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Dissolved organic matter (DOM) in the ocean is a complexity with high diversity in
chemical compositions. Diverse organic compounds are essential in global biogeochemical
cycles composed of biogenic elements, mainly carbon, nitrogen, and sulfur (Carlson and
Hansell, 2015). A certain fraction of DOM is light-absorbing, referred to as chromophoric
DOM (CDOM). An important subset of CDOM is fluorescent, especially fluorescent DOM
(FDOM) (Nelson and Siegel, 2013). CDOM absorbs UV–visible light with the typical
absorption spectra in the blue and ultraviolet wavebands (200–400 nm and 400–800m),
and FDOM is in a generally limited window of excitation and emission wavelengths (240
nm−500 nm in excitation and 300–600 in emission) (Stedmon and Nelson, 2015). The
optical properties of marine DOM were comparable and widely used in biogeochemistry,
tracing the fate and source of DOM in the ocean (Coble, 2007). Wide distributions of marine
FDOM were investigated across the global ocean (Yamashita and Tanoue, 2008; Nelson and
Siegel, 2013). Based on studies from hydrography, high concentrations of CDOM/FDOM
were normally investigated in riverine (Coble, 1996; Opsahl and Benner, 1997; Fellman et al.,
2009) and soil samples (Guéguen and Cuss, 2011). Lignin is an essential and well-known
terrestrial biomarker that also presents properties in absorbance and fluorescence (Hernes
et al., 2009; Yamashita et al., 2015). However, the details of fluorescent signals of marine
DOM were not able to mimic those from lignin or other terrestrial FDOM (Vecchio and
Blough, 2004; Yamashita et al., 2010; Andrew et al., 2013), and the turnover rate of lignin and
other terrestrial DOM could weakly support the standing stoke of marine FDOM (Opsahl
and Benner, 1997; Hernes and Benner, 2003; Benner, 2004; Mannino et al., 2008; Yamashita
et al., 2015). The debate about whether the origin of marine FDOM is autochthonous or
allochthonous is ongoing (Drozdowska et al., 2015; Yamashita et al., 2015; Chen et al., 2016;
Kwon et al., 2018). Sediment leaking would be supplementary to the allochthonous origin
but limited to the wide distribution of marine FDOM (Skoog et al., 1996; Burdige et al.,
2004; Yang et al., 2012; Chen et al., 2016). There must be another constant and generous
autochthonous origin in the ocean. It is the black box generally called biogenetic derivation
or, more precisely, the microbial origin, before our dissection on one of the key primary
producers, picocyanobacteria (Zhao et al., 2017).

Microbes in the sea are diverse in terms of taxonomy and functional groups.
Their activities are closely correlated with the fate of DOM (Tranvik, 1992;
Jiao et al., 2010, 2011; Kujawinski, 2011). Cyanobacteria were unique among all
these known autotrophic and heterotrophic microbes with phycobilin pigments
(Chakdar and Pabbi, 2016; Saini et al., 2018). These tetrapyrrolic-based light-
harvesting pigments were auto-fluorescent and in different types according to the
peptides linked to the core tetrapyrrolic structure (Battersby, 2000; Stadnichuk
et al., 2015). In the EEM analyses of DOM from picocyanobacterial cultures, the
optical properties closely resembled typical oceanic FDOM found in the deep
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ocean. With a further comprehensive bulk analysis with the
high-resolution mass spectrum and nuclear magnetism, the
degradation products of phycobilin pigments were targeted to
be the candidate that contributed to the fluorescent signal
in picocyanobacterial-derived DOM. The dominant groups of
unicellular picocyanobacteria, belonging to genera Synechococcus

and Prochlorococcus, were widely distributed in the global
ocean and contributed to up to 40% of primary production.
Hence, picocyanobacteria were proved to be the very first
certain contributor to marine FDOM (Zhao et al., 2017; Zheng
et al., 2021). Even with a rough estimation based on the
laboratory per cell production and total standing stokes of
the picocyanobacterial populations, we could hardly define the
proportion of picocyanobacterial-derived FDOM to the total
oceanic FDOM without a global survey coupled with in-filed
trace estimation.

Fluorescence is a specific optical property of compounds that
is based on their particular chemical structure and composition.
The optical properties are correlated to the molecular structures
of organic compounds, with light absorption resulting in the
loss of electron energy during transitions from the excited
state to the ground state. Fluorophores are more specific than
chromophores because fluorescence occurs only when the electron
transitions from the lowest excited state. Structures such as
aromatic and unsaturated bonds contribute to the majority of
CDOM chromophores, but fluorescent signals are more unique
and complex and are limited to certain compounds (Stedmon
and Nelson, 2015). The diversity of microbial taxa and metabolic
functions offers a broad range of selection opportunities for the
production of organic compounds with fluorescent properties.

Picocyanobacteria could be essential contributors to marine
FDOM (Xiao et al., 2021), but others are still lined up on the
waiting list of potential candidates. Clues were gained from the
initial study. Not all microbial species can produce fluorescent
compounds without the cellular structure or metabolism function
basics. Synechococcus released FDOM components when cells
were lysed by either viral infection (Zhao et al., 2017, 2019) or
environmental pressure (Zheng et al., 2021). The degradation
products of the cell structure materials contributed directly
to the FDOM signals (Lian et al., 2021). The photosynthetic
pigment of Prochlorococcus was divinyl chlorophyll a and b
(Chisholm et al., 1992), which was not the proved to be the
origin of pyrrolic degradation products. Phycobilin genes were
found in the Prochlorococcus genome, indicating the capacity of
their production and further contribution (Steglich et al., 2005).
Eukaryotic algae that contributed mainly to the DOM production
in eutrophic zones would become the most competitive candidates.
The absorbance of diatoms or dinoflagellate cultures was
evaluated but no detailed fluorescent signals have been reported
yet (Rochelle-Newall and Fisher, 2002; Burdige et al., 2004).
Chlorophylls are a type of porphyrin compound that contains
pyrrole rings, which are known to contribute to fluorescence (Zhao
et al., 2017). However, chlorophylls are not readily water-soluble,
so they are unlikely to directly contribute to FDOM in the ocean.
The photosynthetic-related pigments in all kinds of microbes
should be targeted first and foremost due to the chemical structure
of fluorescent compounds (Kramer and Herndl, 2004). Candidates’

range could be not only limited to the well-known photosynthetic
algae groups but also photosynthetic prokaryotic microbes and
other pigmented bacterial groups, such as the aerobic anoxygenic
phototrophic bacteria (AAPB) (Yurkov and Beatty, 1998; Jiao et al.,
2007; Ferrera et al., 2017) and proteorhodopsin in bacteria and
archaea (Béjà et al., 2001; Frigaard et al., 2006; Gómez-Consarnau
et al., 2007; DeLong and Béjà, 2010), and even in viruses (Yutin
and Koonin, 2012).

Beyond the demonstration of the chemical nature,
picocyanobacterial-derived FDOM was nitrogen-rich components
in chemical compositions. The results led to a further discussion
that FDOM could contribute importantly to both the organic
carbon and nitrogen pools. The microbial origin of FDOM, e.g.,
picocyanobacteria, would be an essential link to coupling the
nitrogen and carbon cycles in the ocean viaDOM. The direction of
the field was that modified estimations from laboratory incubation
expanded to in situ quantification, filling the gaps in conceptual
ameworks and models.

In conclusion, microbes were proven to be the key
allochthonous origin of marine FDOM. On account of their
high diversity, the verifications need to be more precise
and focused. Combined application of multi-techniques
is necessary for future attempts to further define the
chemical nature of marine FDOM, in terms of the chemical
composition and structure analyses of bulk DOM as well as the
genome and transcriptome studies of microbial cell structure
and metabolism.
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