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A metabolic model, representing all biochemical reactions in a cell, is a 
prerequisite for several approaches in systems biology used to explore the 
metabolic phenotype of an organism. Despite the use of Euglena in diverse 
industrial applications and as a biological model, there is limited understanding 
of its metabolic network capacity. The unavailability of the completed genome 
data and the highly complex evolution of Euglena are significant obstacles to 
the reconstruction and analysis of its genome-scale metabolic model. In this 
mini-review, we discuss the current state and challenges of metabolic network 
reconstruction in Euglena gracilis. We  have collated and present the available 
relevant data for the metabolic network reconstruction of E. gracilis, which could 
be used to improve the quality of the metabolic model of E. gracilis. Furthermore, 
we  deliver the potential applications of the model in metabolic engineering. 
Altogether, it is supposed that this mini-review would facilitate the investigation of 
metabolic networks in Euglena and further lay out a direction for model-assisted 
metabolic engineering.
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1. Introduction

Euglena gracilis is a photosynthetic protist with a long history of being a model organism in 
biological studies. It can grow in autotrophic, heterotrophic or mixotrophic conditions 
(Takeyama et al., 1997), aerobically or anaerobically, and over a wide range of pH (Yamane et al., 
2001). E. gracilis has been considered as a potential dietary supplement due to its capacity to 
produce various bioactive compounds and is a useful source of proteins, polyunsaturated fatty 
acids, vitamin A, vitamin C and vitamin E (Korn, 1964; Takeyama et al., 1997; Kusmic et al., 
1998; Ogbonna et al., 1998; Barsanti et al., 2000; Gissibl et al., 2019). Moreover, E. gracilis 
accumulates storage carbohydrate in the form of β-1,3-glucan, which can make up to 85% of cell 
dry weight (Inui et al., 1982), called paramylon. Several medicinal properties of paramylon have 
been reported including antiviral and immunomodulatory effects (El Khoury et  al., 2012; 
Murphy et al., 2020). Even though, this organism has long been a focus of research for its diverse 
industrial applications, it is confounding that the understanding of its metabolic capacity is still 
highly limited. Moreover, the analysis of the Euglena genome is still incomplete and restricted 
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by its size and complexity (Ebenezer et al., 2019) arisen from multiple 
secondary endosymbiosis events during its evolution (Novák Vanclová 
et al., 2020).

E. gracilis has received significant attention as a potential cell 
factory due to their ability to produce a diverse array of valuable 
chemicals. Efforts are currently focused on improving their ability to 
produce these chemicals in a cost-effective manner. Metabolic 
network reconstruction is an approach used to identify and 
characterise metabolic pathways present inside of an organism, which 
allow understandings of the metabolism inside of the cell. These 
reconstructed metabolic networks can then be used in several aspects. 
For example, from a metabolic engineering perspective, the 
comprehensive understanding of the metabolic pathways within a cell 
enables the rational selection of engineering targets. Interestingly, this 
approach has been well-explored in other model organisms, yet the 
development has been slow in the case of E. gracilis. Therefore, in this 
mini-review, the current state of the reconstruction of the metabolic 
network of E. gracilis is established, providing an overview of its 
metabolic network and highlighting the unique features of the 
network. In addition, we emphasise the challenges for reconstructing 
the network model of E. gracilis and deliver the available data that 
could be exploited to improve the completion of the metabolic model. 
Furthermore, possible applications of the model in metabolic 
engineering for the production of valuable products are also discussed. 
An overview of the content is presented in Figure 1.

2. Current state of the reconstruction 
of the metabolic network of Euglena 
gracilis

The exceptionally versatile metabolic capacity of E. gracilis is 
reflected in its broad range of growth conditions and substrate utilisation. 
The central pathways have been characterised, including glycolysis, 
gluconeogenesis, the tricarboxylic acid cycle (TCA), the pentose 
phosphate pathway (PPP), and the metabolism of lipids and amino acids 
(Inwongwan et  al., 2019). The genome of Euglena was estimated to 
be approximately 500 Mb in size (Ebenezer et al., 2019) and has not been 
completely analysed. A complete sequence of E. gracilis chloroplast 
genome was published in 1993 (Hallick et al., 1993). The transcriptomic 
analysis indicates the presence of the biosynthesis pathways of 
carotenoids, thylakoid glycolipids, fatty acids, and isoprenoids. It also 
demonstrates the capacity to utilise the pathways for vitamin C, vitamin 
E, and glutathione metabolism to respond to stresses and to produce 
multifunctional polydomain proteins related to fungi and bacteria 
(O’Neill et al., 2015b). A study of the regulatory system of wax-ester 
metabolism under anaerobic conditions of E. gracilis using the 
comparative transcriptomic approach (Yoshida et al., 2016) reported that 
the differentially expressed genes from aerobic and anaerobic conditions 
were not involved in wax-ester metabolism, indicating that the metabolic 
pathways involved in wax-ester biosynthesis were regulated at the post-
transcriptional level. In addition, the following published transcriptome 

FIGURE 1

A schematic diagram representing the overview of this mini-review including steps of metabolic model reconstruction using genome data: (i) Draft 
reconstruction (ii) curation and refinement (iii) Validation of the model and challenges encountered when reconstructing the genome-scale model of 
Euglena gracilis. Potential applications of the network model are also discussed.
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data of E. gracilis also suggested that gene regulation in euglenozoans is 
not primarily controlled at the transcriptional level (Cordoba et  al., 
2021). The study of the mitochondrial genome of E. gracilis revealed the 
flexible mitochondrial metabolisms (Dobáková et al., 2015; Ebenezer 
et al., 2019), the mitochondria can produce energy under either aerobic 
or anaerobic conditions, and efficiently utilise a diverse set of organic 
respiratory substrates facilitated by the unique subcellular localisation of 
the metabolic pathways in mitochondria, such as glyoxylate cycle and 
alcohol oxidisation (Inwongwan et  al., 2019). Altogether, the 
transcriptomic analyses of E. gracilis emphasise its versatile metabolic 
capacity and the regulation at post-transcriptional level (Yoshida et al., 
2016; O’Neill et al., 2015b). Thus, using only the transcriptomic approach 
might not be sufficient to understand how E. gracilis responds to various 
conditions. The E. gracilis plastid proteome indicates the function of 
photosynthesis and demonstrates the core plastid metabolic pathways 
(Ebenezer et al., 2019; Novák Vanclová et al., 2020); however, there is no 
evidence of the presence of oxidative pentose phosphate pathway in its 
secondary chloroplast. Moreover, metabolomic analysis of E. gracilis 
reported changes in pathways used in response to environmental stresses 
(He et al., 2021). Nevertheless, the metabolome is not able to elucidate 
the systemic metabolic operation of the whole metabolic network.

Transcript sequences and topology gap filling were used to 
attempt to reconstruct the metabolic network of E. mutabilis (Halter 
et al., 2015; Prigent et al., 2017). This network model was reported to 
be incomplete as it could not simulate the growth of E. mutabilis in the 
dark (Prigent et al., 2017), despite the capacity of this species to do so. 
A draft of metabolic network model of E. gracilis was constructed 
specifically to study the heterotrophic metabolism of various kinds of 
carbon substrates which mainly includes the operation of the central 
metabolic pathways (Inwongwan, 2021), most of the peripheral 
pathways and reactions of photosynthesis were not extensively curated 
or tested. There have not been any other reports of a completed 
reconstructed metabolic network of E. gracilis.

3. Challenges of metabolic network 
reconstruction of Euglena gracilis

Genome sequence is generally a prerequisite for reconstructing 
the metabolic network of an organism (Thiele and Palsson, 2010). 
Genome-scale metabolic model (GEM) is a mathematical model 
consists of all metabolic reactions in a cell and their stoichiometries 
generally based on genome data, which is able to quantify the 
genotype–phenotype relationships (Fang et al., 2020). It has become 
a powerful tool in systems biology to study responsive metabolic 
phenotypes and optimise the production of targeted metabolites in 
metabolic engineering. Steps of reconstructing GEM start with 
drafting a reconstruction from the annotated genome data, and then, 
the draft model is manually curated and refined based on the 
physiological and/or biochemical evidences to increase the precision 
and accuracy. Subsequently, the experimental data including biomass 
composition, media composition and consumption rate, growth 
characteristics and other environmental factors in the mathematical 
model format are integrated into the model. After completing the draft 
reconstruction, network verification, debugging and gap filling are 
performed. The last step is evaluation and validation of the model 
depending on the objective of the reconstruction (Thiele and Palsson, 
2010). This bottom-up reconstruction procedure applies well with the 

model organisms due to the accessible organism-specific genome and 
biochemical data. Several automated tools for generating GEM were 
developed based on the available databases of the model species, and 
GEM modelling are particularly well-developed in prokaryotes. 
However, the metabolic network reconstruction processes are not as 
straightforward for eukaryotic and non-model species (Yan and Fong, 
2017; Hanna et al., 2020), especially for ones with complex evolution 
causing the diverse and cryptic metabolisms, unique subcellular 
localisation of pathways and organelles, and without an available 
completed set of genome data, like Euglena. Allegedly, reconstructing 
the GEM of E. gracilis comes with several challenges that need to 
be overcome to enable the generation of a descriptive GEM. Here, 
we have listed the main challenges encountered over the years.

3.1. No completed genome data available

Genomic analysis can lead to an investigation of the organism in 
numerous aspects (Griffiths et  al., 2015). The conventional GEM 
reconstruction requires the completed analysed genome data as the 
initiating material for drafting the reconstruction as annotated 
genomes provides the absolute genetic and metabolic capacity of the 
network. Even though there are several computational automate tools 
to generate GEMs from genome data, the ability to produce the high-
quality GEM and the application of these tools are usually restricted 
to the well-define organisms, partially due to a lack of complete 
annotated genome sequence and available related data (Passi et al., 
2021). Despite the history of E. gracilis in biochemical and 
physiological research, the genome of E. gracilis has not yet to be fully 
analysed. Its complex evolution results in a massive genome size with 
a chimeric and convoluted structure, obstructing the assembly and 
analysis of the genome (Ebenezer et al., 2019; O’Neill et al., 2015a).

3.2. The cryptic metabolic capacity from 
post-transcriptional modifications

Several transcriptomic analyses underline that E. gracilis 
metabolic phenotypes can be  significantly controlled by the post-
transcription modification and regulation processes (O’Neill et al., 
2015b; Yoshida et al., 2016; Ebenezer et al., 2019; Cordoba et al., 2021), 
demonstrating the cryptic but great metabolic capacity and complex 
cellular regulatory mechanisms. The high level of involvement of post-
transcriptional modification creates a great challenge in curating and 
simulating the GEM for the specific conditions of interest. Regardless 
of the unavailability of the complete genome data, the transcriptomes 
would be insufficient to indicate the responsive metabolic mechanisms 
to the condition of interest or to depict the wholistic metabolic 
capacity of E. gracilis. Without this information, some significant 
metabolic processes in the network could be missed to identify.

3.3. Unique subcellular distribution and 
compartmentalisation of the metabolic 
pathways

Reconstruction of GEM of eukaryotes are challenging by the size 
of genomes and the multitude of cellular compartments (Thiele and 
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Palsson, 2010). The compartmentation of metabolism in eukaryotes, 
especially ones with plastid (s), complicates the structure on the GEM 
due to the uncertainties of the distribution of the specific enzymes 
(Kruger and Ratcliffe, 2015). Locating subcellular locations of proteins 
and integrating them into the GEMs of eukaryotes have been one of 
the crucial steps to generate the accurate GEM. The subcellular 
localisation of central metabolic pathways of E. gracilis was previously 
reported, demonstrating the specific subcellular pathway distribution 
and the ambiguity for the function of its secondary chloroplast in 
heterotrophic metabolism. The study also emphasises the difficulty in 
predicting the subcellular location of E. gracilis enzymes from peptide 
sequences as the transportation into E. gracilis chloroplasts is not fully 
understood or well-characterised (Inwongwan et  al., 2019). To 
complete the GEM of E. gracilis, identifying the subcellular locations 
and functions of all metabolic pathways would greatly flavour the 
improvement of the network.

As the limited availability of the data is one of the main challenges, 
all reported data is collated and present in this section (Table 1). As 
mentioned, the genome of E. gracilis has not been completely analysed; 

thus, reconstructing the GEM of E. gracilis is merely possible. A 
metabolic network model of E. gracilis was generated based on high 
quality transcriptomic data (O’Neill et al., 2015b; Yoshida et al., 2016) 
and is used in the same sense as GEM. The model was able to predict 
the metabolic fluxes of the central metabolic pathways during the 
heterotrophic metabolism of various carbon substrates, but the model 
has not been further developed or validated to predict the metabolic 
phenotypes in any other growth conditions (Inwongwan, 2021). 
However, this transcriptomic-based metabolic network model of 
E. gracilis shows a possibility to reconstruct a functioning metabolic 
network model without the complete genome data.

The metabolic model reconstruction is an iterative process that 
should be  continuously adjusted with the newly available data to 
improve the accuracy and completeness of the model. In the light of 
high throughput analysis of multiomics data, the extensive availability 
of transcriptome and proteome data could increase the reliability of 
the GEM of E. gracilis. Several approaches were developed to integrate 
the omics data with GEM. For example, based on seeking steady states 
of regulatory network, FlexFlux combine the analysis of regulatory 

TABLE 1 Published transcriptome, organelle genome and proteome data of E. gracilis.

Analysis Growth condition Number of 
component

Reference

Transcriptome High nutrient: EG + JM media with 15 gL−1 glucose, 30°C, 200 rpm, in the dark

Low nutrient: CaCl2 (0.1 g L−1), NaOAc·(H2O)3 (1 g L−1) and JM medium with 15 gL−1 agar, 21°C, 

ambient light

32,128 unique protein-

encoding genes

O’Neill et al. (2015b)

Koren-Hutner medium, 26°C, 120 rpm, 100 μmol photons m−2 s−1, stationary phase cells were 

incubated in anaerobic condition for 5 min.

26,479 unique protein-

encoding genes

Yoshida et al. (2016)

Dark grown: Hutner medium, ambient temperature, in the dark

Light grown: Hutner medium, ambient temperature, illumination from a 60-W tungsten filament 

bulb at 20 cm from the culture vessel

36,526 unique protein-

encoding genes

Ebenezer et al. (2019)

Liquid mineral medium tris-minimum-phosphate with vitamin mixture supplemented, pH 7.0, 25°C

 (i) acetate (60 mM) added, in the dark

 (ii) acetate (60 mM) added, low PPFD (50 μE m−2 s−1)

 (iii) acetate (60 mM) added, medium PPFD (200 μE m−2 s−1)

 (iv) No acetate added, low PPFD (50 μE m−2 s−1)

49,922 unique protein-

encoding genes

Cordoba et al. (2021)

EG medium, pH 3.5, 21°C, 96 μmol photons m−2 s−1 for a photoperiod of 16 h light/8 h dark, control 

and 5 μmol L−1 Hg(NO3)2 treated

439,129 assembled 

genes

Mangal et al. (2022)

Chloroplast 

genome

Standard cultivation procedures, unspecified 55 annotated genes Hallick et al. (1993)

Mitochondrial 

genome

Hutner medium, 27°C, constant shaking, permanent light conditions 10 μm/m−2 s−1 7 annotated genes Dobáková et al. (2015)

Proteome Dark grown: Hutner medium, ambient temperature, in the dark

Light grown: Hutner medium, ambient temperature, illumination from a 60-W tungsten filament 

bulb at 20 cm from the culture vessel

8,661 proteins Ebenezer et al. (2019)

GNY medium, 23°C, 150 rpm, white light (2000 lx) for a photoperiod of 12 h light/12 h dark, heavy 

metals treated: mercury (as HgCl2), lead (as Pb(NO3)2) and cadmium (as CdCl2).

5,325 proteins Khatiwada et al. (2020)

Wild-type and Oflaxocin bleached strains, EM medium with 1% ethanol, 25°C, 50 μmol photons 

m−2 s−1

1,572 proteins Chen et al. (2022)

Plastid 

proteome

Unspecified 1,345 proteins Novák Vanclová et al. 

(2020)

Mitochondrial 

proteome

Non-phtosyntheisc mutant (strain SM-ZK), Koren–Hutner (KH) medium, 26°C, 120 rpm, under 

continuous light conditions of 50 μmol photons m−2 s−1

714 proteins Tamaki et al. (2020)

Hutner medium, 27°C, constant shaking, permanent light conditions 10 μm/m−2 s−1 2,704 proteins Hammond et al. (2020)
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networks with flux balance analysis (FBA) of GEM (Marmiesse et al., 
2015), and Metabolic and Expression models (ME-models) includes 
metabolic and transcriptomic expression with the analysis of GEM 
(Lerman et  al., 2012). Besides, the available transcriptome and 
proteome data of E. gracilis could be  used to improve the draft 
reconstruction of the GEM. The transcriptomes of E. gracilis from 
various conditions provide potential metabolic capacity that could 
be used to draft a comprehensive GEM. The proteomes of E. gracilis 
provide further insights of the metabolic operation specific to the 
conditions of interest. These data could help refine the GEM to 
overcome the cryptic post-transcriptional regulation process. In 
addition, to constraint or validate the accuracy of the model, 
numerous extensive biochemical and physiological data of E. gracilis 
are required, such as biomass composition, growth characteristics, 
non-growth associated maintenance, carbon conversion efficiency, 
overall metabolic rate, metabolome and mitochondrial physiology. 
Some of these data are seldomly studied and reported, thus, the 
currently available data potentially contributing to the reconstruction 
of a complete GEM of E. gracilis might still be far from sufficient and 
will need to be further analysed.

4. Potential applications of the 
Euglena model in metabolic 
engineering

Euglena, as mentioned, is used to synthesise a number of high-
value compounds (Gissibl et al., 2019). Though several bioproducts 
are commercially available, strain improvement to allow cost-
competitive production is still important. Low production yield is one 
of the challenges that slows down the commercialisation of these 
natural products and this could be because the metabolic flux or the 
flow of metabolites to the desirable final products is low (Liu et al., 
2017). Metabolic engineering is, therefore, of interest, as this approach 
could increase the flux towards desirable products in a stepwise 
manner by manipulating the expression of bottleneck genes. In order 
to do so, information regarding Euglena metabolic networks and 
bottleneck reactions towards the target products is essential to ensure 
successful engineering – which could be implemented by knocking 
out, overexpressing or heterologously expressing of particular genes. 
As the development of genetic engineering in Euglena has just been 
kicked off, not a lot of works have been published, and only a couple 
of reviews summarising the reported engineering tools are available 
(Harada et al., 2020; Khatiwada et al., 2020; Chen et al., 2022). The 
delayed development could be due to the lack of knowledge on their 
molecular characteristics, including their complete nuclear genome 
sequences. Moreover, they have distinct characteristics such as their 
chloroplasts that are surrounded with three enveloping membranes, 
which makes it challenging for DNA transformation. Cellular 
characteristics important for engineering are often addressed along 
with the development of compatible engineering tools. Antibiotic 
resistance is one of the important properties addressed when 
developing transformation techniques to identify suitable selectable 
markers (Khatiwada et  al., 2019). A chloroplast transformation 
technique was developed in 2001 using biolistic transformation with 
confirmed transgene transcription (Doetsch et al., 2001). Later on, the 
focus was shifted to the nucleus, electroporation was developed and 
demonstrated to be a potential technique to transform fluorescent 

markers into the nucleus of E. gracilis (Ohmachi et al., 2016). Recently, 
a nuclear transformation technique with the help of Agrobacterium 
was also demonstrated to be successful in E. gracilis (Khatiwada et al., 
2019; Becker et al., 2021). RNA interference (RNAi), a technique to 
suppress gene expression, was also investigated in Euglena. As a 
metabolic engineering strategy, a few reports have used RNAi to 
silence genes encoding enzymes in competitive pathways for natural 
product production in Euglena (Nakazawa et al., 2015; Kato et al., 
2017; Kimura and Ishikawa, 2018). Even though the development of 
genetic engineering tools in Euglena has been relatively slow compared 
to other model organisms, the number of published works has 
gradually increased, including the first report of a groundbreaking 
tool, CRISPR, in 2019 (Nomura et al., 2020). This indicates increased 
attention towards Euglena as a potential host for genetic engineering 
and bioproduction, as the most recent development of CRISPR system 
in Euglena was to create a non-motile mutant to facilitate the 
harvesting process (Ishikawa et al., 2022).

As the number of genetic engineering toolkits for Euglena has 
been increasing over time, this ensures the feasibility to metabolically 
engineer them as a cell factory for attractive chemicals and with the 
help of metabolic network models, metabolic bottlenecks can 
be identified. To the best of our knowledge, model-assisted metabolic 
engineering in Euglena has yet to be reported. However, examples 
have been successfully demonstrated in other hosts, including 
Escherichia coli and Saccharomyces cerevisiae. To provide some 
examples, in 2018, a metabolic model for hydrocarbon production in 
E. coli was reconstructed, and flux balance analysis (FBA), was used 
to identify metabolic engineering strategies to increase the production 
of long-chain alkanes and alcohols (Fatma et al., 2018). Recently, a 
report also utilised FBA to force the flux towards n-butane in E. coli, 
which was found to vastly increase the production by 168 folds (Liu 
et al., 2022). Similarly, in the case of S. cerevisiae, FBA was used to 
identify the target to fine-tune central carbon metabolism to increase 
the levels of acetyl-CoA and malonyl-CoA (Ferreira et al., 2019). To 
provide more relatable examples, GEM has also been constructed in 
photosynthetic organisms. Several metabolic models of cyanobacteria 
(i.e., Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7002 and 
Arthrospira platensis) have been reconstructed and summarised in a 
previous review (Santos-Merino et  al., 2019). Several works have 
reported on the use model-assisted metabolic engineering to improve 
the production of bioproducts from cyanobacteria including limonene 
(Wang et al., 2016), 1,3-propanediol (Hirokawa et al., 2017), ethanol 
(Yoshikawa et al., 2017) and n-butanol (Anfelt et al., 2015). Compared 
to prokaryotic cells, the field of metabolic modeling in eukaryotic 
photosynthetic organisms has progressed slowly due to the complexity 
of their massive genome size and cellular compartmentation (Kruger 
and Ratcliffe, 2015). However, models of Arabidopsis and tomato, two 
model organisms, have been successfully constructed (Poolman et al., 
2009; Yuan et al., 2016) and proven useful for predicting the metabolic 
phenotype of the organisms. In the case of eukaryotic microalgae, 
metabolic models for several microalgae, including Chlorella and 
Chlamydomonas, have been reconstructed (Chang et  al., 2011; 
Kliphuis et al., 2012; Zuñiga et al., 2016; Tibocha-Bonilla et al., 2018). 
These models have mostly been used in order to understand the native 
metabolism of the microalgae. A recent study has reported the use of 
the metabolic model of Chlorella vulgaris to predict cultivating 
conditions for growth optimisation. Interestingly, the predicted 
conditions also led to increased production of fatty acid methyl ester 
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(FAME) and lutein (Li et al., 2019), demonstrating the potential of 
using metabolic models to enhance bioproduction in microalgae. 
Redirection of flux from β-1,3-glucan biosynthetic pathway to other 
pathways could be an approach that would allow increased production 
of wide range chemicals in Euglena. To be specific, according to the 
flux maps of heterotrophic metabolism from 13C metabolic flux 
analysis, Euglena tends to direct glucose intake (37–41%) towards 
β-1,3-glucan storage (Inwongwan, 2021). To optimise the production 
of lipid production with this information, for example, down 
regulation of paramylon synthetase, an enzyme responsible for β-1,3-
glucan synthesis from UDP-glucose, could be the potential strategy. 
Altogether, from a metabolic engineering point of view, it could 
be concluded that metabolic network models are valuable for rational 
design engineering.

Conclusion

This mini-review has summarised the current state of metabolic 
network reconstruction in E. gracilis and the challenges that obstruct 
the progression of the model. Generating a definitive metabolic model 
of E. gracilis could significantly contribute to the application of this 
organism as a cell factory for production of valuable compounds. The 
model can be used to study the metabolism of E. gracilis in various 
conditions and to predict targets for metabolic engineering. Its 
potential has been demonstrated in other model organisms, yet 
model-assisted engineering has never been reported in Euglena. This 
could be because, apart from the unavailability completed model of 
Euglena, the delayed development of genetic engineering toolkits 
though rapid development has been observed over recent years. 
Moreover, in this work, we  implicate potential applications of 
metabolic network reconstruction of Euglena through metabolic 
engineering. Overall, we  anticipate that the use of model-assisted 
metabolic engineering in Euglena will increase in the near future.
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