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The promoter is an important noncoding DNA regulatory element, which 
combines with RNA polymerase to activate the expression of downstream genes. In 
industry, artificial arginine is mainly synthesized by Corynebacterium glutamicum. 
Replication of specific promoter regions can increase arginine production. 
Therefore, it is necessary to accurately locate the promoter in C. glutamicum. In 
the wet experiment, promoter identification depends on sigma factors and DNA 
splicing technology, this is a laborious job. To quickly and conveniently identify 
the promoters in C. glutamicum, we have developed a method based on novel 
feature representation and feature selection to complete this task, describing 
the DNA sequences through statistical parameters of multiple physicochemical 
properties, filtering redundant features by combining analysis of variance and 
hierarchical clustering, the prediction accuracy of the which is as high as 91.6%, 
the sensitivity of 91.9% can effectively identify promoters, and the specificity of 
91.2% can accurately identify non-promoters. In addition, our model can correctly 
identify 181 promoters and 174 non-promoters among 400 independent samples, 
which proves that the developed prediction model has excellent robustness.
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1. Introduction

Corynebacterium glutamicum is a prokaryote, which was first discovered in the 1950s (Sano, 
2009). It is mainly responsible for the production of L-glutamic acid and has played a huge 
potential in the production of amino acids in the industrial field. C. glutamicum is considered 
the best bio-manufacturing substrates by many countries because it can produce amino acids 
with few nutrients and sufficient capacity (Sun et al., 2011; Vertes et al., 2012). Considering the 
excellent characteristics of C. glutamicum, the genome has been modified to produce a variety 
of amino acids, organic acids, alcohols, and proteins through biological genetic technology 
(Okino et al., 2008; Hu et al., 2013). At the beginning of the 20th century, C. glutamicum first 
was published its complete genome sequence, named C. glutamicum ATCC 13032. The whole 
genome consists of a circular chromatin with a length of 3282708 bp, containing 3000 coding 
protein genes, and the ‘C + G’ content is 53.8% (Kalinowski et al., 2003). The complete genome 
sequencing of this species provides convenient conditions for gene editing and regulatory 
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analysis that can further improve the efficiency of C. glutamicum to 
produce amino acids (Barrangou and Horvath, 2017; Cho et al., 2017; 
Jiang et al., 2017; Huang et al., 2019). The above biotechnology mainly 
involves the knockout and inactivation of specific genes, and the key 
is to locate the starting site of genes and the promoter region of the 
target gene (Okino et al., 2008; Theron and Reid, 2011; Silar et al., 
2016). In Hebert et  al. (2018) and Shang et  al. (2018) designed a 
special promoter, which improved the expression level of sucCD and 
the production of L-lysine. Thus, it is very important to identify and 
locate the promoter of C. glutamicum.

The promoter, as a pivotal regulatory element, is responsible for 
activating the expression of target genes (Canzio et al., 2019; Xiao et al., 
2019; Jeon and Tucker-Kellogg, 2020). In preparation for gene expression, 
promoters are affected by macromolecular complexes that are produced 
by the combination of specific transcription factors and regulatory factors 
to complete the transcription from DNA to RNA (La Fleur et al., 2022; 
Liu et  al., 2022; Rengachari et  al., 2022). In industrial systems, the 
recognition of promoters of C. glutamicum requires the help of Sigma 
factors, which requires the support of gene isolation, polymerase chain 
reaction (PCR), and gene cloning techniques (Blumenstein et al., 2022; 
Stepanek et al., 2022). Although the wet lab methods described above can 
specifically identify promoters, they are time - and labor-consuming, and 
it is essential to develop a method-based calculating model to rapidly 
identify promoters. At present, models of promoter recognition already 
exist for many species (Silar et  al., 2016; Bharanikumar et  al., 2018; 
Leemans et al., 2019), but cannot be applied to Corynebacterium because 
of the large differences in homology between the species. Moreover, these 
models employed features that do not accurately describe the inherent 
properties of DNA sequences, resulting in poor overall prediction 
performance. For example, in the human promoter recognition task, Li 
et al. (2022b) used five feature descriptors to express DNA sequences, but 
the final prediction accuracy was only 80%. Hence, it is necessary to 
design a mathematical prediction model to accurately identify the 
promoter of C. glutamicum for the industrial production of amino acids.

Here, we  have collected promoter sequences that have been 
verified and annotated by experiments (Su et al., 2021), and designed 
a new feature expression method according to the distribution of 
multiple physical and chemical properties of sequence DNA. In 
addition, we have developed a novel feature selection method for 
redundant information between features. The proposed model has 
strong robustness by independent set verification.

2. Materials and methods

The following three conditions are indispensable to the excellent 
properties of the prediction model. First, building a rigorous and 
proven dataset. Second, designing the corresponding feature 
descriptor according to the inherent attributes of the sample and the 
specific distribution. Finally, selecting the machine learning algorithm 

that conforms to the regular pattern of descriptors. The flow of the 
whole method is drawn in Figure 1.

2.1. Benchmark dataset

To build a reasonable and interpretable dataset, the promoter of 
C. glutamicum selected comes from the PPD database that collected 
promoters of 63 eukaryotes, including 129,148 promoter sequences, each 
of which was confirmed by strict experiments (Su et al., 2021). Therefore, 
we take 3,581 promoters of C. glutamicum ATCC 13032 in the dataset as 
positive samples. Initially, we filter promoters with incomplete annotation 
information and the same starting site. Immediately, CD-HIT software 
was employed to reduce the sequence consisting of the filtered promoters 
to less than 0.6 (Li and Godzik, 2006; Huang et  al., 2010). Finally, 
we obtained 1,000 promoter sequences with a length of 81 bp. For the 
selection of negative sample non-promoters, we  downloaded the 
complete genome data from the GenBank database1, and randomly cut 
81 bp from different gene fragments as the original negative samples to 
enhance the diversity of the sequence. Similarly, the CD-HIT was applied 
to reduce its sequence consistency to 60%, then we  reserved 1,000 
non-promoter sequences as negative samples. Aiming to prove the 
robustness of the model, 2000 samples are randomly divided into the 
training set and independent set according to the ratio of 8: 2, 800 
positive samples and 800 negative samples were used for model fitting 
and training by five-fold cross-validation, and the remaining 200 positive 
samples and negative samples are employed to test the model’s ability to 
recognize the unlabeled sample.

2.2. Feature descriptor

The key step in building a model is to accurately describe the 
inherent attributes and reflect the differences between samples. The 
combination of promoters with various regulatory elements is 
inseparable from the physicochemical properties of their bases, such 
as hydrophilicity and hydrophobicity. Therefore, we design a novel 
digital feature containing a variety of physical and chemical properties 
to describe the DNA sequence. First, we found the 90 physical and 
chemical properties of dinucleotides from published literature. 
Furthermore, we analyzed the distribution of these physicochemical 
properties of 16 dinucleotides (Dao et al., 2019). It can be found from 
Figure 2 that the distribution of 16 kinds of dinucleotides is more 
remarkable. The minimum value of dinucleotide ‘CG’ is obtained, 
while the maximum value of ‘TA’ is obtained. The ordinate of the 
violin chart corresponds to the frequency density of data distribution. 
For example, the distribution of ‘GA’, ‘CT’, and ‘TC’ shows a standard 
normal distribution, but their wave peaks and widths are different, so 
they have different mean values and variances. In addition, the area 
occupied by different dinucleotides also varies greatly, which infers the 
sum is diverse. Hence, we use the minimum, maximum, variance, 
mean, and sum of 90 physical and chemical properties to represent the 
overall physical and chemical property level of 16 dinucleotides, the 
90 dimensional physical and chemical properties are replaced by 5 

1 https://www.ncbi.nlm.nih.gov/nuccore/NC_006958.1

Abbreviations: SVM, support vector machine; RF, random forest; MLP, multi-layer 

perceptron; KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Acc, accuracy; 
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statistical parameters. The method can not only describe the 
distribution characteristics of dinucleotides but also greatly reduce the 
dimensions used to describe the descriptor. Suppose a DNA sequence 
s with length L, which can contain L-1 dinucleotides, as defined below:

 
D a a a a a a AA AT AC AG TA GGs i L i= éë ùû Î ¼( )-1 2 3 1, , , , ,, ,.. .. , , , ,

 
(1)

where, ai represents the arrangement of dinucleotides in the sequence, 
which is one of 16 kinds of dinucleotides because the four bases can 
form 16 kinds of arrangement combinations in pairs. Dinucleotide ai 
is converted into five statistical parameters, which are defined 
as follows:

 
max varmin , , , ,i i i i i

i mean suma p p p p p =    
(2)

where pimin , pimax , pmeani , pivar , psumi  is the minimum, maximum, 
mean, variance, and sum of 90 physical and chemical properties of the 
i-th dinucleotide. Therefore, the DNA sequence with a length of 81 bp 
is finally converted into an (81–1) × 5 = 400-dimensional feature 
vector. Detailed parameters of physical and chemical properties can 
be  downloaded at http://lin-group.cn/server/iORI-PseKNC2.0/
download.html.

2.3. Feature selection

Feature selection (Nasi et al., 2018; Zhang et al., 2019; Razzak 
et  al., 2020) is to filter the redundant information in the original 
feature set to reduce the feature dimension and improve the calculation 
speed, which can reduce the model learning error caused by noise and 
improve (Aaron et al., 2019) the accuracy and robustness of the model. 

FIGURE 1

The workflow of Corynebacterium glutamicum promoter prediction model.

FIGURE 2

Violin chart of physical and chemical properties of 16 dinucleotides.
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In the process of feature expression, 400-dimensional statistical 
parameters of physical and chemical properties are used to describe 
DNA sequences. Due to the similarity between multiple physical and 
chemical properties and dinucleotide distribution, it is necessary to 
apply a feature selection algorithm to eliminate highly similar features. 
Currently, the main feature selection algorithms employed in 
biological sequence recognition are analysis of variance (ANOVA) 
(UniProt Consortium, 2012; Hebert et  al., 2018; Wu et  al., 2020; 
Moorthy and Gandhi, 2021) and maximum relevance maximum 
distance (MRMD) (Zou et al., 2016; Ao et al., 2021). ANOVA mainly 
reflects the contribution of features to the model by calculating the 
difference between positive and negative samples, then features with 
less contribution are deleted. MRMD judges the independence 
between samples and labels through various distance formulas, and 
features with low independence are filtered. However, the above 
methods have some defects, ANOVA only measures the difference 
between positive and negative samples of features, without considering 
the similarity between features. Oppositely, MRMD lacks the 
characteristics of analysis of positive and negative samples.

Considering the advantages and disadvantages of MRMD and 
ANOVA, we  propose a novel feature selection method based on 
ANOVA and hierarchical clustering (HC) (Karna and Gibert, 2022; 
Zhu et al., 2022). As shown in Figure 3, the method comprehensively 
considers the similarity between features and the difference between 
a positive and negative sample of features. The first step is to calculate 
the F value of each one-dimensional feature, which is obtained by 
ANOVA of differences between groups and within groups, the ‘f_
classif ’ function in the ‘sklearn’ Python package is used to calculate the 
F value of each dimension feature. The second step is the hierarchical 
clustering analysis of features, the ‘AgglomerativeClustering’ function 
in ‘sklearn’ Python package is employed to measure the similarity 
between features. This algorithm mainly classifies two pairs of features 
into one cluster according to the distance between features, and 
we reserve the features with a large F value in each cluster of the 

first-level clustering results, when the F values are the same, a feature 
was selected at random. As shown in Figure  3, in the first-level 
clustering results, F2 and F3 are clustered into one cluster. If F2 is larger 
than F3, the feature of F2 is retained, while F1 is directly retained for a 
cluster alone. Therefore, the 3 dimensions feature ultimately remains 
2 dimensions feature. In practical application, the 400 dimensions 
features are selected as the best subset of 215 dimensions for the final 
model construction.

2.4. Model development

The construction of the prediction model is the process of fitting 
sample labels according to the distribution of features. Because the 
feature descriptor designed is based on statistical parameters, it can 
be seen from Figure 2 that the designed feature distributions are very 
different, the positive and negative samples of feature subsets after 
feature selection also have this property. Therefore, the promoter 
prediction model has superior performance that required to 
accurately measure the confusion between sample features. The RF 
algorithm distinguishes the category of samples according to the 
confusion of feature information, so the algorithm is applied to the 
construction of the classifier. RF judges the disorder degree of samples 
according to the ‘Gini’ coefficient. A small ‘Gini’ coefficient means 
that the lower the disorder degree of samples, the greater the 
probability of correct recognition. The ‘RandomForestClassifier’ 
function in the ‘sklearn’ Python package is used to build the model. 
In the process of model training, the value range of five parameters is 
mainly adjusted by grid searching, the ‘n_estimators’ is 80 to 150 with 
5 steps, the ‘max_depth’ is 15 to 20 with 1 in step, ‘min_samples_leaf ’ 
is 1 to 8 with 1 in step, ‘min_samples_split’ is 2 to 5 with 1 in step, and 
‘max_features’ is 0.1 to 1 with 0.1  in step, respectively. The 
determination of the best combination parameters is based on five-
fold cross-validation.

FIGURE 3

Feature Selection Schematic. Fi is the F value of the i-th dimension feature, 2SB  and 2SW  are differences between groups and within groups.
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2.5. Evaluation parameters

The performance of the model needs to be evaluated by some 
indicators. For the second classification problem, the most common 
evaluation parameters (Xu et al., 2018; Chao et al., 2019; Demidova, 
2021; Li et al., 2022a,b) are sensitivity (Sn), specificity (Sp), accuracy 
(Acc), Matthews correlation coefficient (MCC) and area under the 
Receiver Operating Characteristic (ROC) curve (AUC), which are 
defined as follows:

 

Sn TP
TP FN

Sp TN
TN FP

Acc TP TN
TP FP TN FN

MCC
TP TN FP FN
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(3)

where TP and FP are correctly labeled promoters and incorrectly 
labeled promoters, and TN and F are correctly labeled non-promoters 
and incorrectly labeled non-promoters. Sn is employed to describe the 
model’s ability to detect promoters, while Sp is employed to describe 
non-promoters. Acc, MCC, and AUC are used to describe the overall 
prediction capability of the model.

3. Result and discussion

3.1. Model performance analysis

A model with superior performance can not only accurately fit the 
sample labels on the training set, but also accurately judge the labels of 
unknown samples. To prove that the model proposed has the above 
qualifications, we summarize the results of five-fold cross-validation and 
independent set validation based on the RF (Zhang et al., 2009; Wei 
et al., 2017; Ao et al., 2021) prediction model in Table 1. It can be found 
from the table that in the first cross-validation, Sn, Acc and MCC, 
respectively, obtained the maximum value of 94.51, 93.13, and 86.26%, 
and Sp obtained the maximum value of 93.49% at the fourth cross-
validation, which shows that different partition strategies of the dataset 
affect the fitting of the model, so the mean value of five-fold 

cross-validation is finally regarded as the standard prediction result. In 
general, the model proposed can accurately identify promoters and 
non-promoters, with an average Acc of 91.56%, Sn of 91.87%, and Sp of 
91.17%. In addition, it can be seen from the ROC curve in Figure 4 that 
the performance of the model is superior, which shows that the AUC 
reaches more than 95%. To verify the robustness of the model, 
we conducted independent set tests and found that the model can also 
accurately distinguish promoters and non-promoters. In 400 
independent samples, the model can correctly identify 181 promoters 
and 174 non-promoters, which confirms that our proposed model is 
capable of predicting annotated promoter fragments.

3.2. Feature composition analysis

The excellent performance of the proposed model is driven by the 
accurate representation of feature descriptors and the filtering of 
redundant information by feature selection. It can be seen from Figure 5 
that the features marked in red and marked in blue are clustered together 
and connected by dotted lines. The connected red-blue paired samples 
have high similarity, and the red samples with low F values are removed 
for noise removal, which horizontal dashed lines represent the points with 
far distance for dimensions, while vertical dashed lines represent the 
points with close distance, which proves that our method can filter global 
features rather than local features. Hence, 370 features are filtered out in 
half. The black diamond indicates that the samples are grouped into a 
single category, and they are directly retained. Finally, the feature 
dimension used to construct the samples is 215. More importantly, the 
feature accuracy of 400 dimensions has been improved from 90.69 to 
91.56% of 215 dimensions, which shows that our feature selection method 
based on ANOVA and HC can reduce the redundancy of features and 
improve the model performance to a certain extent.

3.3. Multi-algorithm analysis

In the process of building the model, the RF classification 
algorithm is selected according to the characteristics of descriptor 
distribution. Although this algorithm has achieved good prediction 

TABLE 1 The prediction performance of different subsets in RF.

Descriptor Sn (%) Sp (%) Acc (%) MCC (%)

1-th validation 94.51 91.67 93.13 86.26

2-th validation 92.59 91.39 91.88 83.75

3-th validation 91.39 91.72 91.56 83.08

4-th validation 90.73 93.49 92.19 84.32

5-th validation 90.12 87.84 89.06 77.99

Mean of validation 91.87 91.17 91.56 83.08

Independent 

verification

90.50 87.00 88.75 77.55

The bold value represents the maximum value. Sn, sensitivity; Sp, specificity; Acc, accuracy; 
MCC, matthew correlation coefficient.

FIGURE 4

ROC curve of cross validation results.
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performance, it is still possible that other classification algorithms 
have better results, such as K nearest neighbor (KNN) (Wang et al., 
2012; Demidova, 2021), Support vector machine (SVM) (Xu et al., 
2018; Xiao et al., 2019), Multi-layer perceptron (MLP) (Majidzadeh 
Gorjani et  al., 2021; Lin et  al., 2022). Therefore, we  compared 
different classification algorithms based on filtered features. It can 
be seen from Table 2 that in cross-validation, the performance of 
the RF is the best. The prediction accuracy of SVM is 87.63%, which 
is closest to the RF, followed by the MLP with an accuracy of 85%, 
and the worst KNN accuracy is only 75.62%. The situation of 
independent verification is consistent with the above situation. And 
only the accuracy of the RF algorithm has the smallest difference 
between independent set verification and cross verification, which 
also proves that the proposed model has strong robustness and 
small overfitting analysis.

4. Conclusion

In this work, we collected promoter and non-promoter sequences of 
C. glutamicum with annotation information, then designed a feature 

descriptor based on statistical parameters according to the distribution 
characteristics of physical and chemical properties. Further, we defined 
the novel feature selection method to filter redundant information 
among features. Finally, we successfully built the prediction model based 
on RF that can accurately identify promoters. In a word, the model 
we  designed can accurately identify the promoter sequences of 
eukaryotes, and we hope that the feature descriptors and feature selection 
methods designed can s make positive contributions to other sequence 
classification problems.
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TABLE 2 Comparison of different classification algorithms.

Classifier Verification Sn 
(%)

Sp 
(%)

Acc 
(%)

MCC 
(%)

KNN Five-fold cross-validation 72.98 78.55 75.62 51.58

Independent testing 67.00 81.00 74.00 48.48

SVM Five-fold cross-validation 88.59 86.77 87.63 75.31

Independent testing 82.00 81.50 81.75 63.50

MLP Five-fold cross-validation 85.25 85.58 85.44 70.85

Independent testing 79.00 82.50 80.75 61.51

RF Five-fold cross-validation 91.87 91.17 91.56 83.08

Independent testing 90.50 87.00 88.75 77.55

The bold value represents the maximum value. Sn, sensitivity; Sp, specificity; Acc, accuracy; 
MCC, matthew correlation coefficient; SVM, support vector machine; RF, random forest; 
MLP, multi-layer perceptron; KNN, k-nearest neighbors.

FIGURE 5

Visualization of feature selection results. The features marked in red and marked in blue are clustered together and connected by dotted lines. The 
black diamond indicates that the samples are grouped into a single category.
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