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Soil salinity is one of the major limiting factors in plant growth regulation. 
Salinity-tolerant endophytic bacteria (STEB) can be used to alleviate the negative 
effects of salinity and promote plant growth. In this study, thirteen endophytic 
bacteria were isolated from mungbean roots and tested for NaCl salt-tolerance 
up to 4%. Six bacterial isolates, TMB2, TMB3, TMB5, TMB6, TMB7 and TMB9, 
demonstrated the ability to tolerate salt. Plant growth-promoting properties 
such as phosphate solubilization, indole-3-acetic acid (IAA) production, nitrogen 
fixation, zinc solubilization, biofilm formation and hydrolytic enzyme production 
were tested in vitro under saline conditions. Eight bacterial isolates indicated 
phosphate solubilization potential ranging from 5.8–17.7  μg  mL−1, wherein 
TMB6 was found most efficient. Ten bacterial isolates exhibited IAA production 
ranging from 0.3–2.1  μg  mL−1, where TMB7 indicated the highest potential. All 
the bacterial isolates except TMB13 exhibited nitrogenase activity. Three isolates, 
TMB6, TMB7 and TMB9, were able to solubilize zinc on tris-minimal media. All 
isolates were capable of forming biofilm except TMB12 and TMB13. Only TMB2, 
TMB6 and TMB7 exhibited cellulase activity, while TMB2 and TMB7 exhibited 
pectinase production. Based on in vitro testing, six efficient STEB were selected 
and subjected to the further studies. 16S rRNA gene sequencing of efficient 
STEB revealed the maximum similarity between TMB2 and Rhizobium pusense, 
TMB3 and Agrobacterium leguminum, TMB5 and Achromobacter denitrificans, 
TMB6 and Pseudomonas extremorientalis, TMB7 and Bradyrhizobium japonicum 
and TMB9 and Serratia quinivorans. This is the first international report on the 
existence of A. leguminum, A. denitrificans, P. extremorientalis and S. quinivorans 
inside the roots of mungbean. Under controlled-conditions, inoculation of P. 
extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans TMB9 exhibited 
maximum potential to increase plant growth parameters; specifically plant dry 
weight was increased by up to 52%, 61% and 45%, respectively. Inoculation of B. 
japonicum TMB7 displayed the highest potential to increase plant proline, glycine 
betaine and total soluble proteins contents by 77%, 78% and 64%, respectively, 
compared to control under saline conditions. It is suggested that the efficient 
STEB could be used as biofertilizers for mungbean crop productivity under saline 
conditions after field-testing.
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Introduction

Mungbean [Vigna radiata (L.) Wilczek] is a highly nutritious food 
and considered as the most important pulse crop worldwide. It is 
preferred in our daily diet due to the presence of sulfur comprising 
amino acids and high phosphorus content. The global mungbean 
cultivated area is approximately 7.3 million hectares with an average 
yield of 721 kg ha−1 (Nair and Schreinemachers, 2020). This crop has 
a strategic position in Asian countries for its nutritional security, being 
rich in carbohydrates, proteins, vitamins and minerals. In Pakistan, 
the total area under cultivation of mungbean is approximately 302,000 
hectare with a production of 264,000 tonne (Javed et  al., 2021; 
Economic Survey of Pakistan, 2021–2022). Mungbean seeds are 
highly nutritious, containing 59–65% carbohydrates, 24–28% proteins, 
3.5–4.5% fibers, 1–1.5% fats and 334–344 kcal energy (Sehrawat et al., 
2021). Mungbean is used as a staple food in different Asian countries 
including Pakistan, Thailand, India and the Philippines (Delic 
et al., 2009).

The production of legume grains retards due to numerous abiotic 
stresses, particularly salt stress, which impairs the activity of symbiotic 
bacteria and reduces the plant growth (Pataczek et al., 2018; Kartik 
et al., 2021). Salinity negatively impacts plant physiological activities 
by plant dehydration, disrupting ionic and osmotic balance, which 
ultimately causes plant death (Shahzad et  al., 2017; Majeed and 
Muhammad, 2019). Mungbean is highly sensitive towards salinity 
with a threshold level of electrical conductivity (EC) of 1.8 dS m−1 
(Pataczek et  al., 2018). Plants adopt different strategies such as 
antioxidant synthesis, osmosensing and maintaining the ionic-
homeostasis to cope with salt stress (Chauhan et al., 2022). Ecofriendly 
salt-tolerant plant growth-promoting bacteria (PGPB) are 
promiscuous to improve these mechanisms of plants to 
tolerate salinity.

The agriculture sector largely relies on the synthetic fertilizers, 
specifically urea and diammonium phosphate (Economic Survey of 
Pakistan, 2021–2022). Chemical fertilizers are made up of salts of 
nitrate, ammonium, phosphorus, and potassium, as well as a variety 
of heavy metals and regular nucleosides (Sabry, 2015). Chemical 
fertilizer use has increased dramatically in recent years. Careless use 
of chemical fertilizer results in the accumulation of heavy metals in 
plant structures, which then infiltrate our food chain (Savci, 2012; 
Alsafran et al., 2022). It can pollute our environment by contaminating 
water, soil and air, which entails huge environmental costs and pose 
serious threats to human health. Extensive use of chemical fertilizers 
has distorted the nitrogen cycle and other biological processes; 
prompting global concerns about increased emission of nitrogen 
oxides, soil acidification and water eutrophication (Fox et al., 2007; 
Conway and Pretty, 2013; Singh et al., 2019). Widespread application 
of fertilizers, urbanization, large scale farming and improper farming 
practices are some of the major causes of soil salinity. The soil 
salinization is increasing day by day and contaminates agricultural 
land (Upadhyay and Chauhan, 2022). Alternative methods are 
required to meet the food demand in a sustainable manner.

Biofertilizers are environment-friendly alternatives to chemical 
fertilizers. Biofertilizers contain PGPB, which can be applied to the 
soil or seed surfaces to promote plant growth by improving nutrient 
availability to plants and controlling phytopathogens (Agri et  al., 
2022; Valle-Romero et al., 2023). Biofertilizers are host specific, so the 
nutrients provided by them are less prone to leaching and 
volatilization, making them ideal for sustainable agriculture 
(Bhardwaj et al., 2014; Simarmata et al., 2016; Imran et al., 2021). 
PGPB improve plant growth directly by a variety of mechanisms, 
primarily including nitrogen fixation, phosphate solubilization and 
phytohormone production; and indirectly by bioantagonism and 
inducing systemic resistance (Upadhyay et al., 2022). These beneficial 
bacteria are mostly present in the plant rhizosphere, root interior and 
inside nodules. Efficiency of biofertilizers reduces due to the salt 
stress, as salinity impairs the bacterial cell metabolism and reduces 
the production of plant growth-promoting substances (Deshwal and 
Kumar, 2013). The high salt concentration adversely affects the 
important processes such as decomposition, nitrification, 
denitrification, soil biodiversity and microbial activity (Kumawat 
et  al., 2022). Salt-tolerant PGPB produce phytostimulants, plant 
defense-related enzymes including catalases, superoxide dismutases, 
peroxidases and glucanases, upregulate the expression of Na+/K+ ion 
channel proteins, which helps to maintain ionic homeostasis and 
increase plant growth (Chauhan and Upadhyay, 2023; Singh 
et al., 2023).

Endophytic bacteria have magnanimous potential to promote 
plant growth, since they live in the closer proximity or inside the plant 
(Chanway et al., 2000; Dalal and Kulkarni, 2013; Afzal et al., 2019). 
They are better protected from the challenging environment as they 
invade plant roots and reside in the root cortical region (Compant 
et al., 2005; Ryan et al., 2008; Zhang et al., 2020). Endophytic bacteria 
have a better ability to symbiotically associate with their host plants 
compared to rhizospheric bacteria (Bacilio-Jiménez et  al., 2003). 
Endophytes regulate plant defense mechanisms by producing 
antioxidants and to mitigate the oxidative damage caused by salt 
stress and help plants to tolerate the stress (Jhuma et  al., 2021; 
Chaudhary et  al., 2022; Kamran et  al., 2022). Moreover, they 
upregulate the expression of SOS1 Na+/ K+ antiporter which control 
the Na+ and K+ efflux to maintain ionic-homeostasis inside the plant 
cell (Tyagi et al., 2022). Several endophytic bacteria well-known for 
improving plant growth are Burkholderia, Herbaspirillum, Pantoea, 
Gluconobacter, Klebsiella, Rahnella, Pseudomonas, Bacillus, 
Xanthomonas, Stenotrophomonas, Variovorax (Riggs et  al., 2001; 
Rosenblueth and Martínez-Romero, 2006; Doty et  al., 2009; Rat 
et al., 2021).

In this study, salinity-tolerant endophytic bacteria (STEB) 
were isolated from the mungbean root and characterized in vitro 
for the plant growth-promoting properties under saline 
conditions. Potential bacteria from the in vitro testing were 
phylogenetically identified by 16S rRNA gene sequence analysis 
and evaluated under controlled-conditions for plant growth-
promoting properties under saline conditions.
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Materials and methods

Sample collection and isolation of 
endophytic bacteria

A 8-week-old Mungbean [Vigna radiata (L.) Wilczek] plants were 
collected from the cultivation site of Government College University 
Faisalabad, Pakistan (GPS coordinates at 31°23′42.5″ N and 73°01′45.5″ 
E). Intact roots were washed with water, and surface sterilized by dipping 
in 5% bleach for 2 min and 70% ethanol for 30 s. Roots were washed with 
sterilized water to remove the effect of chemicals. One-gram roots were 
separated from the plants using sterilized forceps and crushed in a 
sterilized mortar pestle within 3 mL saline solution (0.85% NaCl). Each 
root suspension was serially diluted up to 10−5 dilution. An aliquot of 
100 μL from each dilution was spread on yeast extract mannitol (YEM) 
plates and incubated at 28 ± 2°C for 48 h (Shahid et al., 2015; Tsegaye 
et  al., 2019). Bacterial colonies showing different morphology were 
selected and purified by sub-culturing (Adamu-Governor et al., 2018). 
Size and shape of bacterial cells were observed under light microscope. 
Gram’s reaction was also performed according to Wang et al. (2017).

Screening of salt-tolerant endophytic 
bacteria

Salt-tolerance ability of isolated bacteria was evaluated according 
to Verma et al. (2020), at varying levels of NaCl concentrations. YEM 
broth (20 mL) in a 50 mL flask was prepared containing different 
concentrations of NaCl, i.e., 0.5, 0.1, 1.5, 2, 3 and 4% (w/v). Bacterial 
culture (0.1 mL) was inoculated in each flask and incubated at 28 ± 2°C 
for 42 h. Bacterial culture without salt was used as control. Optical 
density (OD) of bacterial growth was recorded after every 6 h at 
600 nm using spectrophotometer (Patil et al., 2014).

Phosphate solubilization

Screening of phosphate solubilizing bacteria was performed 
according to Oo et al. (2020) with some modifications. A single colony 
of bacterial isolate was spotted on Pikovskaya’s agar plate supplemented 
with 2% NaCl (w/v) and incubated at 28 ± 2°C for 7 days. Halo zone 
formation was observed around colonies to identify phosphate 
solubilization potential (Linu et  al., 2019; Nacoon et  al., 2020). 
Phosphate solubilization was quantified by the Phospho-molybdate 
blue color method according to Khan et al. (2022). Bacterial cultures 
were grown in Pikovskaya’s broth supplemented with 2% NaCl (w/v) 
and incubated at 28 ± 2°C for 7 days. After incubation, bacterial cultures 
were centrifuged for 10 min at 13,000 rpm and 1 mL of supernatant was 
mixed with 0.2 mL Phospho-molybdate regent, blue color production 
was observed, and absorbance was recorded at 882 nm using 
spectrophotometer. A phosphate standards curve was prepared to 
quantify phosphate concentration of samples (Behera et al., 2017).

Indole-3-acetic acid production

Indole-3-acetic acid (IAA) production of bacterial isolates was 
determined by Salkowski’s calorimetric assay. Bacterial cultures 

were grown in YEM broth, supplemented with L-tryptophan 
(100 μg mL−1) and 2% NaCl (w/v), incubated at 28 ± 2°C for 48 h 
and centrifuged at 12,000 rpm for 10 min. Salkowski’s reagent 
(4 mL) was mixed with 1 mL of supernatant, gently mixed and 
incubated for 30 min at room temperature (Bhattacharyya et al., 
2020). Pink coloration was taken as indication of IAA production 
and its absorbance was measured at 530 nm using 
spectrophotometer. An IAA standards curve was prepared to 
quantify IAA concentration of samples (Myo et al., 2019; Hyder 
et al., 2020).

Nitrogen fixation

The ability of bacterial isolates to fix nitrogen was tested by 
inoculating a single colony on solid nitrogen free media [containing 
(g L−1) mannitol 20 g, K2HPO4 0.2 g, NaCl 0.2 g, MgSO4 0.2 g, K2SO4 
0.1 g, CaCO3 5.0 g, agar 20 g] supplemented with 2% NaCl (w/v) 
and incubated at 28 ± 2°C for 48 h. After incubation, nitrogen 
fixation was determined based on the bacterial growth and 
recorded as arbitrary values weak (+), moderate (++), strong (+++) 
or negative (−) (Hardarson and Danso, 1993; Mirza and 
Rodrigues, 2012).

Zinc mobilization

In vitro qualitative screening of zinc solubilizing bacterial isolates 
was measured by adopting the protocol of Ramesh et al. (2014), with 
some modifications. Tris-minimal agar (TMA) medium supplemented 
with 2% NaCl (w/v), containing insoluble 0.1% zinc source, i.e., ZnO 
and ZnCO3, separately. Supplemented TMA plates were spot 
inoculated with freshly grown bacterial cultures and incubated in the 
dark at 28 ± 2°C for 7 days. Halo zone formation around the bacterial 
colony was observed and zinc solubilization efficiency (ZSE) was 
calculated according to the formula (Rezaeiniko et  al., 2022; 
Upadhayay et al., 2022).

 
ZSE

diameter of solubilization halo

diameter of the colony
=

/





×100.

Cellulase and pectinase activity assay

Cellulolytic activity of bacterial isolates was assessed by spot 
inoculating individual colonies onto carboxymethyl cellulose (10 g L−1) 
agar plates supplemented with 2% NaCl (w/v) and incubated at 
28 ± 2°C for 3 days (Islam and Roy, 2018). Plates were stained with 
0.2% Congo red dye for 15 min and washed with distilled water. The 
appearance of a halo zone around the colony indicates cellulase 
activity of bacteria (Suárez-Moreno et al., 2019).

Pectinase production was determined by inoculating bacterial 
colonies onto pectin (10 g L−1) agar plates, supplemented with 2% 
NaCl (w/v) and incubated at 28 ± 2°C for 7 days (Devi et al., 2022). 
Plates were stained with 1% iodine solution for 15 min and washed 
with distilled water. The formation of a halo zone around the colony 
indicated pectinase activity of bacterial cultures (Tsegaye et al., 2019).
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Biofilm formation assay

Biofilm formation by bacterial isolates was tested according to 
Zahra et al. (2023), by using a microtiter plate. Bacterial isolates were 
grown up to an optical density (OD600 nm) of 2 in YEM broth medium, 
supplemented with 2% NaCl (w/v). Bacterial cultures were centrifuged 
at 6,000 rpm for 2 min. The supernatant was discarded and the pellet 
was washed with sterile water. The bacterial cells were resuspended in 
fresh YEM broth and diluted to an OD600 nm of 0.2. An aliquot (150 μL) 
of each bacterial cell suspension was added to 96-well polyvinyl 
chloride (PVC) plate in six replicates and incubated at 28°C for 48 h. 
After incubation, each bacterial culture was removed from wells and 
gently washed with sterilized water. Wells were stained with 150 μL of 
crystal violet (0.001%) for 15 min. After staining, crystal violet was 
removed, and wells were washed with sterilized water and air dried. 
Crystal violet dye absorbed by the wells was solubilized by adding 
150 μL of 95% ethanol. Biofilm formation was quantified by measuring 
the amount of absorbed dye at OD570 nm in a microtiter plate reader 
(Sampedro et al., 2020; Jhuma et al., 2021).

Microbial compatibility assay

Microbial compatibility tests of bacterial isolates were assessed 
according to Tariq et al. (2014) by pour plate technique to determine 
the compatibility of isolates with each other. In this assay, a pairs of 
bacterial isolates was designated as A and B, and checked for 
compatibility. Log phase grown culture of isolate A was diluted to 
104 cfu mL−1 and 3 mL of the culture was mixed in 25 mL hand-cool 
molten nutrient agar medium. It was poured into Petri plates and 
incubated at 28 ± 2°C for 24 h. Concentrated culture (3 μL) of isolate 
B was inoculated in the center of the plate and incubated at 28 ± 2°C 
for 48 h. The zone of inhibition that developed around bacterial isolate 
B was recorded. The appearance of a zone of inhibition represented 
that the bacterial pair was not compatible with each other, represented 
by a red box. If no zone of inhibition appeared, the bacterial pair was 
considered compatible and represented by a green box. Each isolate 
pair was tested in this manner, and compatibility and 
non-compatibility was presented as green and red box, respectively 
(Zul et al., 2022).

Molecular identification and phylogenetic 
analysis of efficient endophytic bacteria

Six efficient STEB were identified phylogenetically by 
sequencing the 16S rRNA gene, according to La Pierre et al. (2017). 
The 16S rRNA gene was amplified using universal primers fD1 
(5′-AGAGTTTGATCCTGGCTCAG-3′) and rD1 
(5′-AAGGAGGTGATCCAGCC-3′) (Weisburg et al., 1991). A 25 μL 
reaction mixture was prepared for 16S rRNA gene amplification by 
using the PCR recipe [10X Taq polymerase buffer 2.5 μL, 2 mM 
dNTPs 2.5 μL, (10 pmoles 100 μL−1) primers fD1 & rD1 2 μL, 25 mM 
MgCl 2 μL, (5 U μL) Taq polymerase enzyme 0.3 μL, H2O 11.7 μL, 
(20 ng μL−1) template DNA 2 μL]. The reaction mixture was placed 
in a thermocycler for amplification and adjusted initial denaturation 
to 5 min at 94°C, followed by 30 cycles of denaturation at 94°C for 
60 s, primer annealing at 55°C for 50 s, primer extension at 72°C for 

1 min 40 s and final extension at 72°C for 5 min. After amplification, 
the amplicons were examined in a gel documentation system on 1% 
agarose gel. The amplified products were purified through 
ThermoScientific GeneJET PCR Purification Kit and Sanger 
sequenced using the commercial service of Macrogen, Korea. 
Forward and reverse sequences were assembled manually and 
compared with database sequences by using NCBI BLAST tool 
(Altschul, 1990). Closely related authentic sequences were retrieved 
from databases, and pairwise sequence comparisons were 
performed using Sequence Demarcation Tool (SDT) v.1.2 (Zhang 
et al., 2000; Muhire et al., 2014). A phylogenetic tree was constructed 
using the maximum likelihood method as implemented by MEGA 
11 with 1,000 bootstrap values (Kumar et  al., 2016; Noori 
et al., 2021).

Controlled-conditions experiment and 
biochemical analysis

The controlled-condition experiment was conducted on 
mungbean cultivar NM-2021 with eight treatments (TMB2, TMB3, 
TMB5, TMB6, TMB7, TMB9, consortia and water as control) in 
completely randomized design (CRD) with four replicates. Freshly 
grown bacterial culture was centrifuged (6,000 rpm) and bacterial 
pellet was resuspended in sterilized water adjust OD 0.5 (Mishra 
et al., 2009). Seeds were surface sterilized with 5% bleach for 2 min 
and washed with sterilized water. Surface-sterilized seeds were 
placed on Petri plates containing moist filter paper and incubated 
at 25 ± 2°C in a dark room for 2 days. Uniformly sized seedlings 
were transferred into pots containing sterilized soil, supplemented 
with 1% NaCl. Plants were placed in a growth chamber at 35 ± 2°C 
during the day and 25 ± 2°C at night. Bacterial culture (100 μL) of 
each treatment was applied to the roots of each plant. Plants were 
watered with 10 mL of quarter-strength nitrogen-free Hoagland’s 
solution and sterilized water on alternating days. Plants were 
harvested after 6 weeks of germination and agronomical parameters 
including root length, shoot length, plant fresh weight, plant dry 
weight and number of nodules per plant were recorded (Tounsi-
Hammami et  al., 2022). The agronomical data was statistically 
analyzed using CoStat window version software (Cardinali and 
Nason, 2013).

Proline contents
Proline contents were determined according to Bates et al. (1973) 

with some modifications. Leaf samples (0.5 g) were ground in liquid 
nitrogen and 10 mL chilled K-P buffer was added. The mixture was 
centrifuged at 13,000 rpm for 5 min. Supernatant (0.5 mL) was 
transferred in a test tube containing 1 mL of 3% sulphosalicylic acid 
and incubated at 95°C for 5 min in a water bath. After incubation, the 
mixture was cooled down at room temperature and 1 mL of glacial 
acetic acid and ninhydrin was gently added, mixed and incubated at 
95°C for 20 min in a water bath. The mixture was immediately cooled 
down on ice. Toluene (2 mL) was added in the mixture, vortexed and 
incubated at room temperature for 20 min. After incubation, two 
layers were developed. The upper layer was carefully collected and 
absorbance was recorded at 520 nm using spectrophotometer. The 
proline contents were measured by comparing the absorbance with 
standard curve (Sapre et al., 2022).
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Total soluble proteins
Total soluble proteins were quantified according to Bradford 

(1976) modified method. Leaf samples (0.5 g) were ground in chilled 
K-P buffer. After grinding, the mixture was centrifuged at 13,000 rpm 
for 5 min. Supernatant (0.1 mL) was collected, Bradford reagent (1 mL) 
was added and incubated at room temperature for 30 min in dark. 
After incubation, absorbance was recorded at 595 nm using 
spectrophotometer. Total soluble proteins were measured by 
comparing the absorbance with standard curve.

Glycine betaine
Glycine betaine in leaf tissues was estimated by following the 

modified protocol of Nawaz and Wang (2020). Fresh leaf samples 
(0.5 g) were ground in 10 mL chilled K-P buffer, vortexed and 
centrifuged at 13,000 rpm for 5 min. Supernatant (0.5 mL) was 
collected in a separate test tube and 1 mL of H2SO4 was added. KI3 
(0.2 mL) was added into the reaction mixture and incubated at −4°C 
for 90 min. After incubation, 2.8 mL chilled dH2O and 6 mL of 1–2 
dichloroethane was added into the mixture and incubated at room 
temperature for 30 min. Two layers were formed. The lower layer of 
red color was collected carefully, and absorbance was measured at 
365 nm using a spectrophotometer. Quantify of glycine betaine 
contents was measured by comparing the absorbance with the 
standard curve.

Results and discussion

Isolation of endophytic bacteria

Bacterial colonies were observed on the plates after incubation. 
Based on colony size, shape, color, edges, surface and gum production, 
thirteen bacterial morphotypes were selected. Cell morphology of all 
bacterial isolates was rod shaped, except TMB4, TMB8 and TMB10, 
which showed circular cell shape. Only four bacterial isolates, TMB1, 
TMB4, TMB8 and TMB12, were Gram’s positive, while the rest of the 
bacteria were Gram’s negative (Table 1). Legume roots contain a large 
array of endophytic bacteria, which may play an important role in 

plant growth promotion directly and indirectly (Bhutani et al., 2018a). 
Our results are in agreement with several studies that confirmed the 
occurrence of bacteria in the legume root samples. Chaudhary et al. 
(2021) isolated Rhizobium pusense from the roots of mungbean and 
evaluated its plant growth-promoting properties. Bhutani et al. (2021) 
also isolated endophytic bacteria from surface sterilized roots of 
mungbean that demonstrated high potential to improve plant growth. 
Abedinzadeh et al. (2019) also isolated endophytic bacteria from roots 
of maize and reported that these bacteria have the ability to tolerate 
salinity and increase plant growth. Similarly, Hung and Annapurna 
(2004) also isolated 65 endophytic bacteria from soybean root 
and nodules.

Screening of salt-tolerant endophytic 
bacteria

Salinity tolerance was examined in mungbean isolates at different 
NaCl concentrations ranging from 0.5–4%. There was significant 
inhibition in bacterial growth at 3 and 4% NaCl concentration. Six 
bacterial isolates, TMB2, TMB3, TMB5, TMB6, TMB7 and TMB9, 
were able to tolerate salinity level up to 2% NaCl concentration 
(Figure 1), whereas three isolates, TMB1, TMB8 and TMB10, showed 
minor growth inhibition at 2% NaCl. The remaining four isolates, 
TMB4, TMB11, TMB12 and TMB13, showed significant growth 
inhibition at 2% NaCl salinity concentration (Supplementary Table S1). 
Salinity is one of the major problems for crop productivity in Pakistan 
due to the presence of salt contents in the soil and water (Vaishnav 
et al., 2019; Kartik et al., 2021). Adaptability of the bacterial inoculants 
to the stressed environment of any cultivation region is considered as 
a promiscuous feature for its use as biofertilizers (Pérez-Rodriguez 
et  al., 2020). Recently, Kumar et  al. (2021) screened salt tolerant 
bacteria at different concentrations of NaCl and further characterized 
them for plant growth promotion. Khan et al. (2015) also isolated 
rhizospheric and endophytic bacteria, and reported that these 
bacterial isolates tolerate higher concentrations of NaCl. Salinity 
affected soil is defined as a soil that has electrical conductivity (EC) 
value greater than 4 dS m−1 (Munns and James, 2003). EC value of 4 

TABLE 1 Colony and cell morphology of mungbean root endophytic bacteria.

Isolate Colony morphology Cell morphology Gum production Gram staining

TMB1 Medium, double ringed, light pink, smooth, flat Small rod + +

TMB2 Large, circular, milky white, smooth, flat Rod + −

TMB3 Very small, circular, white, smooth, flat Rod + −

TMB4 Very small, circular, pink, wavy, flat Circular − +

TMB5 Small, circular, light yellowish, smooth, flat Small rod + −

TMB6 Large, irregular, yellowish, wavy, flat Rod + −

TMB7 Small, circular, light pink, smooth, flat Small rod + −

TMB8 Medium, circular, milky white, wavy, flat Circular + +

TMB9 Small, circular, pink, wavy, flat Rod − −

TMB10 Small, irregular, white, wavy, flat Circular + −

TMB11 Small, circular, milky white, smooth, flat Rod − −

TMB12 Very small, circular, white, smooth, flat Small rod − +

TMB13 Very small, circular, yellowish white, smooth, flat Rod + −
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FIGURE 1

Graphical representation of mungbean root endophytic bacteria to tolerate salinity at different salt concentrations. Six bacterial isolates, TMB2, TMB3, 
TMB5, TMB6, TMB7 and TMB9, displayed salt-tolerance and grew well upto 2% NaCl. Growth readings of all bacterial isolates under saline conditions 
are mentioned in the Supplementary material.

dS m−1 is equal to 0.22% NaCl concentration and EC value of 25.8 dS 
m−1 is equal to 2% NaCl concentration (observation during lab general 
experiments). Therefore, the potential endophytic bacteria exhibited 
salt tolerance ability up to 2% NaCl concentration were considered 
potential candidates for their use as biofertilizers at salinity affected 
soils. 2% NaCl is the highest realistic-concentration of salt to test 
microbes for salinity-tolerance, as it is the maximum concentration 
reported at most of the salinized land worldwide. The world’s well-
known saline sites including Solonchaks (Russia), Halosols (China) 
and Salida (United States) have an EC ranging 8–15 dS m−1 
(Egamberdieva et  al., 2019). Soil and irrigation water in Pakistan 

generally have high soluble salt contents, which is a major limiting 
factor for plant growth. The value of EC in heavily salt affected soil of 
Pakistan at Uchhali Lake in the Salt Range region is 15.42 dS m−1, 
which is equal to 1.2% NaCl (Hameed et al., 2009). A concentration 
higher than 2% salinity is very stringent to test bacterial salt-tolerance 
and might result in losing too many potential bacteria. Cortés-
Lorenzo et  al. (2015) demonstrated that higher levels of salinity 
inhibited the nitrification process of nitrite-oxidizing bacteria. Hong 
et al. (2013) also reported that higher salinity can reduce the metabolic 
activity of microorganisms, results in bacterial growth inhibition and 
cell death. As the tested bacteria of the current study demonstrated 
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salinity-tolerance upto 2% NaCl concentration, the beneficial 
characteristics of these bacteria may remain unaffected even in the 
saline environment. Such bacteria are promising to be  used as 
biofertilizers for crop production at salinity affected soil and the 
farmland irrigated with saline-water. It is strongly suggested that 
biofertilizer bacteria should be tested for salt stress tolerances before 
application, as most of the irrigation water and soils are affected with 
high concentration of salts.

Characterization of STEB for plant 
growth-promoting properties

Phosphate solubilization was examined in mungbean isolates 
under saline conditions. Out of 13 mungbean isolates, TMB2, TMB3, 
TMB5, TMB6, TMB7, TMB8, TMB9 and TMB10, showed phosphate 
solubilization ranging from 5.8–17.7 μg mL−1. TMB6 exhibited the 
highest phosphate solubilization ability, whereas TMB3 exhibited the 
lowest phosphate solubilization ability (Table 2). Phosphate is one of 
the most crucial nutrients for balanced plant growth. Deficiency of 
phosphate in plants usually results in stunted growth of plants (Lun 
et  al., 2018). Previously, Hakim et  al. (2020) isolated endophytic 
bacteria from mungbean and explained the phosphate solubilizing 
potential of these bacteria upto 195 μg mL−1. Recently, Belkebla et al. 
(2022) demonstrated that halotolerant PGPB isolated from south of 
Algeria exhibit phosphate solubilizing potential and improve wheat 
growth. Mahdi et al. (2021) also reported that halotolerant endophytic 
bacteria have the ability to solubilize phosphate and promote seed 
germination. Likewise, Mei et  al. (2021) also demonstrated that 
endophytic bacteria have the potential to solubilize phosphate and 
their application resulted in increased pepper and tomato growth.

IAA was quantified by spectrophotometric pink coloration 
estimation method. Ten isolates, TMB1, TMB2, TMB3, TMB5, TMB6, 
TMB7, TMB8, TMB9, TMB10 and TMB13, showed IAA production 
ranging from 0.3–12.1 μg mL−1 at 2% NaCl supplementation. TMB7 

showed the highest production of IAA, whereas TMB10 showed the 
lowest production of IAA (Table  2). IAA is a phytohormone also 
produced by many bacteria, which is involved in cell division, cell 
enlargement and root elongation (Bhutani et al., 2018b). Our results 
are in agreement with Widowati and Sukiman (2019), who reported 
IAA production up to 12.28 μg mL−1 in the endophytic bacteria of 
mungbean. Saleem et al. (2021) also demonstrated the mitigating 
efficiency of IAA production from salt tolerant bacteria isolated from 
cotton. Jabborova et al. (2020) also reported that endophytic bacteria 
have ability to produce IAA. Recently, Desai et al. (2023) explained the 
ability of salt-tolerant PGPB isolated from mungbean to produce IAA 
under salt stress. IAA production is one of the very important features 
for the screening of plant beneficial bacteria.

Nitrogen fixation ability of mungbean root endophytic bacteria 
was tested by growing bacteria on NFM agar plates. All isolates 
showed nitrogen fixation ability except TMB13 under saline 
conditions. TMB2, TMB7 and TMB9 showed highest ability (Table 2). 
Nitrogen is the most important element for plant growth and 
development. Bacteria produce nitrogenase enzyme to fix the 
atmospheric nitrogen (Gu et al., 2018). Favero et al. (2021a) isolated 
the nodule endophytic bacteria from the mungbean, which showed 
nodule formation and nitrogen fixation capability. Bradyrhizobium sp. 
exhibited the maximum potential for nodulation and nitrogen 
fixation. Tang et al. (2020) also reported that endophytic bacteria have 
the potential to fix biological nitrogen in tropical forest soil. Zhang 
et al. (2022) also identified that endophytic bacteria isolated from 
cassava roots exhibit nitrogen fixation ability. Potential root-associated 
bacteria can fix atmospheric nitrogen and alleviate nutrient stress 
in plants.

Zinc is an essential micronutrient involved in several cellular 
processes including metabolism, mitochondrial activity mitosis and 
cell development. It mainly participates in the redox reactions and 
works as a catalyst for enzymes (Ditta et al., 2022). Out of 13 root 
endophytic bacteria of mungbean, only three isolates, TMB6, TMB7 
and TMB9, were able to solubilize zinc on tris minimal media 

TABLE 2 In vitro testing of plant growth-promoting attributes of mungbean root endophytic bacteria.

Isolates
Phosphate 

Solubilization 
(μg  mL−1)

IAA 
Production 

(μg  mL−1)

Nitrogen 
fixation

Zinc 
solubilization 

efficiency 
(ZnO)

Zinc 
solubilization 

efficiency 
(ZnCO3)

Cellulase 
activity 
index

Pectinase 
activity 
index

Biofilm 
formation 
(OD570nm)

TMB1 0 6.8 ± 0.4 + 0 0 0 0 0.11 ± 0.012

TMB2 8.1 ± 0.44 1.1 ± 0.18 +++ 0 0 1.66 1.2 0.53 ± 0.049

TMB3 5.8 ± 0.32 3.3 ± 0.28 ++ 0 0 0 0 1.59 ± 0.043

TMB4 0 0 + 0 0 0 0 0.63 ± 0.039

TMB5 7.9 ± 0.46 1 ± 0.19 ++ 0 0 0 0 0.91 ± 0.021

TMB6 17.7 ± 0.62 1.4 ± 0.33 ++ 260% 200% 1.75 0 2.59 ± 0.041

TMB7 17.23 ± 0.22 12.1 ± 0.51 +++ 237% 177% 1.5 1.4 1.83 ± 0.041

TMB8 16.9 ± 0.33 3 ± 0.18 + 0 0 0 0 1.55 ± 0.032

TMB9 13.8 ± 0.68 4.6 ± 0.27 +++ 233% 140% 0 0 1.41 ± 0.052

TMB10 11.2 ± 0.6 0.3 ± 0.33 ++ 0 0 0 0 0.96 ± 0.02

TMB11 0 0 + 0 0 0 0 0.51 ± 0.029

TMB12 0 0 + 0 0 0 0 0

TMB13 0 2.8 ± 0.12 0 0 0 0 0 0

https://doi.org/10.3389/fmicb.2023.1149004
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zahra et al. 10.3389/fmicb.2023.1149004

Frontiers in Microbiology 08 frontiersin.org

supplemented with zinc oxide and zinc carbonate under saline 
conditions. TMB6 showed higher solubilization efficiency of 260% in 
zinc oxide and 200% in zinc carbonate media (Table 2). Previously, 
Singh et  al. (2020) explained the zinc solubilizing ability of 
Burkholderia arboris and demonstrated the positive role of its 
inoculation in mungbean cultivation. Zinc solubilizing potential of 
bacteria was reported by several studies, which play crucial roles in 
soil fertility (Rani et al., 2022; Verma et al., 2022). Similarly, Ali et al. 
(2022) also demonstrated that endophytic bacteria have the potential 
to solubilize zinc and their combination with synthetic fertilizer 
significantly increased the plant growth compared to the sole 
application of chemical fertilizer.

Cellulase and pectinase activity of mungbean rhizobacteria was 
observed on NaCl supplemented plates. Out of 13 isolates, only TMB2, 
TMB6 and TMB7 showed cellulase activity, where TMB6 showed 
highest activity with 1.75 index. Only two isolates, TMB2 and TMB7, 
exhibited pectinase activity (Table 2). Cellulase and pectinase belongs 
to the family of hydrolytic enzymes. Hydrolytic enzymes play a pivotal 
role in the decomposition of dead organic matter present in the soil 
and provide nutrients to plants (Reetha et al., 2014). Recently, Reddy 
et al. (2022) reported PGPB have the ability to produce hydrolytic 
enzymes. Bhutani et al. (2021) also isolated cellulase and pectinase 
producing bacteria from the mungbean endosphere, which showed 
plant growth-promoting (PGP) potential. Dogan and Taskin (2021) 
also demonstrated that endophytic bacteria isolated from Poaceae 
plant displayed cellulase and pectinase production ability. Borah et al. 
(2019) also reported that endophytic bacteria from tea plant exhibit 
cellulase and pectinase activity. Cellulase and pectinase might enable 
bacteria to invade the roots and nodules of host plant. Futuristic 
comprehensive studies should be  designed to explore the role of 
hydrolytic enzymes in root/nodule invasion and plant growth 
promotion by developing cellulase and pectinase negative mutants or 
using other cutting-edge techniques.

Biofilm formation activity was examined in microtiter plate assay. 
All bacterial isolates except TMB12 and TMB13 showed biofilm 
formation ranging 0.11–2.59 at OD570nm. TMB6 showed the highest 
efficiency of biofilm formation, while TMB1 showed the lowest 
efficiency of biofilm formation (Table 2). Several PGPB can effectively 
interact with the plants root zone and form biofilm on its surface, 
which protects plants against environmental stresses (Ansari and 
Ahmad, 2018). Previously, Yasmeen et al. (2020) isolated halotolerant 
bacteria from saline soil and demonstrated their biofilm formation 
ability under salt stress. Alaa (2018) also reported that Pseudomonas 
anguilliseptica have biofilm formation potential under different levels 
of salts. Generally, efficient biofilm forming bacteria perform their 
inherent functions effectively, even in the challenging environment 
(Tariq et al., 2014).

Antibiosis activity of isolates was checked by growing pair of 
bacteria together in an overlay plate assay. Bacterial isolates, 
TMB1, TMB2, TMB3, TMB5, TMB6, TMB7, TMB8 and TMB9, 
displayed maximum compatibility to grow together. TMB7 
demonstrated the highest compatibility with all isolates except 
TMB13 (Figure  2). Kumawat et  al. (2021) demonstrated that 
Rhizobium sp. and Enterococcus mundtii have growth 
compatibility. When these bacteria applied in consortia on 
mungbean the growth parameters of mungbean were increased 
as compared to single inoculation. Latha et al. (2009) also isolated 
P. fluorescens (Pf1 and Py15) and B. subtilis (Bs16) from tomato 

and demonstrated that all of three bacterial strains are compatible 
to grow together. Similarly, Ashraf et al. (2019) isolated four plant 
growth-promoting rhizobacteria (PGPR) isolates from wheat 
rhizosphere and checked their antimicrobial activity against three 
bacterial strains Vibrio cholera, Enterobacter aerogenes, and 
Klebsiella pneumoniae. Only one isolate showed antimicrobial 
activity against K. pneumoniae while others were compatible to 
each other. Compatible bacteria do not inhibit the growth of each 
other and perform effectively in consortium to promote 
plant growth.

Phylogenetic identification of efficient STEB

Amplification of 16S rRNA gene using fD1 and rD1 primers 
produced approximately 1,500 bp DNA band as shown in 
Figure  3. After sequencing and assembling, DNA sequence 
contigs of more than 1,400 nt were generated. Sequences of 16S 
rRNA showed maximum similarity of more than 98% with the 
different sequences available in nucleotide databases and 
identified TMB2 as Rhizobium pusense, TMB3 as Agrobacterium 
leguminum, TMB5 as Achromobacter denitrificans, TMB6 as 
Pseudomonas extremorientalis, TMB7 as Bradyrhizobium 
japonicum and TMB9 as Serratia quinivorans. Sequences were 
deposited in NCBI GenBank under the accession numbers 
OP935921–OP935926 (Table  3). Phylogenetic tree of these 
sequences was constructed with 42 authentic sequences belonging 
to 6 identified genera using maximum likelihood method with 
1,000 bootstrap value and Methanoregula boonei was used as 
outgroup. All the sequences were grouped into 3 clades belonging 
to common ancestor. TMB7 was placed in clade 1, TMB6, TMB5 

FIGURE 2

Antibiosis activity of mungbean root endophytic bacteria. Green 
color presents bacterial compatibility to grow together, while red 
color presents inhibitory interaction between bacteria. TMB7 
demonstrated growth compatibility with most of the bacterial 
isolates, while TMB13 demonstrated growth inhibitory interaction 
with most of the bacterial isolates.
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and TMB9 in clade 2 and TMB2 and TMB3 in clade 3 shown in 
Figure 4. A color coded pairwise identity matrix was also created, 
in which each colored cell represents the percentage identity of 
two sequences. The identity percentages between the selected 
sequences were ranging 80–100 (Figure 5).

Existence of Rhizobium pusense and Bradyrhizobium japonicum 
in mungbean root has been reported in the literature. Rhizobium 
pusense colonize mungbean roots and improve plant growth by 
producing phytohormones (Chaudhary et  al., 2021). Similarly, 
Nguyen et  al. (2022) demonstrated the occurrence of Rhizobium 
pusense in rice and increased its growth and yield upon inoculation. 
Members of genus Bradyrhizobium dominantly exist in the roots and 
nodules of mungbean and soybean. Favero et  al. (2021b) isolated 
Bradyrhizobium japonicum from mungbean nodules and 
demonstrated the positive effect on yield and growth of mungbean 
plant. Yasmeen et  al. (2012) also explained that occurrence of 
Bradyrhizobium japonicum in mungbean. Similarly, Chhetri et  al. 
(2019) isolated Bradyrhizobium japonicum from root nodules of 
soybean. Generally, bacteria belonging to Rhizobia are well-known for 
nitrogen fixation, which ultimately increases crop yield (Anjum 
et al., 2006).

In this study, we  reported the occurrence of Agrobacterium 
leguminum, Achromobacter denitrificans, Pseudomonas 

extremorientalis and Serratia quinivorans in the roots of mungbean for 
the first time. Recently, Castellano-Hinojosa et  al. (2021) isolated 
A. leguminum from the Phaseolus vulgaris nodules and claimed it as a 
novel species based on the data obtained from colony morphology, 
sequence analysis, phylogenetic analysis and taxonomic 
characterization. Previously, Sultana et  al. (2020) isolated 
A. denitrificans from the rice plant, which showed PGP properties 
under salt stress. Wang et al. (2019) isolated P. extremorientalis from 
the rhizosphere of pear plant. Kaur et al. (2022) reported the existence 
of P. extremorientalis in the endophytic region of wheat. 
P. extremorientalis improved plant growth under salt stress by reducing 
harmful effects of salt (Egamberdieva et  al., 2016). Recently, 
researchers have revealed the existence of S. quinivorans in the oak, 
Petroselinum crispum and Picrorhiza kurroa (Kumar et al., 2021; Reis 
et al., 2021; Chlebek et al., 2022). Novel plant-bacterial associations 
might be due to the changes in environmental conditions.

Biofertilizers potential of STEB under 
controlled-conditions

Potential isolates including TMB2, TMB3, TMB5, TMB6, TMB7, 
TMB9 and consortia were tested for PGP properties under 

FIGURE 3

16S rRNA gene amplification of potential bacterial isolates. Amplification of DNA bands of 1,500  bp were produced, which were confirmed by 
comparing with 1  kb DNA ladder.

TABLE 3 Taxonomic identification of potential salinity-tolerant endophytic bacteria.

Bacterial isolates Taxonomic identification Percentage identity Accession numbers

TMB2 Rhizobium pusense 98.81% OP935921

TMB3 Agrobacterium leguminum 99.79% OP935922

TMB5 Achromobacter denitrificans 99.17% OP935923

TMB6 Pseudomonas extremorientalis 98.93% OP935924

TMB7 Bradyrhizobium japonicum 100% OP935925

TMB9 Serratia quinivorans 98.30% OP935926

https://doi.org/10.3389/fmicb.2023.1149004
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zahra et al. 10.3389/fmicb.2023.1149004

Frontiers in Microbiology 10 frontiersin.org

FIGURE 4

Phylogenetic tree of mungbean root endophytic bacteria. All the sequences were grouped into 3 clades. TMB2 positioned in the neighborhood of 
Rhizobium pusense, TMB3 in Agrobacterium leguminum, TMB5 in Achromobacter denitrificans, TMB6 in Pseudomonas extremorientalis, TMB7 in 
Bradyrhizobium japonicum and TMB9 in Serratia quinivorans.

controlled-conditions experiment (Supplementary Figure S1). After 
6 weeks of inoculation, agronomical parameters were calculated and 
statistically analyzed (Table  4). Inoculation of bacterial isolates, 
P. extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans 
TMB9, showed maximum potential in improving plant growth 
parameters. TMB2, TMB6 and TMB7 showed a significant increase in 
root length compared to control. All isolates exhibited a significant 
increase in shoot length compared to control except consortia. TMB6 
and TMB7 showed a significant increase in plant fresh weight. 
P. extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans 
TMB9 were most efficient and showed a significant increase in plant 
dry weight by 52, 61 and 45%, respectively, compared to control. 
Nodulation was observed by the inoculation of TMB2, TMB7 and 
consortia. Inoculation of B. japonicum TMB7 showed maximum 

potential to increase plant growth parameters, i.e., root length (59%), 
shoot length (45%), fresh weight (67%) and dry weight (61%) among 
all isolates. Consortia did not show any positive effect on plant growth. 
Biochemical attributes, i.e., proline content, glycine betaine and total 
soluble proteins were increased by all treatments of root endophytic 
bacteria under salt stress as shown in Figure 6. Inoculation of TMB7 
showed significant potential to increase proline contents by 77%, 
glycine betaine by 78% and total soluble proteins by 64% compared 
to control.

PGPB have the ability to enhance plant biochemical attributes 
such as proline, glycine betaine and total soluble proteins under salt 
stress to overcome the effects of salinity on plant growth. Proline and 
glycine betaine play an important role as osmoprotectants and 
osmoregulatory elements to reduce the harmful effects of salinity by 
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FIGURE 5

Pairwise identity chart of mungbean root endophytic bacteria. The identity percentage of different bacterial sequences ranged 80–100.

TABLE 4 Effect of potential salinity-tolerant endophytic bacteria on mungbean growth under controlled-conditions.

Treatment Root length (cm)
Shoot length 

(cm)
Plant fresh 

weight (mg)
Plant dry weight 

(mg)
Number of 

nodules per plant

Control 21 ± 1.7cd 30.8 ± 1.3b 737 ± 10e 82.5 ± 8cd 0

TMB2 29.5 ± 1.32a 42.8 ± 1.6a 950 ± 30d 110 ± 20abc 26 ± 0.8b

TMB3 29.3 ± 1.4ab 42 ± 2.0a 920 ± 60d 90 ± 8bcd 0

TMB5 22 ± 1.5cd 41.5 ± 1.7a 970 ± 50cd 105 ± 20abcd 0

TMB6 31.5 ± 1.3a 43 ± 1.1a 1,160 ± 40ab 125 ± 6ab 0

TMB7 33.3 ± 1.8a 44.8 ± 0.9a 1,230 ± 20a 132.5 ± 8a 31.3 ± 0.5a

TMB9 24.8 ± 1.1bc 42.5 ± 0.6a 1,080 ± 40bc 120 ± 12ab 0

Consortia 19 ± 2.1d 32.3 ± 0.9b 640 ± 20e 72.5 ± 6c 19.5 ± 1c

LSD (0.05) 4.53 3.9 117 37 1.4

ANOVA *** *** *** * ***

Each value represents mean (n = 4) ± standard error. Values followed by the different letters in same column indicate significant difference and followed by same letters are not significantly 
different. *Represents significance and *** represents high significance. LSD, least significant difference.
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boosting the defense mechanism against oxidative damage under salt 
stress conditions (Diagne et al., 2020). Our results are in agreement 
with the previous studies which reported that the inoculations of 
bacteria enhanced legumes plant biochemical properties such as 
proline and glycine betaine content under salt stress (Ashraf and 
Bashir, 2003). Irshad et al. (2021) demonstrated that inoculation of 
Rhizobium sp. enhanced salt tolerance in medicago truncatula by 
increasing glycine betaine, proline, total soluble proteins and solutes 
contents. Mushtaq et  al. (2021) also revealed that inoculation of 
Rhizobium enhanced total soluble proteins and proline contents in 
Cicer arietinum to alleviate salt stress.

Kaur et al. (2022) described that the inoculation of P. extremorientalis 
on peal millet increased plant growth parameters which are in agreement 
with our results. Devi et al. (2022) also demonstrated that inoculation of 
P. extremorientalis increased the plant growth parameters such as fresh 
weight, dry weight, shoot length and root length of chili. Similarly, 
Kiruthika and Arunkumar (2021) also demonstrated that inoculation of 
B. japonicum increased fresh and dry weight of mungbean. Miljaković 
et al. (2022) also reported that inoculation of B. japonicum improved 
growth parameters of soybean. Similarly, Zveushe et  al. (2023) 
demonstrated that Bradyrhizobium japonicum enhanced plant growth 
parameters of soybean under salt stress. Our results are in agreement 
with Kumar et  al. (2021), who demonstrated the potential role of 
S. quinivorans inoculation to increase the growth of Picrorhiza kurroa 
under control condition experiments. In this study, consortia did not 
perform well for plant growth promotion. Our results are in disagreement 
with Mogal et al. (2022) who reported that consortia of rhizobial bacteria 
have positive effects on plant growth parameters of mungbean. 
Previously, Consentino et  al. (2022) described that inoculation of 
consortia did not improve growth parameters of lettuce, compared to the 
inoculation of pure bacterial culture. Poor performance of bacterial 
consortia can be attributed to the antagonism which may exist among 
the different bacteria of consortia. Single inoculations performed better 
for mungbean growth promotion and the extent of growth improvement 
corresponds to the bacterial ability to produce plant growth-
promoting substances.

Conclusion

Out of thirteen root endophytic bacteria, six isolates, TMB2, 
TMB3, TMB5, TMB6, TMB7 and TMB9, were able to tolerate salinity 
up to 2% NaCl and have the in vitro potential to produce plant growth-
promoting substances under salt stress conditions. Phylogenetic 
analysis revealed the novel association of Agrobacterium leguminum, 
Achromobacter denitrificans, Pseudomonas extremorientalis and 
Serratia quinivorans with roots of mungbean. Inoculation of bacterial 
isolates, Pseudomonas extremorientalis TMB6, Bradyrhizobium 
japonicum TMB7 and Serratia quinivorans TMB9, showed maximum 
potential in improving plant growth and development under salt stress 
conditions. These potential salt-tolerant endophytic bacteria can 
be  used as biofertilizer after field-testing for better production of 
mungbean crop at salt-affected lands.
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FIGURE 6

Effect of potential salt-tolerant endophytic bacteria (STEB) on 
biochemical contents of mungbean under salt stress. Concentrations 
of proline, glycine betaine and total soluble proteins were 
determined. Inoculation of TMB7 showed significant potential to 
increase proline contents by 77%, glycine betaine by 78% and total 
soluble proteins by 64% compared to control.
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SUPPLEMENTARY FIGURE

Effect of inoculation of potential salt-tolerant endophytic bacteria (STEB) on 
mungbean growth under controlled-conditions. Inoculation of bacterial 
isolates, P. extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans 
TMB9, showed maximum potential in improving plant growth parameters. 
Photographed at 4-week stage.
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