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Thermococcales, a major order of hyperthermophilic archaea inhabiting iron-

and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, are known to

induce the formation of iron phosphates, greigite (Fe3S4) and abundant quantities

of pyrite (FeS2), including pyrite spherules. In the present study, we report

the characterization of the sulfide and phosphate minerals produced in the

presence of Thermococcales using X-ray diffraction, synchrotron-based X ray

absorption spectroscopy and scanning and transmission electron microscopies.

Mixed valence Fe(II)-Fe(III) phosphates are interpreted as resulting from the

activity of Thermococcales controlling phosphorus–iron–sulfur dynamics. The

pyrite spherules (absent in abiotic control) consist of an assemblage of ultra-

small nanocrystals of a few ten nanometers in size, showing coherently diffracting

domain sizes of few nanometers. The production of these spherules occurs via a

sulfur redox swing from S0 to S−2 and then to S−1, involving a comproportionation

of (-II) and (0) oxidation states of sulfur, as supported by S-XANES data.

Importantly, these pyrite spherules sequester biogenic organic compounds in

small but detectable quantities, possibly making them good biosignatures to be

searched for in extreme environments.
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1. Introduction

The activity of microorganisms may promote mineral dissolution and/or precipitation
in hydrothermal mineral environments (e.g., Holden and Adams, 2003; Templeton et al.,
2009; Houghton and Seyfried, 2010). Hydrothermal systems, in particular sulfur-rich
hydrothermal vents, allow exchange of heat and chemical species between seawater and
ocean rocks (Edmond et al., 1979; Stein and Stein, 1994; Elderfield and Schultz, 1996; Wheat
et al., 2000). The mixture of the hot – up to 400◦C – reduced fluid discharging from
the vents with the cold – about 2◦C – oxygenated sea water, results in the formation of
chimneys accommodating very steep temperature and geochemical gradients (Tivey, 1995;
Von Damm, 1995; Charlou et al., 2002; Schmidt et al., 2007; Flores et al., 2011). Iron sulfide
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minerals, such as pyrite (FeS2) and chalcopyrite (CuFeS2), are
predominant in the inner and hotter parts (>250◦C) of active
chimneys (Feely et al., 1994; Ludford et al., 1996). The cooler middle
layers (80–150◦C) of the chimneys are mainly composed of calcium
and magnesium sulfate minerals, such as anhydrite (CaSO4), but
contain iron sulfides such as pyrite and marcasite (FeS2) as well
(e.g., Langmuir et al., 1997; Schrenk et al., 2003; Rouxel et al.,
2004). It has been proposed that those middle layers harbor a
population of hyperthermophilic archaea (Schrenk et al., 2003;
Lin et al., 2016), probably mainly composed of sulfur-reducers
Thermococcales (Takai et al., 2001; Prieur et al., 2004; Kormas et al.,
2006).

Thermococcales could be an important contributor to the
precipitation of minerals in the middle and external cooler layers
dominated by anhydrite. Gorlas et al. (2018, 2022) reported
that Thermococcales induce the formation of greigite (Fe3S4)
nanocrystals and of great amounts of pyrite (FeS2) when they are
cultivated in an iron and sulfur-rich synthetic medium simulating
mineralizing hydrothermal fluids. These studies also showed
that the production of pyrite only occurs in the cases where
Thermococcales produce sulfur-rich vesicles (S(0)-vesicles), i.e., if
they grow in a medium containing sulfur at zero valent state [S(0)]
(Gorlas et al., 2015, 2018, 2022). In fact, fermentation-assisted
by elemental sulfur reduction made by Thermococcales involves
an NAD(P)H elemental sulfur oxidoreductase (NSR) enzyme (Liu
et al., 2005; Kobori et al., 2010; Bridger et al., 2011; Herwald et al.,
2013) and can lead to the rapid accumulation of elemental sulfur
in the cytoplasm, as was reported for Pyrococcus furiosus exposed
to high concentrations of elemental sulfur (>6.4 g/L) (Schut et al.,
2007). The production of sulfur-rich vesicles could thus be seen as
a detoxifying process, involving the sequestration of excess sulfur
at oxidation state of (0) or close to (0) within the cell and its
transport outside of the cell (Gorlas et al., 2015). This mechanism
likely occurs in natural environments, since hydrothermal fluids are
generally rich in polysulfides (Luther et al., 2001; Waite et al., 2008;
Gartman et al., 2011) or colloidal reactive zero-valent sulfur.

In contact with an Fe (II)-rich fluid, these sulfur-rich vesicles
could act as a precursor for pyrite formation, most likely after
their release by the cells. In contrast, the production of greigite
derives from the sulfurization of amorphous Fe (III) phosphates
close to the surface of the cells (Gorlas et al., 2018, 2022). Although
the excess of sulfide species (H2S and HS−) in the system should
quickly convert greigite into pyrite (Posfai et al., 1998; Hunger
and Benning, 2007), greigite was observed over a period ranging
from a few days to several weeks in previous cultures (Gorlas
et al., 2018, 2022). Because the stability of greigite depends on
the balance between the abundance of reactive iron and the
sulfide or polysulfide activities (Kao et al., 2004), its presence over
rather long periods suggests that Thermococcales influence the
reactivity of at least one, if not both, of these species. More data
on the sequence of production and relative abundance of these
mineral phases (pyrite, greigite, iron phosphates) in the presence
of Thermococcales are needed to better understand the possible
role of high temperature microorganisms in the mineralogy of
hydrothermal systems. Special attention needs to be given to
the habitus of these phases as identifying mineral phases with
characteristics specific to the presence of Thermococcales (e.g.,
shape, size, crystallinity, content in organics), which could be used
to track their presence in sulfur-rich hydrothermal vents.

To better understand how archaeal cells influenced the mineral
environment and vice versa, this study focuses on the mineral
characterization of the iron sulfides and iron phosphates produced
in the presence/absence of Thermococcus kodakarensis in a medium
containing zero-valent sulfur S(0). We determined the sequence
of production and the habitus of the mineral phases produced
in the cultures using X-ray diffraction (XRD), X-ray absorption
(XAS) and electron microscopies (SEM and TEM). In addition
to proposing a unified explanation of cell growth in strongly
mineralized media, we documented the production of pyrite
spherules. The specific shape and microstructure of these spherules
possibly make them biosignature which presence in natural
hydrothermal settings could be used to track the current or past
activity of hyperthermophilic archaea.

2. Materials and methods

2.1. Mineralization process in anoxic
conditions

Thermococcus kodakarensis KOD1 (JCM 12380) cultures were
prepared under strictly anaerobic conditions under N2 atmosphere
in an anoxic JacomexTM glove box (<1 ppm O2), as described
in Gorlas et al. (2018). Cultures were performed in glass serum
vials set with rubber stoppers and aluminium caps. Cells were
grown during 12 h at 85◦C in 10 mL of a modified Ravot
medium (containing, per liter of distilled water : 1 g NH4Cl,
0.2 g MgCl2.6H2O, 0.1 g CaCl2.2H2O, 0.1 g KCl, 0.83 g
CH3COONa.2H2O, 20 g NaCl, 1 g yeast extract, 1 g tryptone, 3 g
PIPES, 0.001 g resazurin and Na2S to reduce the medium at 0.05%
(w/v) (final concentration) in presence of S(0) (1 g/L) in order to
reach 108 cells/mL−1. Then an anoxic solution of ferrous sulfate
(FeSO4) was added to the cultures (leading to a final concentration
of 5 mM) to induce iron mineral precipitation. The mineralized
cultures were incubated for different durations determined in
previous studies (Gorlas et al., 2018, 2022), namely 5 h for the
presence of amorphous iron phosphates, 96 h corresponding to
the formation of iron sulfides, 192 h for the demineralization
process correlated to the presence of iron phosphates and 35 days
to document a very long mineralization period.

Two control experiments were conducted at 85◦C for 96 h
(i.e., the duration required to observe the production of iron
sulfides in the presence of cells): (1) a cell-free abiotic control
consisting of the modified Ravot medium with S(0) 1 g/L, Na2S
at 0.05% (w/v) (final concentration) and the FeSO4 solution at
5 mm (final concentration), and (2) a biotic control, consisting of
T. kodakarensis cells grown in the modified Ravot medium with
S(0) (1 g/L), Na2S at 0.05% (w/t) (final concentration), but without
FeSO4 supplementation.

2.2. X-ray absorption near edge structure
at the S K-edge

The sulfur speciation in the bulk samples was determined by
X-ray absorption near edge structure (XANES) spectroscopy
analysis at the S K-edge. Samples were prepared using
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FIGURE 1

Schematic representation of the experimental protocol. T. kodakarensis cells were cultivated during 12 h in Ravot medium at 85◦C which
corresponds to the early stationary phase. Then, upon addition of aqueous FeSO4 solution (5 mM), mineralization occurred as observed visually.
Mineralization experiments were conducted for 5 h, 96 h, 192 h, and 35 days. The mineral phases composing the solid residues were then studied by
using a combination of XRD, SEM, XANES, TEM, and STXM. Two control experiments were conducted at 85◦C for 96 h (i.e., the duration required to
observe the production of iron sulfides in the presence of cells): (1) a cell-free abiotic control consisting of the modified Ravot medium with S(0)
(1 g/L), Na2S at 0.05% (w/v) (final concentration), and the FeSO4 solution at 5 mM (final concentration) and (2) a biotic control, consisting of
T. kodakarensis cells grown in the modified Ravot medium with S(0) (1 g/L), Na2S at 0.05% (w/v) (final concentration), but without FeSO4

supplementation.

centrifugation (15 mL of each sample were centrifugated at
5000 g for 10 min).

X-ray absorption near edge structure (XANES) was performed
in fluorescence mode at the 4–3 beamline at the Stanford
Synchrotron Radiation Light Source (SSRL, California, CA, USA)
with a HitachiTM HTA 4-element solid-state Si drift detector for
the samples produced in our experiments or a PIPS detector for
some of the concentrated reference samples. The incident energy
was set up with a Si(111) monochromator and calibrated by
measuring a thiosulfate reference (absorption edge at 2472 eV)
between each sample holder during the experiment. Samples were
shipped to SSRL within anoxic containers, and a few mg of pure
solid powders were spread over sulfur-free tape, mounted into
sample holders in a COYTM glove box onsite, and analyzed at
room temperature under He flow. Between 1 to 4 scans were
collected for each sample. Data were calibrated and averaged using
the SIXPACK software (Webb, 2005). Then, averaged spectra were
normalized using the ATHENA software (Ravel and Newville,
2005).

For data analysis, a Linear Combination Fitting (LCF)
procedure was conducted on the S K-edge XANES data with model
compounds. LCF analysis of the XANES spectra at the S K-edge

was performed using a custom-built program (Morin et al., 2003)
based on the Levenberg-Marquardt minimization algorithm. Fit
quality was estimated by a R-factor and a reduced chi-square, and
the uncertainty on each fitting parameter was estimated to 99.7%
confidence (3 sigma) [see Baya et al. (2021) for details]. The set of
model compounds included biogenic nanocrystalline mackinawite
(FeS), elemental sulfur [S(0)], synthetic nanocrystalline pyrite
(FeS2), and synthetic nanocrystalline greigite (Fe3S4). For nano-
mackinawite, elemental sulfur, and pyrite, the spectra of model
compounds are given in Baya et al. (2021). Briefly, nano-
mackinawite refers to a biogenic mackinawite synthesized by
incubating Desulfovibrio capillatus with Fe(III)-citrate in Ikogou
et al. (2017). A powder sample of α-sulfur S(0) was taken
from the IMPMC chemical stocks, and pyrite was pure pyrite
synthesized according to the protocol reported in Baya et al.
(2021). The additional sample of nanocrystalline greigite (Fe3S4)
was synthesized at ambient temperature in a glove box by mixing an
appropriate volume of ferric chloride (FeCl3) and ferrous chloride
(FeCl2) solutions with a sodium sulfide (Na2S) solution while
gently stirring, and was then kept under magnetic stirring during
3 months until being dried under vacuum in the IMPMC glove box.
This last sample contains traces of FeS.
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2.3. Powder X-ray diffraction and
Rietveld refinement

Sample preparation was carried out under N2 atmosphere in an
anoxic JacomexTM glove box (<1 ppm O2). Samples were prepared
using centrifugation (5 mL of each sample were centrifugated
at 5000 g for 10 min). The supernatant was discarded and the
solid phase was vacuum-dried in an anoxic glove-box (no rinsing).
Powder samples were placed on a zero-background Si wafer and
inserted in a custom-built anoxic sample chamber equipped with
a Kapton R© window. The sealed chamber was then removed from
the glove-box and XRD patterns were collected using an XPert
Pro Panalytical diffractometer. Data were collected using Co Kα

radiation in continuous scan mode with an equivalent 0.03◦2 θ step
counting 2.5 h per sample over the 5–100◦2 θ. Scans were then
shortened to the 10–100◦2 θ because of the bump signal from the
Kapton

R©

window at 7.2◦2 θ. Rietveld analysis was performed with
the xnd_1.3 code (Berar and Baldinozzi, 1998) using pseudo-Voigt
line-shape profiles. Starting crystallographic parameters including
space group, unit-cell parameters, atomic positions and isotropic
Debye-Waller factors were taken from Rettig and Trotter (1987) for
α elemental sulfur S(0), from Lennie et al. (1995) for mackinawite
FeS, from Stanjek and Schneider (2000) for greigite Fe3S4 and from
Bayliss (1977) for pyrite FeS2. The structure of β-Fe2PO4O from
Ijjaali et al. (1990) was used for the barbosalite-like compound
within the Fe4(PO4)2O2 – Fe4(PO4)3(OH)3 solid solution. Unit-
cell and line-shape parameters were varied for major phases only.
Iron occupation was refined for the barbosalite-like compounds in
order to properly account for relative intensities. Scale factors were
refined for all phases and were used to calculate relative weight
fraction of the mineral phases in the samples using the classical
procedure by Bish and Post (1993), assuming a sum of weight
fractions equal to one.

2.4. Scanning electron microscopy
coupled with energy dispersive X-ray
spectroscopy

Sample preparation was carried out under N2 atmosphere in an
anoxic JacomexTM glove box (<1 ppm O2). 1 mL of each sample
was filtered through a 0.2 µm polycarbonate filter in order to
conserve the solid part of the samples (no rinsing). Filters were
then deposited on a carbon tape and carbon-coated. SEM-EDXS
data were collected at IMPMC, with a GEMINI ZEISSTM Ultra55
Field Emission Gun Scanning Electron Microscope equipped with a
Bruker silicon drift detector for EDXS. Both images and EDXS data
were collected using an acceleration voltage of 10 kV at a working
distance of 7.5 mm.

2.5. Sample preparation by focused ion
beam

Focused ion beam (FIB) foils (20 µm × 5 µm × 100 nm)
were extracted from pyrite spherules using a FEI Strata DB 235
(IEMN, Lille, France). Milling at low gallium ion currents allowed

minimizing common artifacts including local gallium implantation,
mixing of components, redeposition of the sputtered material on
the sample surface and significant changes in the speciation of
carbon-based polymers (Bernard et al., 2009; Schiffbauer and Xiao,
2009).

2.6. Scanning transmission X-ray
microscopy

Scanning transmission X-ray microscopy (STXM) analyses
were performed on FIB foils to document the carbon speciation of
the organics present within the pyrite spherules using the HERMES
STXM beamline at the synchrotron SOLEIL (Saint-Aubin, France
- Belkhou et al., 2015; Swaraj et al., 2017). Energy calibration was
done using the well-resolved 3 p Rydberg peak of gaseous CO2 at
294.96 eV for the C K-edge. XANES hypercube data (stacks) were
collected with a spatial resolution of 100 nm at energy increments
of 0.1 eV over the carbon (270–340 eV) absorption range with a
dwell time of less than 1 ms per pixel to prevent irradiation damage
(Wang et al., 2009). Stack alignments and extraction of XANES
spectra were done using the Hyperspy python-based package (De
la Peña et al., 2018). Normalization of data was done using the
QUANTORXS freeware (Le Guillou et al., 2018).

2.7. Transmission electron microscopy
(TEM)

Samples were examined using a JEOL JEM-2100F at IMPMC,
equipped with a field emission gun (FEG) operating at 200 kV.
Mineral characterization was completed by selected-area electron
diffraction (SAED) and high-resolution transmission electron
microscopy (HRTEM).

3. Results

3.1. Optical appearance

Upon addition of ferrous sulfate (FeSO4) in the medium,
abundant black precipitates were immediately generated both
in abiotic controls (S(0)+Na2S+FeSO4) and in experiments
conducted in the presence of cells (Figure 1). In presence
of T. kodakarensis, the deep dark aspect of the precipitates
faded after 192 h of mineralization (Figure 1), consistently
with the observations reported in Gorlas et al. (2022). The
abiotic controls retained their initial appearance over the
entire duration of the experiments, no fading of the deep
dark aspect of the precipitates occurred (Supplementary
Figure 1).

3.2. Sulfur speciation

X-ray absorption near edge structure (XANES) at the S K-edge
of mineralized cultures of T. kodakarensis indicate a peculiar
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FIGURE 2

(A) Normalized S K-edge XANES spectra of selected reference compounds [FeS (S−II) in orange, Fe3S4 greigite in pink, FeS2 pyrite (S−I) in red,
elemental sulfur S(0) in yellow and sulfate in green (S+VI)] of the cell-free abiotic control [S(0)+Na2S+FeSO4], of the biotic control [cells+S(0)+Na2S
with no FeSO4] and of the solid residues of mineralization experiments conducted with T. kodakarensis in a sulfur and Fe2+ rich medium at 85◦C for
5 h, 96 h, 192 h and 35 days. (B) Plot presenting linear combination fits performed on normalized S K-edge spectra of the 5 h, 96 h, 192 h and
35 days mineralization experiments conducted with T. kodakarensis (data in black, fit in red and residual in blue). Parameters relative to the LCF
analysis, such as relative proportions of standard reference compounds and indicators of fit quality, are listed in Table 2.

TABLE 1 Results of the LCF analysis applied to normalized S K-edge XANES spectra using chosen reference compounds (see the section “2. Materials
and methods”).

Sample FeS % S(0) % Fe3S4 % FeS2 % Sum χ2
R (0.10−4) R-factor (0.10−5)

5 h 38 (4) 63 (4) – – 101 40.9 80.8

96 h – 60 (3) 25 (1) 14 (3) 99 3.8 7.7

192 h – 42 (8) 19 (3) 40 (8) 101 19.1 36.5

35 days – – 53 (2) 46 (2) 99 16.3 33.3

Uncertainties on the reported values are given considering a 99% confidence interval. Fit quality is estimated by a reduced chi-square and a R-factor (see the section “2. Materials and methods”).

dynamic of sulfur redox evolution (Figure 2 and Table 1). The solid
residues of the 5 h long mineralization experiments are dominated
by the elemental sulfur [S(0)] introduced in the medium (63% (± 4)
of the S atoms), nano-mackinawite (FeS) being also detected (38%
(±4) of the S atoms). The proportion of sulfur as elemental sulfur
corresponds to 60% (±3) of the S atoms in the solid residues of
the 96 h long mineralization experiments. Nano-mackinawite is
not present, while greigite (Fe3S4) and pyrite (FeS2) represent 25%
(±1) and 14 (±3) of the S atoms, respectively. In the solid residues
of the 192 h long mineralization experiments, the proportion of
elemental sulfur only corresponds to 43% (±8) of the S atoms,
while the proportion of sulfur as greigite corresponds to 19% (±3)

of the S atoms and that of sulfur as pyrite to 40% (±8) of the
S atoms. The solid residues of the 35 days long mineralization
experiments do not contain any elemental sulfur, and sulfur is
distributed between greigite (53% (±2) of the S atoms) and pyrite
(46% (±2) of the S atoms). The solid residues of the abiotic control
(S(0)+Na2S+FeSO4) and of the biotic control (cells+S(0)+Na2S
with no FeSO4) (Figure 2) do not contain nano-mackinawite,
greigite nor pyrite according to XANES data at the S K-edge.
Although they are detected in the solid residues of the abiotic
control (Figure 2), sulfates are not detected in the solid residues
of mineralized cultures nor in the biotic control due to a common
ion effect or a lack of iron in these experiments. The non-indexed
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peaks at 2472 and 2481 eV (close to the sulfate peak) in the abiotic
control could be attributed to thiosulfate (Fleet et al., 2005).

3.3. X-ray diffraction identification of the
crystalline phases formed in the
presence of Thermococcales

X-ray diffraction patterns of the solid residues collected
during the time-course mineralization experiments are displayed
in Figure 3. After 5 h of mineralization, α-sulfur [S(0)] and
halite (NaCl) are the major crystalline phases, halite having
been likely crystallized upon drying (no rinsing). An additional
broadened mackinawite (FeS) pattern is also detected and was
included in the Rietveld analysis for this sample. After 96 h
of mineralization, α-sulfur is still the dominant crystalline
phase but pyrite (FeS2) and greigite (Fe3S4) are also observed
in significant amounts, whereas halite is minor. After 192 h
of mineralization, an iron (II)-(III) phosphate referred to as
“barbosalite-like” is observed in large amount, in addition to
pyrite and greigite. Based on Rietveld analysis it can be assigned
to a member of the Fe3+

(4−x)Fe2+
3x(PO4)3(OH)(3−3x)O3x

solution (Schmid-Beurmann, 2000) with an x value of 0.28
as determined from iron occupancy-factor refinement, i.e.,
Fe3+

2.53Fe2+
0.42(PO4)2O0.42(OH)1.58 when compared to

barbosalite (Fe3+)2Fe2+(PO4)2(OH)2 (Redhammer et al., 2000).
After 35 days of mineralization, greigite, pyrite and some halite
were the sole crystalline phases (Figure 3). Neither elemental
sulfur nor crystalline iron (II)-(III) phosphate were detected.
Note that large crystals may have not been sampled during
preparation. Neither greigite, nor pyrite, nor barbosalite-like iron
phosphate were detected in the solid residues of the abiotic control
(S(0)+Na2S+FeSO4) and in the biotic control (cells+S(0)+Na2S
with no FeSO4) (Figure 3 and Supplementary Figure 2).

Rietveld refinement (Table 2) allowed us to determine
weight fractions of the crystalline phases composing the residues
of the mineralization experiments and of the abiotic control
(S(0)+Na2S+FeSO4). Mackinawite was detected in the form of
“nano-mackinawite” after 5 h of mineralization with mean coherent
domain size (MCD) <3 nm (Table 3) and unit-cell parameters
close to those of mackinawite (Lennie et al., 1995). In this sample,
elemental sulfur and nano-mackinawite accounted for 22(±6)
wt% and 31(±9) wt% of the crystalline phases, respectively. After
96 h of mineralization, greigite and pyrite were present in similar
proportions, 23(±1) wt% and 21(±4) wt%, respectively, and nano-
mackinawite could not be quantified because of a too low amount.
After 192 h of mineralization, greigite accounted for only 4(±1)
wt% of the crystalline phases, whereas the barbosalite-like iron
(II)-(III) phosphate was present at 50(±3) wt% and pyrite at
29(±3) wt%. After 35 days of mineralization, the proportion
of greigite represented 34(±6) wt% of the crystalline fraction,
while pyrite represented 52(±11) wt%. In the abiotic control
(S(0)+Na2S+FeSO4), elemental sulfur accounted for 84(±16) wt%
and the amount of nano-mackinawite was qualitatively estimated
at ≤16 wt% (Table 2). After 96 h of mineralization, Rietveld
refinement (Table 3) indicated isotropic mean coherent domain
(MCD) size of 61(±11) nm greigite, and slightly anisotropic MCD
for pyrite, with (111)-plane pseudo-platelets of 14(±4) nm width

and 10(±4) nm thickness. MCD of both greigite and pyrite did not
significantly evolve through time.

3.4. Electron and X-ray microscopies on
the minerals produced in the presence of
Thermococcales

3.4.1. Nano-mackinawite (FeS)
In the solid residues of the 5 h long mineralization

experiments, an iron-sulfur-phosphorus amorphous or poorly
crystalline material was observed, containing sometimes NaCl
crystals, as well as carbon, nitrogen and potassium (Figures 4A,
B). At longer times, this amorphous material disappears for the
benefit of crystalline phases. Those observations are consistent
with XANES and XRD results. A similar iron-sulfur-phosphorus
amorphous material is also detected in the abiotic control [S(0)+
Na2S + FeSO4], but neither nitrogen nor potassium were detected
(Supplementary Figure 3).

3.4.2. Greigite nano-crystals (Fe3S4)
Tiny greigite crystals are present in the solid residues

of the 96 h long mineralization experiments (Figure 4C).
These greigite crystals of about 40–60 nm are no longer
present in the solid residues of the 192 h long mineralization
experiments (Figure 4E), but crystals of greigite are present in
the solid residues of the 35 days long mineralization experiments
(Figure 4F). The nature of the nano-crystals as greigite was
confirmed by Selected Area Electron Diffraction Pattern (SAED)
and High Resolution TEM (HRTEM) images collected on the
solid residues of the 96 h long mineralization experiments
(Figures 5A–D).

3.4.3. Pyrite (FeS2)
Submicrometric (from 200 nm to 1 µm) pyrite spherules are

present in the solid residues of the 96 h, 192 h and 35 days
long mineralization experiments (Figure 4). Their size, shape
and smooth surface texture are very similar in all residues.
Low magnification observations show homogeneous aggregates
of pyrite spherules with relatively low disparities over the whole
mineralization experiments (Supplementary Figure 3).

Focused ion beam (FIB) foils extracted from aggregates of
pyrite spherules found in the solid residues of the 96 h long
mineralization experiments reveal that each spherule is made of
pure pyrite (Figure 5A). The SAED patterns reveal very tiny
crystalline domains with some common orientations between
adjacent domains (Figure 5E). These observations are consistent
with Rietveld refinement of XRD data according to which pyrites
are made of small anisotropic coherent domains of 15 nm by 10 nm
(Table 3). Moreover, STXM characterization of pyrite sections
reveal the presence of organic compounds trapped within the
spherules and in the matrix surrounding the spherules (Figure 5F).
Absorption features at 285.0, 286.4, 287.4, 288.0, and 288.6 eV
can be attributed to aromatic groups, unsaturated C-S bonds,
aliphatic groups, amide groups and carboxylic groups, respectively,
(Le Guillou et al., 2018). The organic material that can be found
in the matrix exhibits the same absorption features as the one
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FIGURE 3

X-ray diffraction of the cell-free abiotic control [S(0)+Na2S+FeSO4], of the biotic control [cells+S(0)+Na2S with no FeSO4] and of the solid residues
of mineralization experiments conducted with T. kodakarensis in a sulfur and Fe2+ rich medium at 85◦C for 5 h, 96 h, 192 h and 35 days. For each
phase, peaks corresponding to a line of significant intensity are labeled with concerned (h k l) of elemental sulfur (COD ID: 00-008-0247; yellow
triangle), NaCl (halite COD ID: 00-005-0628; gray round), Greigite (COD ID: 00-016-0713; pink diamond), Pyrite (00-006-0710; red star) and
Barbosalite-like (iron phosphate oxide hydroxide COD ID: 01-070-5888; blue moon).

TABLE 2 Relative weight fraction of the mineral phases determined by Rietveld analysis applied to samples XRD patterns using pseudo-Voigt line-shape
profiles (see the section “2. Materials and methods”).

Sample FeS % S(0) % Fe3S4 % FeS2 % NaCl FePO4(OH) Sum

5 h 31 (9) 22 (6) – – 47 (11) – 100

96 h – 52 (1) 23 (1) 21 (4) 4 (1) – 100

192 h – 12 (1) 4 (1) 29 (3) 5 (5) 50 (3) 100

35 days – – 34 (6) 52 (11) 12 (3) – 100

Abiotic control S(0)+Na2S+FeSO4 16 84 (16) – – – – 100
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TABLE 3 Mean coherent domain size of the mineral phases based on
Rietveld analysis applied to samples XRD patterns.

Sample FeS Fe3S4 FeS2 FePO4(OH)

L0
2 L2

2

5 h <3 – − – –

96 h – 61 (10.7) 14.1 (3.5) 10.5 (3.5) –

192 h – 41.6 (0.1) 15.7 (1.9) 9.3 (1.6) >1000

35 days – 46.5 (11.4) 12.5 (3) 5.7 (1.8) –

Mineral particle size was calculated by using the Scherrer equation.

trapped into the pyrite spherules (Figure 5F). The carbon amount
is rather low (∼0.15 optical density units) but still detectable. As a
comparison, the spectrum of the organic-rich platinum only shows

a feature at 285.0 eV, attributed to aromatic groups (Le Guillou
et al., 2018).

3.4.4. Barbosalite-like
(Fe3+

2.53Fe2+
0.42(PO4)2O0.42(OH)1.58)

Barbosalite-like crystals are only observed in the solid
residues of the 192 h long mineralization experiments. They
exhibit heterogeneous shapes and sizes (Figures 4E, F).
Some are several micrometers wide and display a spherical
or broken spherical shape, while some submicrometric ones
display a spherule shape and are in direct contact with
pyrite.

FIGURE 4

SEM investigations of the solid residues of mineralization experiments conducted with T. kodakarensis in a sulfur and Fe2+ rich medium at 85◦C for
5 h, 96 h, 192 h and 35 days. (A) Iron sulfide matrix after 5 h of mineralization and (B) associated EDXS spectrum. (C) Iron sulfide spherules (indicated
by a yellow arrow) and nanocrystals in the matrix (indicated by a brown arrow) after 96 h of mineralization and (D) associated EDXS spectra in yellow
and brown, respectively. (E) Iron sulfide spherules and iron phosphate after 192 h of mineralization and (F) associated EDXS hypermap and spectra of
iron phosphates (blue) and iron sulfides (yellow). (G) Iron sulfide spherules and crystallized iron sulfide matrix after 35 days of mineralization and (H)
associated EDXS spectra in yellow and brown, respectively.
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FIGURE 5

TEM, HRTEM, and STXM characterization of FIB sections of pyrite spherules observed in the solid residues of mineralization experiments conducted
with T. kodakarensis in a sulfur and Fe2+ rich medium at 85◦C for 96 h. (A) TEM image of sections of pyrite spherules. (B) TEM image and (C) HRTEM
of greigite [zone axis (110)] and (D) associated electron diffraction pattern. (E) Electron diffraction pattern of polycrystalline pyrite (red square in
panel A) showing a preferential orientation. (F) C-XANES spectra of the organic material trapped into the pyrite spherules (red spectrum) and into the
matrix surrounding the spherules (blue spectrum). The spectrum of the organic-rich platinum is also shown (in gray) for comparison. Absorption
features at 285.0, 286.4, 287.4, 288.0, and 288.6 eV are attributed to aromatic groups, unsaturated C-S bonds, aliphatic groups, amide groups, and
carboxylic groups, respectively.

4. Discussion

4.1. Evolution of the system over time:
phosphorus–iron–sulfur dynamics

The formation of a black precipitate immediately after the
addition in the medium of iron as Fe2+ (Figure 1) is caused by the
precipitation of amorphous or poorly crystalline nanophases such
as FeS nano-mackinawite [unambiguously detected by Rietveld
refinement (Table 2) and XANES (Figure 2 and Table 1)] and
iron phosphates (Figure 4B; Gorlas et al., 2018, 2022), the two

phases forming a three-dimensional matrix observed by electron
microscopy. A similar amorphous matrix is observed in the abiotic
control [S(0) + Na2S + FeSO4] at 96 h (Supplementary Figure 3),
identified as FeS nano-mackinawite by Rietveld refinement
(Table 2). Note that the nano-mackinawite contribution, estimated
at ≤16% ± while elemental sulfur accounted for 84 (± 16) wt %,
likely is overestimated by Rietveld refinement (Table 2) since we
were not able to detect it in XANES S K-edge analysis (Figure 2
and Table 1). Thermococcales promote a redox evolution of both
sulfur and iron: S(0) is reduced by cellular metabolism producing
sulfide (S−2) which is then progressively oxidized into S−1 as pyrite
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while Fe2+, although not directly involved in cellular metabolism,
is partially oxidized into Fe3+ in greigite and in barbosalite-like
phosphate (Figures 2, 6 and Tables 1, 2). In parallel with the
continuous reduction of sulfur (0), the system thus evolves from
almost pure nano-mackinawite (FeS) at 5 h (Figures 4A, B, 6)
to greigite (Fe3S4) nanocrystals and pyrite (FeS2) submicrometric
spherules starting 96 h (Figures 4C, D, 6).

While the precipitation of pyrite increases with increasing
duration of mineralization (Figures 6A–C), the initial production
of greigite, a sulfide containing 2 Fe(III) for 1 Fe(II), seems to be
intimately related to that of Fe (II/III) phosphates in the present
system: the proportion of greigite first decreases while barbosalite-
like phosphates precipitate, before it increases once barbosalite-like
are no longer present (Figures 6A, D). A number of studies have
reported the microbial production of greigite either intracellularly
(by magnetotactic bacteria for instance) or extracellularly (e.g.,
Mann et al., 1990; Bertel et al., 2012; Gorlas et al., 2018, 2022; Picard
et al., 2018, 2019). Some authors proposed that the production
of greigite requires a precursor already containing some Fe (III)
(Etique et al., 2018; Picard et al., 2018; Berg et al., 2020; Duverger
et al., 2020; Gorlas et al., 2022). This Fe(III) may come from Fe(III)-
phosphates (e.g., Duverger et al., 2020) or from the oxidation of
the Fe(II) of mackinawite (e.g., Lennie et al., 1997). Here, the
FeS nano-mackinawite three-dimensional matrix contains some
amorphous or poorly crystallized iron phosphates (Figure 4B),
likely Fe(III)-phosphates as previously reported by Gorlas et al.
(2022). Still, the initial production of Fe(III)-phases remains
enigmatic since the experiments are conducted in strict anoxia.
The oxidation of iron could have involved the S(0) contained in
the cells, organic acids, or water (H+), which reductions could
have been catalyzed by the cell surfaces. Kish et al. (2016) have
reported that Sulfolobus acidocaldarius S-layer of both active and
ghost cells and membrane vesicles are effective nucleation sites for
amorphous or crystalline Fe-phosphate phases in a phosphate-rich
and sulfate-rich medium. This possibility is also consistent with the
observations of iron phosphates on Thermococcales cell surfaces or
extracellular materials (Gorlas et al., 2022).

Between 96 and 192 h, the proportions of well crystallized
pyrite and large iron phosphates, namely barbosalite-like
[resembling barbosalite (Schmid-Beurmann, 2000) or lipscombite
(Ech-Chahed et al., 1988)], increase over that of greigite
(Figures 6A, D). The crystallized phosphates could be formed by
interaction between poorly crystallized phosphates and greigite.
Moreover, when sulfur is present in the medium, it has been shown
that the cells accumulate S(0) vesicles leading to the formation
of pyrite when in contact with Fe2+ (Gorlas et al., 2022), which
explains the abundance of this phase. The predominance of such
large grain size phases over nanophases of iron phosphate, nano-
mackinawite and greigite likely explains the clarification of the
medium (Figure 1 and Supplementary Figure 1). In similar 192 h
long mineralization experiments, Gorlas et al. (2022) detected
significant amounts of intracellular ATP and visualized living cells
and cell divisions suggesting that some cells had resisted the toxic
initial high nanoparticle-rich medium and benefited from clear
enough medium to resume growth and cell division. It is then
likely that these cells largely depleted the stock of sulfur (0) in the
medium and shift to an H2 generating fermentative metabolism,
below a certain threshold of zero valent sulfur in the system

(Figure 6; Kanai et al., 2013; Schut et al., 2013). This may result in
some pyrite dissolution producing H2S and greigite according to:

3FeS2 + 2H2 → Fe3S4 + 2H2S (1)

and possibly iron (II)-(III) phosphates, which allow the cell
population to recover additional phosphorus. Such phosphorus-
iron-sulfur dynamics would constitute an ecological strategy in
natural environments (Xiong et al., 2019; Wilfert et al., 2020).
Such mobilization of the phosphorus reservoir by the cells
leaves an excess of Fe(III) which can then be used for greigite
precipitation. This model is consistent with the second phase of
greigite precipitation (Figure 6) and the absence of well crystallized
phosphates in the solid residues of 35 days long mineralization
experiments (Figure 6).

4.2. Carbon-containing pyrite spherules:
a biosignature?

In contrast to amorphous ferrous sulfide (FeS), greigite
(Fe3S4) or mackinawite (FeS), which biological production has
been extensively reported (Posfai et al., 1998; Picard et al.,
2016, 2018; Stanley and Southam, 2018; Park and Faivre, 2022),
pyrite is generally produced abiotically in natural settings (e.g.,
Yuan et al., 2020). Still, biogenic production of pyrite can be
achieved by some microorganisms, including sulfate-reducing
microorganisms (SRM) (Thiel et al., 2019; Berg et al., 2020;
Duverger et al., 2020) or methanogenic archaea (Thiel et al., 2019).
Pyrite may form from greigite and ferrous sulfide (Rickard, 1997;
Hunger and Benning, 2007; Rickard and Luther, 2007) or from
elemental sulfur and ferrous sulfide (Wilkin and Barnes, 1996;
Benning et al., 2000). Here, an early ferrous sulfide phase is
unambiguously detected by XANES (Figure 2 and Table 1),
Rietveld refinement (Table 2) and SEM (Figures 4A, B), confirming
previous results (Gorlas et al., 2018, 2022). This ferrous sulfide
phase has likely been produced via interactions between S(-II) and
Fe(II). The presence of both sulfides and hydrogen sulfide (HS−)
results from the reduction of S(0) by T. kodakarensis, occurring
partially before the addition of iron in the system (Morikawa et al.,
1994). Note that it is likely that some sulfide ions come from the
Na2S, explaining the production of black precipitates identified
as ferrous sulfides by Rietveld refinement (Table 2) in the abiotic
control (S(0) + Na2S + FeSO4) after addition of FeSO4.

As stated above, with increasing duration of mineralization,
phases containing iron and/or sulfur more oxidized than
mackinawite (FeS) are produced, namely greigite (Fe3S4), pyrite
(FeS2) and barbosalite-like (Fe1.47PO4(OH)0.79) (Figures 2, 3, 4, 6).
The sulfur of pyrite is at a formal oxidation state S(-I), i.e., it is
more oxidized than that in mackinawite, which is formally S(-
II), while both phases contain Fe(II). An oxidation process is thus
necessary to form pyrite from mackinawite, i.e., electron acceptors
must be present in the system. It is known that Thermococcales
produce many extracellular vesicles (Soler et al., 2008; Gorlas et al.,
2015; Liu et al., 2021), and particularly S(0)-vesicles which have
been suggested to be involved in the detoxification of polysulfides
(Gorlas et al., 2015). Here, the production of S(0)-vesicles may have
enhanced the production of pyrite. Accordingly, Gorlas et al. (2015,
2018, 2022) have shown that no pyrite forms in culture devoid of
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FIGURE 6

Proportions of sulfur and iron species and of the iron species of the solid residues of mineralization experiments conducted with T. kodakarensis in a
sulfur and Fe2+ rich medium at 85◦C for 5 h, 96 h, 192 h and 35 days. (A) Relative proportions of mineral phases according to Rietveld refinements.
(B) Relative proportions of sulfur species according to S K-edge XANES data. (C) Sulfur and (D) iron molar balances based on Rietveld analyses
(cf Table 2).
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S(0)-vesicles. Thus, the main process of pyrite formation in this
system likely involves S(0)-vesicles, S(0) acting in such a scheme
as an acceptor of sulfide electrons, according to:

FeS + S→ FeS2 (2)

The present study suggests that the presence of metabolically
active T. kodakarensis influences the sulfur reactivity by producing
S(0)-vesicles, which leads to a redox comproportionation of S(0)
from elemental sulfur and S(-II) from FeS, to S(-I) in pyrite. Of
note, using zero valent sulfur as an oxidant does not exclude greigite
as a pyrite intermediate (Hunger and Benning, 2007).

The pyrite produced in the presence of Thermococcales
present a peculiar spherical shape. The spherules with a diameter
of 200 nm to 1 µm exhibit a very smooth surface texture
(Figures 4C, E, G) and consist in an accumulation of many ultra-
small domains sharing common preferential orientations in the
spherules (Figure 5E). The ultra-small domains are anisotropic
and about 15 nm by 10 nm (Table 3), which explains the
very smooth aspect of the spherules. Moreover, the presence of
complex organic matter is detected within these pyrite spherules,
although in low quantity. These compounds exhibit several
functional groups, including aromatic groups, unsaturated C-S
bonds, aliphatic groups, amide groups and carboxylic groups
(Figure 5F), i.e., typical of the functional groups measured in
mineralization studies involving prokaryotes (Benzerara et al.,
2006; Miot et al., 2009; Li et al., 2013, 2014; Picard et al.,
2021).

Pyrite mineralization by Thermococcales has been proposed
to constitute a survival strategy at the population level (Gorlas
et al., 2022). Still, the production of the pyrite spherules described
here may be bio-induced rather than bio-controlled. Frankel and
Bazylinski (2003), described biological induced mineralization
(BIM) as the unintended and uncontrolled result of metabolic
products reacting with ions or compounds present in the
environment, making BIM products rather difficult to distinguish
from abiotic minerals (Beveridge, 1989; Konhauser, 1998; Banfield
and Zhang, 2001; Bäuerlein, 2003). In contrast, biologically
controlled mineralization (BCM) minerals leads to the production
of structurally well-ordered, narrow size distributed minerals
exhibiting specific morphologies (Frankel and Bazylinski, 2003; Liu
et al., 2012). Given the homogeneity in texture, shape and size
of the pyrite spherules discussed here, it seems that they rather
correspond to BCM than to BIM. But BCM minerals are usually
formed within intracellular organic matrices or vesicles, and their
nucleation and growth are genetically controlled by the organism
itself (Bazylinski and Frankel, 2000a,b), which is not the case here
since pyrite most likely precipitates after the release of the S(0)-
vesicles outside the cells. However, it could be argued that the
BCM concept is relevant to the S(0)-vesicles themselves. Further
studies, especially of the transcriptome, are necessary to determine
if Thermococcales genetics are able to control the characteristics of
pyrite spherules.

5. Conclusion

When cultivated in a ferrous and sulfur-rich medium,
Thermococcales influence the reactivity of both species through

iron sulfur and iron phosphate precipitation. After an initial
precipitation of iron sulfide and phosphate nanophases that
are toxic to most cells, the medium clears by evolving to
the formation of larger structures of hundreds of nanometres
pyrite spherules and well-crystallized iron II-III phosphates that
are compatible with proper cell development. Moreover, this
study shows that pyrite precipitation results from a redox
comproportionation of S(0) (from elemental sulfur) and S(-II)
(from FeS) to S(-I) (in pyrite), induced by the presence of
Thermococcales and their production of S(0)-vesicles. Pyrites
thus formed present specific textural features such as a peculiar
spherule shape, ultra-small and anisotropic domains and a content
in organic compounds that make them good candidates as
biosignatures. However, before using them as tracers of the
activity of Thermococcales in natural hydrothermal settings
such as hydrothermal chimneys, additional experiments should
be conducted to determine whether or not similar spherules
containing similar organic compounds can be produced abiotically,
and whether or not these specificities (shape, crystallinity and
content in organics) may withstand hydrothermal and diagenetic
conditions over long durations.
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SUPPLEMENTARY FIGURE 1

(A) Mineralization experiments conducted with T. kodakarensis in a sulfur
and Fe2+ rich medium at 85◦C for 192 h. (B) Abiotic control
[S(0) + Na2S + FeSO4] after 192 h of mineralization at 85◦C.

SUPPLEMENTARY FIGURE 2

X-ray diffractograms of the solid residues of mineralization experiments
conducted with T. kodakarensis in a sulfur and Fe2+ rich medium at 85◦C
for 5 h (A), 96 h (B), 192 h (C) and 35 days (D) and of abiotic control
[S(0) + Na2S + FeSO4] (E) and of biotic control (cells + S(0) + Na2S with no
FeSO4) (F). Each identified peaks are labeled with Elemental sulfur (COD ID:
00-008-0247; yellow triangle), NaCl (halite COD ID: 00-005-0628; gray
round), Greigite (COD ID: 00-016-0713; pink diamond), Pyrite
(00-006-0710; red star) and Barbosalite-like (iron phosphate oxide
hydroxide COD ID: 01-070-5888; blue moon).

SUPPLEMENTARY FIGURE 3

Low magnification SEM images of the solid residues of mineralization
experiments conducted with T. kodakarensis in a sulfur and Fe2+ rich
medium at 85◦C for 5 h (A), 96 h (B), 192 h (C), 35 days (D), and of abiotic
control [S(0) + Na2S + FeSO4] after 96 h of mineralization (E).
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