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Plastoglobules, which are lipoprotein structures surrounded by a single 
hydrophobic phospholipid membrane, are subcellular organelles in plant 
chromoplasts and chloroplasts. They contain neutral lipids, tocopherols, 
quinones, chlorophyll metabolites, carotenoids and their derivatives. Proteomic 
studies indicated that plastoglobules are involved in carotenoid metabolism and 
storage. In this study, one of the plastid lipid-associated proteins (PAP), the major 
protein in plastoglobules, was selected and overexpressed in Phaeodactylum 
tricornutum. The diameter of the plastoglobules in mutants was decreased by 
a mean of 19.2% versus the wild-type, while the fucoxanthin level was increased 
by a mean of 51.2%. All mutants exhibited morphological differences from the 
wild-type, including a prominent increase in the transverse diameter. Moreover, 
the unsaturated fatty acid levels were increased in different mutants, including an 
18.9–59.3% increase in eicosapentaenoic acid content. Transcriptomic analysis 
revealed that PAP expression and the morphological changes altered xanthophyll 
synthesis and storage, which affected the assembly of the fucoxanthin 
chlorophyll a/c-binding protein and expression of antenna proteins as well as 
reduced the non-photochemical quenching activity of diatom cells. Therefore, 
metabolic regulation at the suborganelle level can be achieved by modulating 
PAP expression. These findings provide a subcellular structural site and target for 
synthetic biology to modify pigment and lipid metabolism in microalgae chassis 
cells.
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1. Introduction

Diatoms, as a group of red phytoplankton in the ocean, contribute approximately 20% of 
the global primary productivity annually and play an essential role in the global carbon fixation 
and biogeochemical cycle (Field et  al., 1998). Diatoms belong to an important branch of 
photosynthetic organisms. During evolution, prokaryotic cyanobacteria generated two major 
eukaryotic photosynthetic groups via endosymbiosis. One is the green branch, which includes 
Chlorophyta and land plants that evolved from Prochloron. The other is the red branch, which 
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evolved from unicellular red algae that underwent endosymbiosis two 
or three times into various groups such as Cryptophyta, brown algae, 
diatoms, and dinoflagellates. Four membranes surround the 
chloroplasts of diatoms because of secondary endosymbiosis, differing 
from the double-membrane structure of chloroplasts in the common 
higher plants (Falkowski et  al., 2004). The characteristic light-
harvesting antenna of diatoms is fucoxanthin chlorophyll a/c-binding 
protein (FCP), which can capture blue and green light efficiently 
under low light conditions, thereby maintaining photosystem activity. 
This is the molecular basis for achieving efficient light energy capture 
(Wang et  al., 2020). Meanwhile, diatoms can quench excessive 
excitation energy under high light conditions to prevent damage by 
reactive oxygen species, thereby giving diatoms strong light 
environment adaptation ability (Büchel, 2014).

As a marine model diatom, Phaeodactylum tricornutum has 
obvious advantages because of its intracellular content of biologically 
active substances, such as fucoxanthin and eicosapentaenoic acid 
(EPA). In recent years, fucoxanthin has been confirmed to be a safe 
and effective dietary supplement with various physiological activities, 
such as anti-inflammatory, anti-tumor, anti-obesity, and anti-diabetes 
activities (Maeda et al., 2007; Rokkaku et al., 2013; Martin, 2015). As 
one of the ω-3 series of polyunsaturated fatty acids (PUFAs), EPA 
prevents coronary cardiovascular disease and hypertriglyceridaemia 
and reduces the risk of arteriosclerotic inflammation and various 
neoplasias (Lorente-Cebrian et al., 2015; Souza and Norling, 2016). 
The use of biotechnology to improve the levels of fucoxanthin and 
EPA in P. tricornutum has great economic value. In this process, the 
synthetic pathways of these natural products need to be  clarified 
and optimized.

Plastoglobules (PGs) were originally discovered in the chloroplast 
lamellae of Euglena, and they were characterized as dense osmiophilic 
globular structures (Wolken and Palade, 1952). Initial studies on PGs 
revealed that they are formed during the budding of the thylakoid 
membrane in chloroplasts. PGs attach to the thylakoid membrane and 
serve as an important site of chloroplast lipid storage, and they possess 
a single-layered membrane embedded with various proteins (Austin 
et al., 2006). These structures have spread widely in plastids of different 
types and developmental times, including chromoplasts and 
leucoplasts. PGs are relatively large in senescent cells, ranging 
0.3–5.0 μm in size (Kaup et al., 2002). Differences in the size and 
morphology of PGs might serve as a cytological indicator of the 
growth status and stress tolerance. Among the PGs in the chromoplasts 
of ripening bell pepper fruits, capsanthin is the most abundant 
carotenoid, followed by violaxanthin, β-carotene, and capsorubin 
(Deruere et al., 1994b).

PGs are composed of lipoproteins coated by a monolayer of 
hydrophobic phospholipid membranes. They have four major 
components, namely neutral lipids, tocopherols and quinones, 
carotenoids and their derivatives, and chlorophyll catabolite (van Wijk 
and Kessler, 2017). According to proteomic analysis, the most 
abundant proteins in chloroplast PGs are specific members of the 
plastid lipid-associated protein (PAP)/fibrillin family (pfam04755) 
and members of the activity of BC1 complex kinase family, which 
represent approximately 53 and 19% of the PG protein mass, 
respectively (Singh and McNellis, 2011; Lundquist et al., 2012a). PAP/
fibrillin was first isolated from the PGs of sweet pepper in 1994 
(Deruere et al., 1994b). Thus far, the PAP/fibrillin family has been 
recognized as highly conserved, and it is divided into 12 subfamilies 

in higher plants. The results of subcellular localization experiments 
revealed that PAP/fibrillin proteins were located in various subcellular 
organelles of chloroplasts, such as the chloroplast stroma, thylakoid 
membranes, and PGs (Laizet et al., 2004; Singh and McNellis, 2011; 
Kim et  al., 2018). Arabidopsis possesses 14 PAP/fibrillin proteins 
(termed FBNs in Arabidopsis in the following context), 7 of which 
(FBN1a, FBN1b, FBN2, FBN4, FBN7a, FBN7b, and FBN8) are 
considered as PG core proteins. The other FBNs are mainly localized 
in the thylakoid membranes (FBN3a/3b, FBN6, and FBN9) or 
chloroplast stroma (FBN5) (Lundquist et al., 2012b; Kim E. H. et al., 
2015). The functions of FBN1, FBN2, and FBN4, which are localized 
in PGs, have been validated (Singh et al., 2010; Singh and McNellis, 
2011). For example, overexpression of FBN1a in tobacco results in an 
increased number and larger size of PGs, along with increased 
tolerance to light stress, indicating that this gene functions in 
responses to biotic stresses (Rey et al., 2000). Knockdown of FBN1 and 
FBN2 in Arabidopsis resulted in a similar phenotype as the jasmonate-
deficient mutant. Thus, FBN1a, FBN1b, and FBN2 help to recruit 
jasmonate biosynthetic enzymes to PGs (Youssef et  al., 2010). In 
addition, the PAP/fibrillin family exhibits sequence conservation in 
the N- and C-terminal regions, including a lipocalin (−like) signature. 
Based on the presence of a lipocalin (−like) signature in PAP/fibrillin 
members, they are speculated to contribute to PG function through 
the binding and exchange of prenyl lipid intermediates. The identified 
functions of PG core proteins mainly involve the regulation of 
isoprenoid metabolism and remobilization of thylakoid fatty acids 
(van Wijk and Kessler, 2017).

Through the proteomic analysis of chromoplast PGs in ripe red 
peppers, many enzymes related to bicyclic carotenoid biosynthesis 
have been identified, such as ξ-carotene desaturase (ZDS), lycopene 
β-cyclase (LCY-β), and β-carotene β-hydroxylase. This suggests 
that chromoplast PGs have enzymatic functions in carotenoid 
biosynthesis (Ytterberg et al., 2006). The halotolerant green alga 
Dunaliella bardawil also has PGs with abundant β-carotene 
content. Analysis of its proteome revealed that it resembles 
eyespots in Chlamydomonas reinhardtii and the chloroplast PGs in 
Arabidopsis. Meanwhile, several enzymes that participate in 
β-carotene synthesis were identified, including one phytoene 
synthase gene, two phytoene desaturase genes, two LCY genes, four 
ZDS genes, and three carotene isomerase genes. Thus, the authors 
inferred that the abundant β-carotene in D. bardawil is probably 
synthesized in PGs (Davidi et al., 2015).

With continuous research on the structure of PGs, chloroplast 
PGs are regarded as highly specialized thylakoid microdomains that 
recruit and concentrate specific proteins and metabolites. In 
addition, chloroplast PGs play an active role in thylakoid formation, 
remodeling, and breakdown rather than merely serving a passive 
storage function as long believed (Brehelin et al., 2007; Besagni and 
Kessler, 2013). Peter K. Lundquist suggested that PGs are essentially 
microdomains within the thylakoid membrane, and they likely 
serve as a platform to recruit proteins and metabolites into spatial 
proximity, facilitating metabolic channeling or signal transduction 
to accomplish a series of metabolic functions (Lundquist et  al., 
2013). PGs comprise a type of microcompartment with integrated 
roles in plastid metabolism, developmental transitions, and 
environmental adaptation. Therefore, gene editing of PAP/fibrillin 
proteins could achieve rational regulation of cell growth metabolism 
in microalgae.
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P. tricornutum is a unicellular organism with unique 
fucoxanthin synthesis and PUFA accumulation. Previous 
transmission electron microscopy (TEM) observation revealed that 
PGs are also present in the chloroplasts of P. tricornutum. Research 
on the pigment and functional protein composition of PGs 
provides an effective approach for further investigation into the 
synthesis of different bioactive components in diatoms, hence 
improving their accumulation.

In this study, a PAP/fibrillin protein in P. tricornutum was 
overexpressed, a large number of mutant strains were obtained, and 
their phenotypes were validated. We  focused on the changes in 
fucoxanthin content. Concurrently, combined with the photosystem 
parameters and transcriptomics analysis, emphasis was also placed on 
the metabolic relationship between PGs and photosystem assembly. 
We dissected their synthetic regulatory mechanisms and investigated 
the effects of these mechanisms at the subcellular level.

2. Materials and methods

2.1. Microalgal cultivation

The wild-type (WT) P. tricornutum strain was stored at the 
Microalgae Culture Center (MACC/B228) of Ocean University of 
China. During autotrophic cultivation, algal cells were cultured in a 
modified f/2 medium with increasing sodium nitrate concentrations 
(1 g·L−1). The growth rate of P. tricornutum in mixotrophic cultivation 
can increase significantly. Therefore, 10 g·L−1 glycerol was added as the 
carbon source, and 2 g·L−1 tryptone was used as the nitrogen source. 
All strains were incubated in cell culture flasks and placed in a shaker 
at 24°C with a rotational speed of 160 r·min−1. The light intensity was 
80 μmol photons m−2·s−1.

2.2. Selection of genes and plasmid 
construction

All PAP homologs in P. tricornutum and A. thaliana were jointly 
subjected to the phylogenetic tree analysis. Evolutionary analyses were 
conducted in MEGA11. The evolutionary history was inferred using 
the maximum likelihood method and Whelan and Goldman + 
Frequence model. The bootstrap consensus tree inferred from 1,000 
replicates represents the evolutionary history of the taxa analyzed. 
Branches corresponding to partitions reproduced in fewer than 50% 
of bootstrap replicates were collapsed. The percentage of replicate trees 
in which the associated taxa clustered together in the bootstrap test 
1,000 replicates are presented next to the branches (Tamura et al., 
2021). Motifs were analyzed using the online tool MEME (Bailey and 
Elkan, 1994). Protein domains were predicted using SMART (Letunic 
et al., 2021). A highly homologous PAP gene (PHATRDRAFT_55153; 
XP_002184985.1) was finally selected. After sequence cloning, the 
gene was expressed using the plasmid pPha-T1.

2.3. Electroporation protocol

In total, 2 × 108 cells of P. tricornutum during the exponential 
growth phase were harvested by centrifugation at 1500 × g for 

10 min at 4°C. After 4–6 washes with 375 mM sterile ice-cold 
sorbitol, cells were resuspended in 100 μL of 375 mM sorbitol to a 
final density of 2 × 109 cells·mL−1. Then, a suspension aliquot of 
100 μL was mixed with 3–5 μg of DNA linear fragments and 4 μL 
(10 μg·μL−1) of salmon sperm DNA (denatured by boiling for 
1 min), incubated on ice for 10 min, and then transferred into a 
2-mm electroporation cuvette. Electroporation was performed 
using the following settings: 500 V, 400 Ω, and 25 μF (Hu and Pan, 
2020). After electroporation, cells were immediately transferred to 
cell culture flasks containing 10–15 mL of fresh f/2 organic medium 
and recovered in low light (30 μmol photons m−2·s−1) overnight 
without shaking. Then, the cells were collected by centrifugation at 
1500 × g for 10 min and resuspended in 600 μL of fresh f/2 organic 
medium, and 200 μL of this suspension were plated onto solid 
medium containing 75 μg·mL−1 bleomycin (Zeocin). Then, these 
plates were placed in an illumination incubator. After 5–7 weeks, 
the transformants were selected and transferred to liquid f/2 
organic medium.

2.4. Determination of the photosynthetic 
system

The characteristics of the photosynthetic system of microalgae 
cells were measured as previously described (Ding et al., 2021). Each 
sample was collected, added to a black 96-well plate, and incubated for 
10–15 min in the dark. Two experiments were performed in parallel. 
Then, the optimal/maximal quantum yield of PSII (Fv/Fm) and 
non-photochemical quenching (NPQ) were determined using an 
Imaging-PAM chlorophyll fluorometer (MAXI-Imaging-PAM, 
WALZ, Germany).

2.5. Rapid detection of fucoxanthin and 
chlorophyll a content in Phaeodactylum 
tricornutum

P. tricornutum cells were collected, and a portion was appropriately 
diluted. Then, 200 μL of each sample were added to a clear 96-well 
plate, and the optical density at 750 nm (OD750) was measured by a 
microplate reader to calculate the turbidity.

Meanwhile, the other portion of P. tricornutum cells was harvested 
by centrifugation at 4,000 × g for 5 min, washed once with distilled 
water, and centrifuged again. The cells were resuspended in ethanol 
(ethanol:microalgae = 1:1, v/v) for 15–20 min. After diluting, 200 μL of 
each sample were added to a clear 96-well plate, and OD445 and OD663 
were measured using a microplate reader.

The content of fucoxanthin was calculated using the formula (Wang 
et al., 2018): fucoxanthin content (mg·L−1) = 6.39 × OD445–5.18 × OD663  
+ 0.312 × OD750–5.27.

P. tricornutum cells were collected and centrifuged at 4000 × g for 
10 min at 4°C. The supernatant was discarded. An equal volume of 
90% acetone was added, pipetted, and mixed. The samples were 
incubated at 4°C in the dark for 60 min. Then, the samples were 
centrifuged at 4,000 × g for 10 min at 4°C, and 200 μL of the 
supernatant were collected to determine OD652 and OD655. The Chl-a 
content was calculated using the following formula (Lichtenthaler, 
1987): Chl-a (mg·L−1) = 16.72 × OD665–9.16 × OD652.
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2.6. Analysis of the pigment composition 
and fucoxanthin concentration using HPLC

The pigment composition was measured using the Hitachi 
Primaide HPLC system (Hitachi, Tokyo, Japan) with a C18 reverse 
phase column (2.7-μm particle size, 100 × 4.6 mm). The mobile 
phase consisted of acetonitrile and water with a flow rate of 
1 mL·min−1. In the gradient condition, the acetonitrile/water ratio 
was increased from 25:75 to 75:25 over 15 min, maintained for 
3 min, and then decreased back to 25:75 over 2 min. The 
chromatogram was recorded at 445 nm. A fucoxanthin standard 
(ChromaDex, Irvine, CA, United States) was used to construct a 
standard curve in the 0.01–1.00 mg∙mL−1 range.

2.7. Determination of the EPA content by 
gas chromatography

To analyze the fatty acid profile, P. tricornutum cells were 
harvested by centrifugation at 4000 × g for 10 min, washed once 
with distilled water, and centrifuged again. The samples were 
placed in a freeze drier and lyophilized overnight, and their dry 
weight was determined. The lyophilized samples were mixed with 
chloroform and methanol (v:v = 2:1) and then shocked at 45°C for 
3 h. Then, KCl (0.9%) was added to the samples, which were 
centrifuged at 4000 × g for 5 min. The bottom layer was transferred 
to a glass tube and weighed after drying with nitrogen gas. The 
lipid was added to n-hexane and sulfuric acid methanol (2%), and 
samples were placed in a baking oven for methyl esterification at 
85°C for 2 h. Subsequently, the samples were removed and cooled 
on ice, and KCl (0.9%) was added. Then, samples were vortexed 
thoroughly and centrifuged at 4,000 × g for 5 min. Finally, the 
upper organic layer was taken for GC, which was performed using 
a GC system (7890A, Agilent Technologies, Inc., CA). INNOWAX 
(30 m × 320 μm × 0.25 μm) was selected as the chromatographic 
column. In the GC analysis program, an inlet temperature of 250°C 
and an injection volume of 1 μL were employed. The temperature 
program settings were 120°C for 5 min, linear ascension at 
3.5°C·min−1 to 240°C, and a constant temperature for 10 min. N2 
was utilized as the carrier gas with a speed of 28.5 mL·min−1 and 
split ratio of 10:1 (v/v).

2.8. Separation of lipid fraction

Polar and non-polar lipids in P. tricornutum were separated by 
using solid phase extraction column (Bond Elut SI, 500 mg/3 mL, 
Agilent, Santa Clare, CA). The 3 mL silica column was equilibrated by 
using 3 mL methanol and 9 mL chloroform. Then the lipids extracted 
from P. tricornutum were added into the column. Neutral lipids were 
eluted with 4.5 mL of chloroform:acetic acid (9:1, v/v). Glycolipids 
were eluted with 6 mL of acetone:methanol (19:1, v/v). And 
phospholipids were eluted with 6 mL of methanol (Damiani et al., 
2010). The various lipid fractions were dried with nitrogen gas and 
added to n-hexane and sulfuric acid methanol (2%). The samples were 
taken for GC after methyl esterification at 85°C for 2 h as described 
above Materials and methods 2.7.

2.9. Transcriptomic analysis

On day 14, P. tricornutum cells were selected for transcriptomic 
analysis because the microalgae at this stage had relatively stable 
morphology and large variations in pigment content. Transcriptome 
sequencing and analysis were conducted by OE Biotech Co., Ltd. 
(Shanghai, China). Raw data (raw reads) were processed using 
Trimmomatic (Bolger et  al., 2014). The reads containing ploy-N 
low-quality reads were removed to obtain clean reads. Then, the clean 
reads were mapped to the reference genome using hisat2 (Kim 
D. et al., 2015). The FPKM value of each gene was calculated using 
cufflinks, and the read counts of each gene were obtained by htseq-
count (Trapnell et al., 2010).

2.10. Statistical analysis

All experiments were repeated thrice. Unless otherwise stated, all 
data are expressed as the mean ± standard deviation. The statistical 
significance of the values obtained from each experiment was 
evaluated via multiple t-tests using GraphPad Prism 8.0.2. Differences 
were considered significant at p < 0.05.

3. Results

3.1. Phylogenetic tree analysis of the PAP 
genes in Phaeodactylum tricornutum

Thirteen homologous fragments of PAP proteins are found in 
P. tricornutum. These sequences were compared with the FBN proteins 
of A. thaliana. A phylogenetic tree was constructed using homology 
analysis (Figure 1A, Supplementary Data 1). Online analysis of the 
motifs using the MEME tool revealed that 2–3 fragments of conserved 
sequences are included in the protein sequence of the PAP/fibrillin 
family. The structures of all sequences were predicted and visualized 
using the SMART batch function in Tbtool software (Chen et al., 2020). 
We found that almost all of the PAP proteins in P. tricornutum have a 
signal peptide sequence or transmembrane domain. Among them, 
PHATRDRAFT_48066 and PHATRDRAFT_41069 have significant 
transmembrane domains. Excluding PHATRDRAFT_33731, all PAP 
proteins contained a chloroplast signal peptide. Meanwhile, PAP 
proteins in A. thaliana did not possess signal peptides and 
transmembrane domains. Previously, no PG protein was known or 
predicted to possess transmembrane domains, consistent with PGs 
being bound by a membrane lipid monolayer (van Wijk and Kessler, 
2017). The presence of a signal peptide domain in P. tricornutum PGs 
might be related to their four-layered chloroplast membrane structure. 
Only a few PAP proteins of P. tricornutum are clustered into the same 
branch as the FBNs of A. thaliana. Among them, PHATRDRAFT_55153 
and PHATRDRAFT_45813 clustered into one branch with AT4G00030 
and AT3G58010, respectively, with bootstrap consensus values 
exceeding 80. Further combined with conserved sequence analysis, 
PHATRDRAFT_55153 has a more consistently conserved sequence 
similarity. Therefore, PHATRDRAFT_55153 was overexpressed in 
P. tricornutum to analyze the changes in PGs and their function in cell 
metabolism. The protein structure was predicted by Alphafold 2 
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(Jumper et al., 2021). The results illustrated that after the signal peptide 
removal, the protein had a long and straight N-terminus, and the 
C-terminus formed an eight-stranded antiparallel beta-barrel. Such 
structural and hydrophobic region characteristics might play special 
roles in the formation and maintenance of the monolayer structure 
(Figures 1B,C).

3.2. Overexpression of the PAP gene leads 
to morphological changes

Endogenous PAP was overexpressed by electroporation. Gene 
insertions were achieved by random integration. Among the 
obtained mutant strains, six strains (named PAP-A ~ F) were selected 
for subsequent analysis. At the initial stage of cultivation, 
microscopic observation revealed apparent differences in cell 
morphology, particularly an increase in transverse diameter and a 
decrease in the longitudinal diameter between the mutant and WT 
strains. The mutant strain PAP-B displayed a triangular cell 
morphology. Statistical analysis was performed in 15 random 
microscopic fields (six mutants were selected for observation, and 
the cell density was 6 × 107 cells∙mL−1 during observation). The 
mutants were predominantly larger than the WT in the transverse 
diameter. In particular, the transverse diameter was more than 10% 
larger than that of the WT in 92.3% of the mutants. Triangular-
shaped cells accounted for 85.5% of the total cells of PAP-B at the 
initial stage of cultivation (Figures  2A–C). We  speculate that 
overexpression of PAP affects the cell wall and cytoskeleton, thereby 

causing changes in cell morphology. This phenomenon was neither 
expected nor has it been reported.

Furthermore, PAP-B and PAP-C, which had the most extensive 
morphological differences among the mutant strains, were selected for 
TEM observation of PG structures (Figures 2D,E). First, the numbers 
of PGs did not significantly differ among different strains because of 
the differences in the choice of cell section. Different from the number 
of PG structures, the size of PGs was not affected by the choice of cell 
section. Therefore, we compared the diameter between the mutants 
WT, observing that the diameters of PGs were smaller in the mutants 
(Figures  2F,G). This phenomenon supports the existence of a 
phenotypic association between the predicted functional protein 
PHATRDRAFT_55153 and the PGs. The expression of this PAP 
protein might affect the size and structure of PGs. Further validation 
of the protein function might require immunoelectron microscopy-
based approaches for quantitative analysis.

3.3. An essential role of the PAP gene in 
photosystem assembly

The mutants and WT were incubated with shaking under the 
same mixotrophic conditions. Comparing the growth curve by 
measuring OD750, the mutant strains grew slower than the WT. With 
increasing cell passage, the differences in growth rates almost 
disappeared. The cell growth curves after three passages (generation 
time = 20 days) are presented in Figure 3A. The change in growth rates 
was synchronous with the aforementioned differences in cell 

FIGURE 1

Sequence analysis of PAP proteins from P. tricornutum. (A) Phylogenetic tree analysis, motif analysis, and functional domain analysis of PAP/fibrillin 
proteins in P. tricornutum and A. thaliana. (B,C) Protein structure prediction and hydrophobicity analysis of PHATRDRAFT_55153. SP: signal peptide. All 
protein sequences are provided in Supplementary Data 1.
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morphology. PCR-based analysis of the genome found no loss of the 
transformed gene fragments. Changes in the cell morphology and 
growth rate might have resulted from adaptive evolution.

The photosynthetic parameters of the mutants and WT were 
determined during growth. There was no significant difference in Fv/
Fm between the mutants and WT (Figure  3B). However, in the 
photosynthetic kinetics analysis, NPQ was significantly larger in the 
WT than in the mutants, whereas Y(NO) was lower in the WT than 
in the mutants (Figures 3C,D). These results indicate that the WT can 
more actively shield the photosystem from destruction under high 
light conditions. The mutants also had a slightly higher photosynthetic 
electron transport rate (ETR) and Y(II) than the WT (Figures 3E,F). 
This series of changes in photosynthetic parameters illustrate that the 
efficiency of the photochemical reaction center was not affected, 
whereas the changes mainly focused on light-harvesting antenna 

proteins, especially heat dissipation-associated molecules. NPQ is one 
of the most rapid mechanisms diatoms possess to dissipate excess 
energy. Its capacity is mainly defined by the xanthophyll cycle (XC) 
and light-harvesting complex X (Lhcx) proteins (Blommaert et al., 
2020). The diadinoxanthin (Ddx) de-epoxidation is one of the fastest 
biochemical responses of the thylakoid membrane to environmental 
factors (Bojko et al., 2019). Previous studies described a carotenoid 
biosynthesis pathway in PGs, implying that PGs in chloroplasts are the 
essential structures for carotenoid biosynthesis (Deruere et al., 1994a; 
Vishnevetsky et al., 1999; Ytterberg et al., 2006; Singh and McNellis, 
2011). We speculate that the changes in PGs associated with PAP 
genes affect the synthesis of intracellular xanthophylls that bind 
photosynthetic antenna proteins, which will significantly affect the 
efficiency of NPQ. Therefore, we  further analyzed the contents of 
photosynthetic pigments.

FIGURE 2

Morphological analysis of the mutants and WT. (A–C) Micrographs of PAP-B, PAP-C, and WT. The bottom images present the distribution of 
spontaneous chlorophyll fluorescence in cells. (D,E) Transmission electron microscopy (TEM) images of the WT and mutants. The right image is a 
partial enlargement of the left image. (F) ImageJ was used to calculate the diameters of PGs in the TEM images. (G) Statistical analysis of the PG 
diameters in different cells.
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3.4. Overexpression of the PAP gene 
improved fucoxanthin and Chl-a levels

In this study, the intracellular content of fucoxanthin during 
cultivation was analyzed. The results illustrated that the fucoxanthin 
content was higher in the mutants than in the WT in different 
cultivation periods. The PAP-D strain exhibited 85.39% higher 
fucoxanthin content than the WT after 14 days of cultivation 
(Figure 4A). On day 24 of cultivation, the fucoxanthin content of 

mutants was on average 33.10% higher than that of the WT. In 
addition, the intracellular content of Chl-a was analyzed. The trend of 
Chl-a content was consistent with that of fucoxanthin. The mutants 
had an average 28.85% higher Chl-a level than the WT after 14 days 
of culture (Figure 4B). On day 24, this difference decreased to an 
average of 15.62%. The increase in Chl-a content also made the PAP-B 
cells appear dark green in a short period rather than reflecting the 
brown color of diatoms. The expression of the predicted PAP protein 
resulted in enhanced fucoxanthin and chlorophyll levels in the 

FIGURE 3

Growth and photosynthetic parameters of different mutants and the WT. (A–F) Growth curve, Fv/Fm, Y(NPQ), Y(NO), YII, and ETR of the photosystem.

FIGURE 4

Pigment composition of the mutant PAP-B and WT. (A,B) The ratio of fucoxanthin and Chl-a content between the mutant and WT after 14 days. (C,D) 
The pigment compositions of PAP-B and WT were analyzed by HPLC at different culture times, and the absorption peaks at 500 and 410 nm are 
presented.
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mutants. In P. tricornutum, the crystal structure of FCP reveals that 
the Lhcf4 protein binds seven Chl-a, two Chl-c, seven fucoxanthin, 
and probably one Ddx moiety (Wang H. et al., 2019). The assembly of 
FCPs and pigments into a complex, followed by further assembly with 
a photochemical reaction center into a super complex, is responsible 
for converting light energy into chemical energy (Pi et al., 2019; Wang 
et al., 2020). However, the proportion of this pigment content is not 
constant, as the xanthophyll content in particular can vary with the 
growth environment. Significantly, marine algae experience 
non-periodic fluctuations in their exposure to light because of water 
mobility. In diatoms, NPQ is associated with the transformation and 
accumulation of the XC pigments Ddx and diatoxanthin (Dtx) 
(Büchel, 2020; Kuczynska et al., 2020). Their concentrations determine 
the magnitude of the NPQ response. Under high light, FCPs increase 
their XC pigment content and the de-epoxidation ratio (Lepetit et al., 
2012), thereby enhancing their capacity to dissipate energy 
(Gundermann and Büchel, 2012). Enrichment of Dtx in PSII under 
high light suggests that photosystems are organized to allow 
xanthophylls to remain in dynamic balance. This means that 
xanthophylls are not synthesized and decomposed continuously, but 
require a storage structure near the photosystem. Combined with the 
change of PG structures, we speculate that PAP overexpression leads 
to the formation of a more high-density isopentene 
microcompartment, which affects the exchange of xanthophylls on the 
thylakoid membrane and PGs, thus changing the assembly of 
the photosystem.

When the pigment composition of the mutant PAP-B and the WT 
was analyzed by HPLC, a significant difference was observed in the 
levels of Ddx and Dtx. The Ddx level was significantly higher than that 
of Dtx in PAP-B at the later stage of culture. In contrast, the Ddx level 
was much lower than the Dtx level in PAP-B during the early stage and 
in the WT during different periods. Ddx should be de-epoxidated to 
Dtx under light on the thylakoid membrane (Figures 4C,D), whereas 
the mutant strain at the later stage cultured under the same conditions 
had a high level of Ddx, most likely because Ddx cannot be integrated 
into thylakoid membranes nearby the light-harvesting antenna 
proteins and therefore it was not de-epoxidated. Combined with the 
previous speculation, a significant amount of Ddx might be “trapped” 
in the PGs without transport into the photosynthetic system complex.

3.5. Transcriptome data analysis

The transcriptome data of PAP-B, which featured the most 
significant change in cell morphology, were compared with those of 
the WT. We selected the cells cultured on day 14 for transcriptomic 
analysis because the morphology of microalgae cultured to this stage 
was relatively stable and the difference in the pigment content reached 
its maximum.

First, we focused on the expression of all annotation genes in the 
carotenoid synthesis pathway. The most strongly upregulated gene was 
CRTISO4 (log2FC = 2.57), which encodes carotenoid isomerase. 
Recently, this gene was also proven to participate in the cis-trans 
isomerization of phytoene, a key gene for lycopene formation (Sun 
et al., 2022). In addition, most of the enzymes in the fucoxanthin 
synthesis pathway were upregulated (Figure 5A), which was consistent 
with increased fucoxanthin content. In addition, XC-related enzymes 
were also significantly upregulated. The transcriptome data also 

revealed significant upregulation of the violaxanthin de-epoxidase-
like gene (PHATRDRAFT_46155). The upregulation of this enzyme 
is usually accompanied by stress, which is required to initiate the Ddx 
cycle on the thylakoid membrane (Goss and Latowski, 2020).

The most strongly downregulated gene was carotenoid cleavage 
dioxygenase, which can catalyze the oxygenolytic fission of alkene 
bonds in carotenoids to generate apocarotenoid products (Zhou et al., 
2019). The downregulation of degradation pathways in the mutant 
strains was accompanied by the accumulation of carotenoids.

Transcriptomic analysis of the chlorophyll synthesis and 
degradation pathways in mutants revealed that most of the key genes 
of the chlorophyll synthesis pathway were upregulated. In contrast, 
most of the genes of the chlorophyll degradation pathway were 
downregulated. In particular, the pheophytin pheophorbide hydrolase 
(pheophytinase, PPH) gene was significantly downregulated. PPH is 
a critical enzyme in Chl degradation. Mutagenesis or overexpression 
of PPH can lead to a stay-green or premature senescence phenotype 
in Arabidopsis and rice (Schelbert et al., 2009; Wang W. et al., 2019). 
Previous studies identified PPH in isolated PGs, indicating that PPH 
is likely a bona fide PG protein (Lundquist et al., 2012b).

Further analysis of the transcriptome data demonstrated that most 
antenna proteins were downregulated (Figure 5B). Previous studies 
on the FCP crystal structure in P. tricornutum revealed that functional 
PSII–FCPII monomers include one PSII core, two FCP tetramers, and 
three FCP monomers (FCP-D/E/F). One of the FCP tetramers is 
directly associated with the core at the CP47 side and designated 
strongly associated tetramer [S-tetramer (ST)], whereas the other one 
is associated with the PSII core indirectly at the CP43 side through 
two FCP monomers, FCP-D and FCP-E, and hence designated 
moderately associated tetramer [M-tetramer (MT)] (Wang et  al., 
2020). The transcriptome results for FCP complexes illustrated that 
only a few antenna proteins were upregulated, and most FCP antenna 
proteins were downregulated. This might lead to the inhibition of 
antenna protein assembly.

PG structures enable the synthesis and storage of intracellular 
carotenoid substances. The protein structural properties of PAP might 
increase the ability of PGs to store and bind carotenoid substances, 
thus reducing carotenoid transport into the photosynthetic system. 
This is responsible for the reduced synthesis of the corresponding 
antenna proteins during the assembly of the photosynthetic system.

Lundquist speculated that PGs are essentially microdomains 
within the thylakoid membrane that potentially serve as platforms to 
recruit proteins and metabolites to facilitate metabolic channel activity 
or signal transduction (Lundquist et al., 2013). We further suggest that 
PGs act as a pool, and alterations in PAP protein expression might 
affect pigment metabolism in the thylakoid membrane, resulting in 
unexpected modifications in photosynthetic regulation.

Due to the NPQ difference between mutants and WT, we also 
detected the expression of Lhcx genes in the photosynthetic system. 
Diatoms possess an impressive capacity of NPQ, provided by the 
xanthophyll diatoxanthin and Lhcx proteins, and there are four Lhcx 
genes in P. tricornutum (Buck et al., 2019). The results showed that 
Lhcx2 in the mutant strain was significantly downregulated, while the 
expression of Lhcx3 was upregulated considerably (Figure  5B). 
However, the expression level of Lhcx3 in different strains is very low 
(Supplementary Data 2). In this case, the difference in NPQ between 
the mutant and WT may be more influenced by Lhcx2 and the Ddx/
Dtx ratio.
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In addition to carotenoid and photosystem metabolism, 
we  performed transcriptomic analysis of lipid metabolism in the 
mutants (Figure 5C). The chloroplast thylakoid membrane is mainly 
composed of lipids and different protein–pigment complexes. The 
hydrophobic region inside the membrane bilayer interacts with 
membrane proteins to ensure that the light energy absorbed by the 
pigment causes the production and transmission of photosynthetic 
electrons and the proper progression of photophosphorylation. The 
major lipid type in the thylakoid membranes of photosynthetic 
organisms is polar glyceride, which includes three glycolipids 
[monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol 
(DGDG), and sulfoquinovosyl diacylglycerol (SQDG)] and 

phospholipid (phosphatidyl glycerol). Among these glycerides, 
MGDG and DGDG, which contain high proportions of PUFAs, 
accounted for approximately 50 and 30% of the total lipid content, 
respectively (Goss and Latowski, 2020). A high proportion of PUFAs 
is believed to be related to the high fluidity of the membrane, and it is 
an essential feature for efficient photochemical reactions on thylakoid 
membranes. In addition, 20 DGDG, 42 MGDG, 16 SQDG, and 30 
phosphatidylglycerol molecules are found in a PSII–FCPII dimer. 
These lipids are mostly distributed in the interfaces between subunits, 
suggesting their roles in mediating subunit interactions (Wang et al., 
2020). In the transcriptomic analysis, most genes of the PUFA 
synthesis pathway were upregulated, especially delta (12)-fatty-acid 
desaturase 2. However, the expression of enzymes synthesizing 
MGDGs and DGDGs did not significantly differ (Figure  5C). 
We analyzed the fatty acid composition of the mutants and WT using 
GC. The results indicated that the proportion of EPA present in each 
mutant was significantly higher than that in the WT. This was directly 
linked to the significant upregulation of fatty acid desaturases 
identified from the transcriptomic analysis (see Table 1).

By isolating lipids based on their polarity, we purified the neutral 
lipids, glycolipids, and phospholipids for GC analysis. The results 
revealed that PUFAs such as EPA levels of the mutants were 
significantly higher than that of the WT in the fatty acid composition 
of glycolipids. In contrast, no significant differences were found in 
neutral lipids and phospholipids (Supplementary Figure  1; 
Supplementary Table 1). PUFAs such as EPA mainly accumulate in 
membrane lipids. This indicates the increase of membrane fluidity 
during the assembly of the photosynthetic system. Consequently, the 
interactions between the thylakoid membranes and the PS–FCP 
subunits would be induced.

FIGURE 5

Transcriptomic analysis of different metabolic pathways. (A) Expression of genes in the carotenoid synthesis pathway. (B) Expression of genes in the 
FCP complex, photosystem assembly, and the Lhcx genes. (C) Expression of genes in the polyunsaturated fatty acid synthesis pathway and MGDG/
DGDG synthesis pathway. (D) The mannose metabolism genes are related to cell wall synthesis. All abbreviations and data are provided in 
Supplementary Data 2.

TABLE 1 Fatty acid composition of the WT and transformants.

Strains EPA (%) SFAa (%) MUFAb 
(%)

PUFAc 
(%)

A 19.82 ± 0.02 31.37 ± 0.22 30.52 ± 0.49 38.1 ± 0.71

B 22.12 ± 0.15 31.86 ± 0.13 29.06 ± 0.46 39.07 ± 0.33

C 21.48 ± 0.13 38.26 ± 0.07 26.12 ± 0.45 35.60 ± 0.52

D 20.21 ± 0.25 35.63 ± 0.39 28.13 ± 0.21 36.23 ± 0.59

E 24.5 ± 0.13 30.64 ± 0.07 24.15 ± 0.05 45.20 ± 0.02

F 18.29 ± 0.13 34.40 ± 0.33 31.96 ± 0.18 33.63 ± 0.49

WT 15.38 ± 0.54 41.19 ± 1.01 31.27 ± 0.12 27.52 ± 1.13

aindicate the saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty 
acids, respectively.
bindicate the saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty 
acids, respectively.
cindicate the saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty 
acids, respectively.
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Finally, we focused on cell wall-related metabolism, as significant 
differences in cell morphology were observed upon phenotype 
comparisons. The cell wall of P. tricornutum has low silica content, 
differing from other diatoms, which are mainly composed of organic 
molecules, notably sulfated glucuronomannan (Le Costaouëc et al., 
2017). The polysaccharide backbone consists of a mannan chain 
decorated with sulfate ester. It was proposed that the branching 
consists of mannose and glucuronic acid based on structural analyses 
of fragments obtained by mild acid hydrolysis. We mainly analyzed 
mannose metabolism genes involved in the cell wall synthesis pathway. 
The results indicated that the related genes (alpha-mannosidase, 
alpha-1,6-mannosyltransferase, alpha-1,2-mannosyltransferase) were 
upregulated (Figure 5D). Because the cell wall synthesis pathway in 
P. tricornutum is unclear, there was no differential comparison of other 
annotated genes related to cell wall synthesis.

Previous studies on different morphological cells of P. tricornutum 
illustrated that the cell wall of P. tricornutum exhibits high plasticity 
compared to those of other diatoms, and it can display three 
morphotypes: fusiform, oval, and triradiate. In comparison, the 
cellular morphology of our mutant strains appeared to be intermediate 
between fusiform and oval. P. tricornutum cells will undergo different 
physiological changes upon exposure to environmental stress. In 
particular, comparative transcriptomic analysis based on EST 
indicated that the oval morphotype features the upregulation of genes 
encoding proteins involved in hyposalinity and/or cold stress 
responses. Meanwhile, the plasticity of the cell wall is also sensitive to 
different stress conditions (Vartanian et al., 2009; Ovide et al., 2018; 
Galas et al., 2021).

4. Discussion

Chloroplast PGs are dynamic monolayer membrane structures 
containing special metabolites and proteins. They store secondary 
metabolites such as pigments and play an active role in the 
developmental transition and environmental adaptation, making 
them microcompartments with integrated functions. A comprehensive 
functional model of PGs was constructed by co-expression analysis 
using PG proteins, and the co-expression network was involved in 
four specific functions of PGs: (1) senescence, (2) plastid biogenesis, 
(3) isoprenoid lipid metabolism, and (4) redox/photosynthetic 
regulation (Lundquist et al., 2012b).

This study obtained a series of mutants by overexpressing a 
predicted PAP gene. We unexpectedly found that the cell morphology 
of the mutants all shifted toward an oval morphotype. In phenotype 
detection, the unified changes of the mutants typically included 
increases in the levels of fucoxanthin and PUFAs, especially EPA, and 
a decrease in NPQ activity. PGs are located on the thylakoid 
membrane and extended out by the thylakoid membrane. Therefore, 
the changes in PGs and cells were caused by PAP overexpression, 
which we believe is closely related to the assembly and function of the 
photosystem (Figure 6).

First, the diameter of PGs became smaller after PAP 
overexpression. Combined with the previous model, changes in PG 
inclusions affect PG size (Lundquist et  al., 2013). The nonpolar 
components are buried inside the PGs and covered by polar lipids and 
proteins on the surface of PGs. The protein structure of PAP renders 
it amphipathic. Its N-terminal ɑ-helix can bind to the polar lipid of the 

monolayer, and the β-sheets of the tail constitute a barrel structure 
that could bind relatively hydrophobic substances. The ratio of 
amphiphilic-to-hydrophobic metabolites in PGs is reflected in their 
surface area/volume ratio and thus the diameter of the approximately 
spherical PGs. When the overexpressed PAP protein is located on the 
PG surface of P. tricornutum, more surface sites are occupied by the 
protein, which might more specifically bind to isoprenoids inside the 
PGs. Consequently, isoprenoids are more strongly accumulated in the 
interior of PGs than other metabolites, and this selectivity might lead 
to a decrease in the spherical volume. In fact, we suggest that the 
structural properties of this PAP protein determine the preference of 
PGs for the encapsulated contents.

In diatoms, a Ddx–Dtx cycle exists in the FCP antennae, and it 
quenches excess energy under strong light conditions. In our study, 
the photosynthetic electron transport efficiency and photosynthetic 
efficiency of the mutants did not show an obvious decrease, whereas 
NPQ was decreased. We speculated that increases in PAP protein 
levels on PGs and their binding capacity for isopentenyls affected the 
storage and transport efficiency of xanthophylls. Consequently, the 
exchange efficiency of substances between PGs and photosynthetic 
systems and the dynamic equilibrium of xanthophylls in these systems 
were altered. Regulating the number of PGs and the expression of PAP 
proteins appears to play a role in pigment metabolism in the 
photosynthetic system. We suggest that PGs act as buffering pools for 
carotenoids in plant cells, making them essential for regulating the 
photosynthetic efficiency of diatoms.

To use P. tricornutum as an industrial microorganism for 
production, unlike the natural environment in which microalgae need 
to adapt to constant changes in light and temperature; in the 
production process, especially in mixotrophic fermentation, the 
environment of the algal cells is relatively stable regarding light and 
temperature. Under this circumstance, engineering algal species to 
obtain strains that efficiently accumulate fucoxanthin at the expense 
of reduced redundant NPQ capacity can be used as a strategy for algal 
species modification in the future.

EPA is another high-value product of P. tricornutum. The content 
of this PUFA was also elevated in the mutant strains. We also believe 
that there is a close relationship between the accumulation of EPA and 
the assembly of the photosynthetic system of the cell. In the membrane 
lipids of thylakoids of diatoms, MGDG acts as a solvent for XC 
pigments (Latowski et al., 2004). EPA preferentially binds to the sn-1 
position of the glycerol backbone in MGDGs. DGDGs exhibit a fatty 
acid component comparable to that of MGDGs (Dodson et al., 2014). 
Similar to MGDG, EPA generally occupies the sn-1 position of 
DGDGs. In thylakoid membranes, MGDG appears to play a key role 
in providing membrane fluidity, which is essential for the efficient 
diffusion of XC pigments (Goss and Latowski, 2020).

Finally, in terms of changes in cell morphology, we suggest that 
both the synthesis and metabolism of the cell wall affect cell 
morphology. These processes are also associated with alterations 
in the cellular content and cytoskeleton. Many studies have 
examined the cell wall formation of diatoms and its alteration with 
changes in the spectra (Vartanian et al., 2009). The morphology of 
P. tricornutum is easily comparable to that of a convex lens. The cell 
morphology and its contents cause light refraction, which is 
consistent with the distribution of the photoreactive centers of 
chloroplasts and the advantages of the FCP complex in absorbing 
spectra of different wavelengths. In our study, the morphological 
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changes of the mutants might increase the refractive index of the 
“convex lens,” thus having a great refractive effect on the spectrum. 
As an explanation, we tend to attribute this phenomenon to the 
lack of lutein-like substances dependent on the assembly of the 
FCP complex, resulting in the dependence on specific spectra. In 
addition, we found that transitions between multiple morphologies 
of P. tricornutum are probably attributable to the spectral 
dependence of the photosystem.

PGs are structures of subcellular organelles. The single-layered 
membranous structure formed on the thylakoid gives it close contact 
with the photosynthetic system for the exchange of substances. Our 
study preliminarily revealed the role of PGs as a pool for synthesizing 
and storing xanthophylls in photosynthetic systems in a primitive 
marine diatom. This finding inspires the utilization of PGs in 
metabolic engineering. This subcellular organelle structure can 
be modified and engineered as a functional block, thus providing a 
probable target site for synthetic biology.
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FIGURE 6

Schematic overview of proposed organization: Overexpression of the PAP gene (1) led to the accumulation of xanthophylls in PGs, (2) affected the 
assembly of photosynthetic system antenna proteins, (3) reduced the efficiency of XC in thylakoids, (4) increased the degree of unsaturation of MGDG 
and DGDG in thylakoid membranes, thereby enhancing membrane fluidity.
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