNAs targeted gene coded 
SG-associated protein

Previous studies have found that miRNAs can be used as targeting 
SGs. Three miRNAs have been reported, hsa-miR-615-3p, hsa-miR-
221-3p, and hsa-miR-124-3p, which target at least two of the five key 
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genes coded SG scaffold proteins (Prasad et al., 2021). One of the 
studies have shown that mitogen-activated protein kinase-activated 
protein kinase 2 (MAPKAPK2) in the lungs of SARS-CoV-2 patients 
could be  reduced by hsa-miR-615-3p (Jafarinejad-Farsangi et  al., 
2020). The hsa-miR-221-3p, which targets ADAM17 (a disintegrin 
and metallo protease 17), is upregulated in hamster lung tissue 
infected by SARS-CoV-2 (Kim et al., 2020). It has been shown that 
SARS-CoV-2 hijacks DEAD box polypeptide 58 (DDX58), but 
hsa-miR-124-3p binds to DDX58 and inhibits SARS-CoV-2 genome 
replication eventually (Arora et al., 2020). Besides, hsa-miR-124-3p is 
found to be down-regulated in JEV-infected human neural stem cells 
(Mukherjee et al., 2019) and reduced pro-inflammatory cytokines 
Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) to 
prevent lung injury (Liang et al., 2020).

4.2.2. Compounds targeted phase one in SG 
assembly

The major signaling pathways that regulate SG formation include 
the eIF2α and eIF4F pathways, and mTOR. As we mentioned in the 
background, PKR and eIF2α kinases are responsible for SG formation 
under different stresses, which provide effective drug targets for 
therapeutic intervention (Wang F. et  al., 2020). Several small 
molecules have been reported to induce eIF2α phosphorylation. The 
RAF1/MEK/ERK kinase (Rubisco assembly factor 1, mitogen-
activated protein kinase kinase, extracellular signal-regulated kinase) 
inhibitor sorafenib (Abdelgalil et al., 2019) and the anti-tumor drug 
5-fluorouracil (5-FU; Kaehler et al., 2014) have been found to induce 
SGs assembly, inhibit cell proliferation and promote apoptosis via 
PKR-mediated eIF2α phosphorylation. Bortezomib, a peptide 
boronate inhibitor, efficiently induces SGs in many cancer cells and 
eIF2α phosphorylation.

In addition, PP1 and GADD34 are induced by phosphorylated 
eIF2α, and GADD34 provides negative feedback on eIF2α 
phosphorylation (Walter and Ron, 2011). Okadaic acid and 
salubrinal are well-known PP1 inhibitors (Nakagawa et al., 2018). 
These two chemicals may interfere with the interaction between 
PP1 and GADD34 and prevent eIF2α dephosphorylation. Okadaic 
acid is another well-known PP1 inhibitor (Nakagawa et al., 2018). 
It has been reported that viruses interfere with SG formation 
through the dephosphorylation of eIF2α by PP1 and GADD34 
(Fusade-Boyer et al., 2019). These two chemicals may interfere with 
the interaction between PP1 and GADD34 and prevent 
eIF2α dephosphorylation.

The key eIF4F cap-binding complex components (eIF4A, eIF4E, 
and eIF4G) also mediate SG formation, which are candidates for 
coronavirus therapeutic targets. The promotion of G3BP aggregation 
by eIF4A inhibitors may partly explain their antiviral activities 
(Gordon et al., 2020a). Pateamine A (PatA) and silvestrol are natural 
products that disrupt eIF4A function and prevent translation, 
resulting in SG formation. Studies have shown that inhibition of SGs 
by Silvestrol affects the synthesis and replication of IAV protein (Slaine 
et al., 2017). Treatment of early viral infection by PatA and silvestrol 
will promote SG formation, arrest viral protein synthesis, and lead to 
failure of viral genome replication. PatA binds irreversibly to eIF4A, 
blocks IAV replication long-term after discontinuation, and inhibits 
IAV replication. In contrast, the antiviral effect of silvestrol is fully 
reversible, leading to rapid SG clearance and recovery of viral protein 
synthesis upon discontinuation. This study supports the feasibility of 

targeting the core host protein synthesis machinery to prevent viral 
replication (Slaine et al., 2017).

4.2.3. Compounds targeted phase two in SG 
assembly

Targeting SG components may influence the dynamics of SGs. 
Particularly, G3BP1/2 and TIA-1 are essential for the initiation of SG 
formation. Small molecules targeting these proteins have the potential 
for antiviral therapy.

G3BP1/2 contains RNA-binding domains to assist RNA binding. 
Many viruses affect SG formation through G3BP1/2. Arsenite induces 
SG formation, probably via inducing the dephosphorylation of 
G3BP1/2 at Ser149 (Gallouzi et  al., 1998). CK2 accelerates SG 
disassembly by promoting G3BP1 phosphorylation (Reineke et al., 
2017). Silmitasertib, a CK2 inhibitor, inhibits CK2 and promotes SG 
formation, showing potent antiviral activity (Ahamad et al., 2020; 
Gordon et al., 2020a). Clinical trials of silmitasertib as a potential drug 
for SARS-CoV-2 treatment are currently under consideration (Yadav 
et al., 2022), suggesting that CK2 plays a role in regulating the SARS-
CoV-2 life cycle. Similar to silmitasertib, TMCB also interferes with 
the disassembly of SGs by targeting CK2 and interacting with the 
carboxy-terminal domain (Ahamad et al., 2020; Wang F. et al., 2020). 
Besides, the cells pre-treated with CK2 inhibitor 5-oxo-5,6-
dihydroindolo-(1,2-a) quinazoline-7-yl acetic acid (IQA) generates 
2.5-fold SG production after Mengo virus with mutant L protein 
(Mengo-Zn) infection (Langereis et al., 2013) and cannot decompose 
SGs (Reineke et al., 2015). It is suggested that IQA can inhibit virus-
induced SG breakdown (Reineke et al., 2017). Tetrabromocinna mic 
acid (TBCA) is also a specific CK2 inhibitor. TBCA treatment alone 
neither alters nor induces SG formation, but residual SGs in cells are 
increased under arsenite stress (Reineke et al., 2017). This feature has 
become a new strategy for TBCA to combine other drugs to fight 
viral infection.

Usually, as a scaffold protein of SG, TIA-1 is an RNA-binding 
protein and is associated with RNA and other proteins to form SGs in 
vivo. Interaction of TIA-1/TIAR with WNV, ZIKV, TBEV, PV, and 
DENV products in infected cells interferes with SG formation (Emara 
and Brinton, 2007; White and Lloyd, 2011; Albornoz et  al., 2014; 
Bonenfant et al., 2019). Boric acid also balances the anti-apoptotic 
eIF2α-SGs pathway and pro-apoptotic pathway via promoting TIA-1 
translocation from the nucleus to SGs (Henderson et  al., 2015). 
Moreover, C85 (troxerutin) is very effective for SG formation induced 
by TIA-1 overexpression or arsenite treatment (Hu et al., 2017). Even 
more, it has been approved for human therapeutic usage by FDA and 
found to act as a SARS-CoV-2 main protease inhibitor, representing 
potential treatment options (Farhat and Khan, 2021). Particularly, C85 
could stabilize SGs and perturb the equilibrium between reversible SG 
assembly and disassembly.

4.2.4. Compounds targeted phase four in SG 
assembly

Microtubules are intracellular structures involved in the biological 
processes of cell division, organization of intracellular structures, and 
intracellular transportation. Microtubule disruption would delay SG 
formation, in which, as a consequence, SGs are formed smaller in size, 
greater in number, and variable in distribution (Nadezhdina et al., 
2010). Based on enrichment analysis, Bexarotene (also known as 
targretin) has been found to upregulate the expression of SG proteins 
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(i.e., DYNC1H1, DCTN1, and LMNA) in rats (Prasad et al., 2021). 
These proteins are associated with microtubules. Recently, Yuan et al. 
have shown that Bexarotene effectively inhibited SARS-CoV-2 
replication in vitro (Yuan et al., 2020). It has been previously shown 
that AM580 and tamibarotene belong to the same drug class as 
Bexarotene, showing broad-spectrum antiviral activity against 
influenza virus, enterovirus A71, Zika virus, adenovirus, MERS-CoV 
and SARS-CoV (Yuan et al., 2019). Moreover, NDV infection induces 
canonical SGs and relatively small round granules are formed after 
treatment with nocodazole (Noc), a microtubule-disrupting drug. 
Unlike the large and irregular SGs in NDV-infected cells, Noc 
treatment induces marked microtubule depolymerization, inducing 
the formation of small, round granules (Sun et  al., 2017). Taking 
current findings together, compounds targeting the protein elements 
of SGs have the promising potential for antiviral effect on SARS-
CoV-2 infection.

5. Conclusion

In this review, we  provide an overview of the composition, 
function, dynamic regulation, and viral-related mechanisms of SGs to 
help understand the role of SGs in viral infection. We then focus on 
the regulating function of SGs in the context of viruses, in particular 
the PKR-elF2α pathway, via which many viruses induce or inhibit SG 
formation by directly affecting elF2α phosphorylation. Specifically, 
we depict the interaction between SARS-CoV-2 and SG. We believed 
that several small molecules, including some inhibitors disrupting the 
interaction of G3BP1/2 with N protein, PRMT inhibitors, and CK2 
inhibitors, could be considered as new therapeutic targets against 
SARS-CoV-2 infection via the regulation of SG assembly and 
dynamics. We also summarize potential antiviral drugs targeting on 
SGs, including small molecule compounds, such as Salubrinal, 
Okadaic acid PatA, silvestrol, and Noc. Finally, we  describe the 
mechanism of anti-SARS-CoV-2, including Silmitasertib, TMCB, 
Bexarotene, and three miRNAs. Overall, our review summarizes the 
antiviral mechanisms of SGs and provides new insights into the 
development of SG-targeted antiviral drugs, particularly, the potential 
drugs against SARS-CoV-2.
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