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A major challenge in microbial ecology is to understand the principles and 
processes by which microbes associate and interact in community assemblages. 
Microbial communities in mountain glaciers are unique as first colonizers and 
nutrient enrichment drivers for downstream ecosystems. However, mountain 
glaciers have been distinctively sensitive to climate perturbations and have 
suffered a severe retreat over the past 40  years, compelling us to understand 
glacier ecosystems before their disappearance. This is the first study in an Andean 
glacier in Ecuador offering insights into the relationship of physicochemical 
variables and altitude on the diversity and structure of bacterial communities. Our 
study covered extreme Andean altitudes at the Cayambe Volcanic Complex, from 
4,783 to 5,583 masl. Glacier soil and ice samples were used as the source for 16S 
rRNA gene amplicon libraries. We  found (1) effects of altitude on diversity and 
community structure, (2) the presence of few significantly correlated nutrients to 
community structure, (3) sharp differences between glacier soil and glacier ice in 
diversity and community structure, where, as quantified by the Shannon γ-diversity 
distribution, the meta-community in glacier soil showed more diversity than in 
glacier ice; this pattern was related to the higher variability of the physicochemical 
distribution of variables in the former substrate, and (4) significantly abundant 
genera associated with either high or low altitudes that could serve as biomarkers 
for studies on climate change. Our results provide the first assessment of these 
unexplored communities, before their potential disappearance due to glacier 
retreat and climate change.
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1. Introduction

For over two decades, climate change has been considered a 
significant threat to vulnerable ecosystems, such as glaciers and 
ice-capped volcanoes, which are affected by sharp changes in 
temperature (Oerlemans, 1994). Global melting and glacier retreat is 
one main effect of climate change (Shi and Liu, 2000; Raper and 
Braithwaite, 2006; Sorg et al., 2015). The retreat of tropical Andean 
glaciers is considered a climate change indicator, particularly as 
glaciers are sensitive to climate perturbations (Rabatel et al., 2013, 
2018). A consistent retreat over the past 40 years has been evident at 
various Andean glaciers (Małecki et al., 2018). It is therefore important 
to understand glacier ecosystems in the Andes before their possible 
disappearance (Stibal et al., 2020).

The Cayambe Volcanic Complex (CVC) is a massive explosive 
volcanic center with a base extension of 24 × 18 km. It rises to an 
altitude of 5,790 M above sea level (masl), and it is covered by a vast 
ice cap of nearly 22 km2, with a thickness that reaches up to 100 m in 
specific areas and an approximate volume of 0.7 km3 (Monzier et al., 
1996; Guillier and Chatelain, 2006; Figure 1). The CVC ice cap is 
present above 4,800 masl and descends to ~4,600 masl on its western 
flank and ~ 4,200 masl on its eastern flank (Samaniego et al., 1998; 
Detienne et al., 2017; Bax and Francesconi, 2019). The glacier retreat 
of the CVC has been estimated at 25.58% from 1979 to 2009 (Gallegos 
Castro et al., 2018). The CVC is unique in its geographical location, 
which is essentially at zero latitude (0.03° N; 77.988° W). During the 
last 4,000 years, the CVC has experienced 21 volcanic eruptions, the 
most recent occurring in 1785–1786 (Samaniego et al., 1998). The 
glacier of the CVC serves as a source of water for surrounding 
communities, including large cities such as Quito.

Microbial communities should be  perceived not only as the 
presence and interactions of microscopic living organisms but also as 
the biological matrix which plays a vital role in shaping ecosystems 
and communities of multicellular organisms (Stolz, 2017). Microbial 
communities at mountain glaciers are often first colonizers and key 
players in soil formation, which enable subsequent processes of plant 
colonization and growth, transformation of compounds, rock 
weathering and nutrient enrichment of downstream ecosystems 
(Ragot et al., 2013); yet, it is unknown, particularly for the Andes, 
which are the consequences of rapid glacier melting, due to climate 
change, on the microbial communities and their ecological function 
(Ciccazzo et al., 2016).

Substantial amounts of biodiversity for multicellular organisms are 
well known for the tropical Andes (Bax and Francesconi, 2019); however, 
there are still few studies on microbial diversity for the region, 
particularly at glaciers and high-altitude mountain environments 
(Ciccazzo et al., 2016; Hotaling et al., 2017; Nayfach et al., 2020). Most of 
the studies of microbial communities at mountain glaciers come from 
the European Alps or the United States; thus, information from the 
Neotropical Andes is needed for a broader vision of climate change 
effects and ecological processes on a global scale (Ciccazzo et al., 2016). 
These studies have shown that: (1) microorganisms play a crucial role in 
soil formation from glacier rock and biogeochemical cycles, enabling the 
arrival of first multicellular colonizers; (2) their physiology is largely 
influenced by physicochemical and environmental factors such as pH, 
moisture, and temperature; (3) their communities can be structured as 
a function to distance from the glacier terminus and soil chronosequence; 
and (4) glaciers are capable of maintaining specialized communities of 

psychrophilic microorganisms that often show upregulation of genes for 
cold-shock proteins and exopolymers (EPS; Ciccazzo et  al., 2016). 
However, all these aspects have been found and described in glaciers 
located at other latitudes than the tropics and it remains to be seen if such 
general principles apply to these other environments (Ciccazzo et al., 
2016; Hoham and Remias, 2020).

A thorough assessment of microbial diversity in the Andes is 
crucial to establish the potential for further prospection into the use of 
psychrophilic microorganisms and derived bioproducts of microbial 
metabolism (Borda-Molina et al., 2017). Environmental services, as 
the result of bacterial metabolism, are also an important reason why 
we need to understand bacterial communities in these fragile and 
rapidly changing environments (Margesin et  al., 2009). Bacterial 
communities from extreme glacier environments have been evaluated 
by applying next-generation sequencing of the 16S RNA region in 
substrates such as glacier soil and glacier ice (Schloss, 2020), without 
the requirement for cultivation (Tan et al., 2015; Chan et al., 2019).

Our objective was to investigate the structure and distribution of 
bacterial communities in the CVC, which is a poorly understood 
ecosystem at risk of significant alterations due to climate change. 
Additionally, we aimed to explore the relationship of physicochemical 
environmental variables with these bacterial communities. Although 
the manuscript primarily focuses on the structure and distribution of 
bacterial communities, we have also analyzed the potential influence 
of environmental factors on these communities. Accessing Andean 
glacier ecosystems such as the CVC is a challenging endeavor. Along 
the ascension route to the summit of the CVC, we found that the 
environment is a patchy combination of two main types of substrates, 
glacier soil and glacier ice; thus, our assessment includes substrate as 
a major component on the analysis. Glaciers run the risk of 
disappearing and with them their evolved microbiomes (Staley, 1997). 
Recording the most remarkable aspects of these endangered 
psychrophilic microbial communities is essential to understand the 
potential losses for biodiversity and how this may further impact the 
environment (Peter and Sommaruga, 2016).

Based on the arguments exposed by Ciccazzo et  al. (2016), 
we hypothesized that elevation would be a significantly correlated 
component to differences in the composition of the observed 
communities. We  also hypothesized that these differences will 
be linked to significant correlations in the concentration of nutrients 
and other physicochemical properties (as described in the methods 
section) that are relevant for bacterial life.

2. Materials and methods

2.1. Sample collection and environmental 
analysis

Samples were collected on November 28th, 2015 (Figure 1). The 
chosen route provided an opportunity to gather samples from both 
glacier soil and glacier ice, which allowed for an additional level of 
contrast in the context of elevation effects and substrate physicochemical 
properties on bacterial diversity. A shovel or ice axe was used to dig into 
the sampling point at an approximate depth of 10–25 cm below the 
surface, removing rocks. Samples were taken in duplicate with a shovel 
previously washed and disinfected with 70% alcohol and immediately 
stored in hermetically-sealed sterile plastic bags. To avoid sample 
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FIGURE 1

The Cayambe Volcanic Complex (CVC). A view of the western face of the CVC, including its glacier (A). The first author sampling ice (B). Researchers 
on their way to the CVC glacier (C). A view of the lake called “Laguna Verde” where some samples were obtained (D). Location of the CVC and map of 
the collected samples along the glacier ascension route (red and purple dots) (E). Samples were categorized into high-altitude (purple, from 5,293 masl 
to 5,583 masl) and low-altitude (red, from 4,783 masl to 4,944 masl) and into glacier soil (s) and glacier ice (w). Samples were labeled in 
correspondence to Supplementary Data 1.
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contamination during sample collection, we  followed the 
recommendations provided by EPA (EPA, 2020a,b). Each time a different 
sample was collected, a pair of new, non-powdered disposable gloves 
were worn. The gloves were not in contact with the sampled substrates 
and were changed each time a new sample was obtained. Plastic bags and 
sample containers were new, disposable, and sterilized by UV irradiating 
prior to sampling. Glacier soil samples consisted of 1 kg of material. 
Glacier ice samples consisted of 1 l of ice. Samples arrived in a cooler box 
to the laboratory after 8 h of being collected and stored in a 0°C freezer. 
Each sample was used for the extraction of total genomic target DNA 
and the determination of physicochemical properties.

Starting at 4,800 masl, soil becomes increasingly less visible as it 
is covered by glacial ice along our ascension near the summit at 5,600 
masl. As a visual aide to the nature of samples, we have labeled glacier 
soil (s) and glacier ice (w) in the representation provided by Figure 1. 
Samples were labeled by the letters “CAY” and followed by serial 
numbering. Along the ascension route to the summit of the volcano, 
soil became increasingly less accessible, as it was covered by glacial ice. 
An interval of difficult access for sampling created two groups of 
samples that were separated by elevation: these were low-altitude 
samples (from 4,783 masl to 4,944 masl) and high-altitude samples 
(from 5,293 masl to 5,583 masl; Figure 1). The elevation gap between 
these two groups of samples corresponded to 349 masl and was the 
result of difficult terrain that precluded establishing a regular path of 
collection points. Given this gap in elevation between the two groups 
of samples, we  expected to find differences in the estimated 
community composition among them.

Informed by previous studies on bacterial communities (Singh 
et al., 2014; Looby et al., 2016; Peay et al., 2017; Nottingham et al., 
2018), we chose a set of physicochemical properties to measure and 
describe the obtained samples. These were analyzed at the Center for 
Integral Analytical Solutions (CENTROCESAL Cía.Ltda., Ecuador. 
Accreditation No SAE LEN 12–001) and consisted of the following 18 
parameters: electrical conductivity (EC) (μsiemens/cm), organic 
matter content (Org) (%p/p), total hardness (TH) (mg/L), humidity 
(%p/p), cation exchange capacity (CEC) (meq/100 g), phosphate 
(PO4

3−) (ppm), nitrogen (N) (ppm), calcium (Ca2+) (ppm), magnesium 
(Mg2+) (ppm), manganese (Mn2+) (ppm), sulfate (SO4

2−) (ppm), 
potassium (K+) (ppm), sulfur (S) (ppm), iron (Fe3+) (ppm), sodium 
(Na+) (ppm), chloride (Cl−) (ppm), calcium carbonate (CaCO3) 
(ppm), and total dissolved solids (TDS) (ppm). These parameters were 
obtained according to the procedures described in (Baird et al., 2017). 
pH was evaluated in situ with a portable pH meter (Mettler-Toledo 
SevenGO, Millipore, Columbus, OH, United States). Data from the 
physicochemical analyses are included in Supplementary Data 2, 3. In 
conformance to the ISO/IEC 17025:2017 competence of testing and 
calibration laboratories standard, a minimum of two samples was 
always employed for each soil chemical measurement.

2.2. DNA extraction, 16S rRNA gene library 
preparation, and sequencing

Total glacier soil genomic DNA was isolated with the PowerSoil 
DNA Isolation kit (Cat. No. 12888-50, MoBio Laboratories, Inc., 
Carlsbad, CA, United States). Total glacier ice (glacier) genomic DNA 
was isolated with the PowerWater DNA Isolation kit (Cat. No. 
14900-50 NF MoBio Laboratories, Inc.). The total extracted genomic 

DNA is currently stored at −80°C in the collection of the Ecuadorian 
Microbiome Project (EcMP) at the Institute of Research on Zoonoses 
(CIZ) of Central University of Ecuador. A partial region of 500 bp 
including the hypervariable regions V3 and V4 of the 16S rRNA genes 
was amplified with custom primers based on previous work 
(Klindworth et al., 2013). The primer pair was: forward = 5’-TCGTC 
GGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGC 
WGCAG-3′ and reverse = 5’-GTCTCGTGGGCTCGGAGATGTGT 
ATAAGAGACAGGACTACHVGGGTATCTAATCC-3′. 16S rRNA 
libraries of 300 bp paired-end fragments of the bacterial metagenome 
were obtained by synthesis sequencing technology on an Illumina 
MiSeq platform (San Diego, CA, United States). The studied sequences 
are available at NCBI with the BioProject accession number 
PRJNA681925. We included two types of negative controls (Kim et al., 
2017; Eisenhofer et al., 2019). First, a blank extraction control was 
included during DNA extraction and all subsequent protocol steps. 
This blank control had no input material. Second, we included a blank 
library control, in which the extraction protocol was not applied and 
DNA-free water was used as input to library generation and 
further sequencing.

2.3. Sequence processing and analysis

Prior to performing taxonomic annotation, all sequence files were 
checked for quality with FastQC (Andrews, 2010). The identification 
of bacterial groups was assisted by Mothur v.1.43.0 (Schloss et al., 
2009) and according to the MiSeq Standard Operational Procedure 
(Kozich et al., 2013). Forward and reverse reads were assembled into 
contigs and the resulting sequences were filtered and processed. 
We  retained sequences with a minimum overlapping of 20 bp, a 
maximum length of 580 bp, and a minimum of 348 bp. Sequences with 
homopolymers longer than 14 bp or containing ambiguities were also 
removed from the analysis. The filtered sequences were deduplicated 
and aligned against the V3-V4 region of the SILVA v132 reference 
small subunit rRNA gene alignment database. Those sequences that 
did not span the full alignment were filtered by optimizing the start 
and end positions using a 95% criterion. The alignments were 
processed by eliminating columns that exclusively contained gaps or 
dot characters, and the sequences were deduplicated for a second time. 
Denoising was performed by preclustering sequences with less than 
one difference per 100 bp, and chimeras were removed using Mothur’s 
implementation of the VSEARCH algorithm (Rognes et al., 2016). 
Sequences were classified with a naive Bayesian classifier against the 
SILVA v132 reference taxonomy database, by the Wang method (Wang 
et al., 2007) and with a 70% bootstrap threshold. Sequences belonging 
to chloroplasts, mitochondria, and Eukaryota were removed. The final 
resulting sequences were clustered into OTUs at 99% identity with the 
opticlust algorithm (Westcott and Schloss, 2017). The most abundant 
sequence within each sequence cluster served for consensus 
classifications and the determination of representative sequences for 
each OTU. All the commands used in the Mothur pipeline for 
sequence processing are available in the file 
“Mothur_v1.43_V3V4_DEF.batch” at.1 Processed Mothur data were 

1 gitlab.com/ec.microbiome.proj/cayambe-microbiome-year-1
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imported into R (R Core Team, 2020) with the phyloseq package 
(McMurdie and Holmes, 2013). OTUs were grouped at the genus and 
family levels, and taxonomic levels kingdom and phylum were 
inspected to filter Archaea/unknown taxa and unclassified bacteria, 
respectively. Genera with zero counts in all samples were also removed. 
Bacterial composition was explored at various taxonomic levels with 
plots generated in Krona (Ondov et al., 2011). Afterward, samples were 
separated by substrate (soil and water-ice), removal of singletons was 
performed, and the subsequent analyses were carried out.

2.4. Diversity analysis

Diversity indices were estimated for each sample site, including 
Chao, Shannon, and Simpson. α-diversity was compared across 
sample sites and the two categories of altitude (high vs. low) with a 
one-sided Wilcoxon signed-rank test. To test the relationship of 
α-diversity and altitude, a robust linear regression by an iterated 
re-weighted least squares model was applied with the Chao index as 
the dependent variable and altitude as the regressor. This was applied 
through the “rlm()” function in the MASS package in R (Venables and 
Ripley, 2002). Following the estimation of the slope in the regression 
model, we tested its significance through a Wald test (or robust F-test) 
through the “f.robtest()” in the sfsmisc package in R (Maechler, 2022).

Rarefaction curves with steps of 600 samples for soil and glacier 
ice were estimated with the back-end functions of the ranacapa 
package (Kandlikar et al., 2018). Heatmaps of the log-transformed 
counts were used to visually compare the overall absolute abundance 
between samples at the family level, the community structure in 
individual samples, and the metacommunities in soil and glacier ice. 
To avoid overplotting, only the most abundant families were selected 
for each sample and based on the log count transformation; for glacier 
ice sequences, the cutoff was log(x + 1) > 25.3 and for soil sequences, 
the cutoff was log(x + 1) > 15.6. With the selected families, a 
hierarchical clustering, with the unweighted pair group method 
(UPGMA on Euclidean distances), was performed to evaluate if this 
analysis could capture the change in community composition across 
the altitudinal gradient (Gu et al., 2016).

The patterns provided by the abundance heatmaps could 
be summarized in the concept of γ-diversity, with the added benefit of 
robust estimation of entropy to a meaningful measure of biological 
diversity (Jost, 2006; Marcon and Hérault, 2015). To test for differences 
in the structure of the meta-community in glacier soil versus glacier 
ice, we obtained a corrected estimate distribution of the γ-Shannon 
diversity; package entropart (Marcon and Hérault, 2015) was used for 
this purpose.

2.5. Ordination and differential abundance 
analyses

Underrepresented genera were removed based on the arbitrary 
threshold criteria that genera had to be detected at least five times in 
more than half of the samples; additionally, only the five most 
abundant phyla were kept since they represented over 90% of the 
relative abundance. Genera count data were transformed to even 
sample depth by multiplying a constant by the relative abundance. The 
constant value was the average sample depth for glacier ice (i.e., 

48,741) and glacier soil samples (i.e., 50,410) respectively. The filtered 
phyloseq object (previously explained in the sequence processing and 
analysis section) was exported to a DESeq2 object for further 
preprocessing (Love et al., 2014). Based on the transformed DESeq2 
object, the size factors of the abundances were estimated through the 
median rate method (Anders and Huber, 2010). The abundances in 
the DESeq2 object were subjected to variance stabilizing 
transformation by using the estimated size factors.

β-diversity was assessed through a non-metric multidimensional 
scaling analysis (NMDS) with fitted environmental (physicochemical) 
variables. The algorithm for fitting environmental variables to the 
NMDS space found the direction in which the correlation of the 
environmental vectors was the strongest; the associated statistical 
significance in this context was for a null hypothesis in which the 
correlation was indistinguishable from zero (Oksanen et al., 2018). 
The NMDS was based on Bray-Curtis distances, which were obtained 
from the original matrix of abundances for families across samples. 
We used a radar plot to show the distribution of scaled physicochemical 
variables for glacier ice and soil samples and grouped them by two 
categories of altitude (low vs. high). The intersection of bacterial 
families in the two categories for altitude (high vs. low) and substrate 
(soil vs. glacier ice) were depicted in a Venn diagram. Families used in 
the Venn diagram were those present at least five times in more than 
half of the samples. NMDS analyses were made with the vegan 
package (Oksanen et al., 2018).

To discover significant differences in the presence of genera 
between low- and high-altitude communities, a differential abundance 
detection analysis, based on a negative binomial distribution, was 
performed with the DESeq2 package (Love et al., 2014). This analysis 
returned the computed log2 fold change and corresponding p-values. 
The latter was corrected by the Benjamini-Hochberg method 
(Benjamini and Hochberg, 1995), as a threshold to minimize the false 
discovery ratio. Genera were projected into a volcano plot, with –
loge(p) against the log2 fold change. Since the fold change was 
obtained by low-altitude/high-altitude abundance ratios, those genera 
with a positive fold change will express larger abundance at low 
altitudes, and those with a negative fold change will express larger 
abundance at high altitudes. The abundance distribution of all families 
that were common to all samples, irrespective of the type of substrate, 
provided a perspective on the meta-community. This pattern was 
represented by a heatmap of the log-transformed counts and an 
accompanying cluster analysis with the unweighted pair-group 
method and based on Euclidean distances. The statistical procedures 
are available at (see footnote 1).

3. Results

A total of 15 samples were obtained from the CVC, which included 
a range from 4,783 to 5,583 masl (Figure 1). Coordinates and altitude 
for each sample are included in the Supplementary Data 1. A total of 
252,053 16S amplicon high-quality reads were obtained for glacier soil 
samples, with an average of 50,410 ± 15,468 reads per sample. A total 
of 487,414 16S amplicon high-quality reads were obtained for glacier 
ice samples, with an average of reads per sample of 48,741 ± 12,976. The 
available sequence samples were classified into 1,037 genera.

We recorded a total of 41 phyla, with Proteobacteria, 
Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes common 
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to all samples. The three most abundant phyla in glacier soil samples 
were Actinobacteria, Proteobacteria, and Acidobacteria. In glacier ice 
samples, the three most abundant phyla were Actinobacteria, 
Proteobacteria, and Bacteroidetes. For either glacier soil or glacier ice, 
these four phyla constituted up to 75% of the relative abundance. On 
average, the predominant phylum in glacier soil was Actinobacteria, 
with 25 and 34% of total sequences at high and low altitudes, 
respectively, (interactive Krona plot of all taxonomical categories 
found in glacier soil available at).2 In contrast, for glacier ice samples, 
Proteobacteria was the predominant phylum at high altitudes (47%) 
and was replaced by Actinobacteria as the most abundant at 
low-altitude samples (43%) (interactive Krona plot of all taxonomical 
categories found in glacier ice samples available at).3 Individually, 
Proteobacteria was the richest phylum in the CVC with 11 families, 
followed by 8 families in Actinobacteria, 5  in Firmicutes, 4  in 
Bacteroidetes, and 1 in Acidobacteria.

Glacier soil and glacier ice samples shared half of the 10 most 
abundant families. Some samples showed the presence of a single 
superabundant family (>50% relative abundance), such as CAY004 
(4,948 masl, Micromonosporaceae 79%), CAY009 (5,569 masl, 
Pseudomonadaceae 58%) and CAY010 (5,533 masl, Nocardiaceae 
66%) for glacier ice samples, and CAY001 (4,945 masl, 
Micromonosporaceae 52%) for glacier soil samples (Figure 2A and 
interactive Krona plots for soil and glacier ice samples). There was no 
discernable pattern or relationship between samples and their 
geographical location to explain the dominant presence of these 
families (Figures 1, 2).

There was a trend toward higher diversity at lower altitudes for both 
glacier ice and glacier soil (Figures 2B,C). A robust linear regression on 
the Chao1 diversity index, with altitude as the regressor, showed a 
markedly inverse relationship for glacier ice samples (F = 20.27, 
p = 0.004), but not for glacier soil samples (F = 3.23, p = 0.17; Figure 2C); 
the latter showed no statistical significance. A one-sided Wilcoxon 
signed-rank test, comparing the diversity of glacier ice samples from 
high altitudes vs. those from low altitudes, showed significance (W = 0, 
p = 0.018 for the contrast on the Shannon index and W = 0, p = 0.036 for 
the contrast on the Simpson index). However, the same test performed 
in glacier soil samples provided no significance (W = 0, p = 0.17 for the 
contrast on the Shannon index and W = 0, p = 0.17 for the contrast on 
the Simpson index; Figure  2A). All rarefaction curves for richness 
approached an asymptote within at least 60% of reads, which indicated 
a sufficient sequencing depth (Figure 2D).

A complex pattern of abundance in the samples can 
be summarized by the heatmap on the most abundant families and its 
interpretation was assisted by the accompanying clustering (Shannon 
γ-diversity distribution). For the interpretation of the observed 
patterns, clusters for families (along the rows or horizontal direction) 
were numbered from 1 to 4, and clusters for samples (along the 
columns or vertical direction) were labeled from A to G. For glacier 
soil, two clusters of families were established. Within Cluster 1 there 
was a sharp difference between the sample cluster formed by CAY006 
(4,784 masl) and CAY003 (4,947 masl) (cluster D) and the rest of the 
samples in clusters A, B, and C. This difference highlighted a 

2 https://figshare.com/ndownloader/files/40262224

3 https://figshare.com/ndownloader/files/40262230

remarkable correspondence between the clustering results of samples 
and the clustering results of bacterial families, which pointed toward 
strongly structured communities in glacier soil. Although highly 
similar in the abundance of families in Cluster 1 (pattern W in 
Figure 3), CAY003 and CAY006 were separated by approximately 
500 m, and each one was closer to other, less similar, sampling sites 
(Figures 1–3). Both CAY003 and CAY006 belonged to the low-altitude 
glacier soil sample category. Sample CAY001 (4,945 masl), which 
formed cluster C, was characterized by the marked low abundance of 
the families in Pattern X (Figure  3). Similarly, samples CAY0012 
(5,375 masl) and CAY0014 (5,306 masl) were characterized by 
Patterns Z and Y respectively, which showed conspicuously low 
abundance for different groups of families (Figure 3). Sample groups 
A, B, C, and D in glacier soil had all conspicuous patterns of 
abundance for different groups of families (i.e., patterns W, X, Y, and 
Z in Figure 3). The clustering results for soil samples in the heatmap 
suggested an effect of altitude on the structure of communities.

In comparison to the glacier soil samples, glacier ice samples 
showed less structure or recognizable patterns in terms of the observed 
abundance in families. In other words, there was more homogeneity 
among the communities in ice than in soil. Sample CAY010 (5,533 
masl), which formed cluster F, can be  easily differentiated by the 
presence of low abundance in most families when compared to the 
rest of glacier ice samples (Figure 3). Notably, Nocardiaceae, which is 
an actinomycetes family found also in Antarctica (Roslee et al., 2020), 
was uniquely abundant in CAY010.

Sharp differences in abundance for different groups of families 
within glacier soil samples, in comparison to the more homogeneous 
distribution of abundance in glacier ice samples, was a pattern that 
was summarized in terms of γ-diversity. The latter contrast showed 
sharp differences between the two types of substrates, with the 
simulated distributions having no overlap and separated by at least 
8 units of γ-diversity (Figure 3).

Low-altitude communities were different in composition from 
high-altitude communities in glacier soil samples, but not in glacier 
ice samples (Figures 4A,B). The differences in soil communities were 
evident along the second axis of the non-metric multidimensional 
scaling analysis (NMDS; Figure 4B), but glacier ice samples showed 
considerable overlap on either the first or second axis of the NMDS 
(Figure 4A). In glacier ice samples, the largest fitted environmental 
vectors (i.e., highly correlated environmental variables to sample 
scores) were chloride, sodium, and total dissolved solids, which were 
also the only significant ones (p ≤ 0.05). These three environmental 
vectors were strongly and significantly correlated to the distances 
among samples in the NMDS space, and therefore to community 
structure, but did not contribute to differences between the two 
categories of altitude (Figure 4A). In glacier soil, one of the largest 
fitted environmental vectors was phosphate and the only one with 
significance (p < 0.05). The separation of high-altitude vs. low-altitude 
glacier soil samples was therefore correlated with a gradient of 
concentration in which phosphate was higher at lower altitudes 
(Figure 4B). Circumstantial evidence was present for differences in the 
concentration or magnitude of several physicochemical parameters 
between high- and low-altitude samples; however, due to the small 
sample size available, no contrast showed statistical significance 
(Supplementary Figure S1). When compared to high-altitude glacier 
ice samples, low-altitude glacier ice communities had a higher 
concentration or larger values for all physicochemical variables, except 
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for electrical conductivity (EC; Figure 4C). A more complex pattern 
was present for glacier soil, in which magnesium, sodium, manganese, 
and sulfate had larger concentrations at higher altitudes, and pH, 
organic matter, nitrogen, iron, calcium, and phosphate had larger 
concentrations at lower altitudes (Figure 4D).

There was a remarkable and significant change in abundance 
(p < 0.05) for Pseudomonas between low- and high-altitude glacier 
ice communities as this genus was strongly (i.e., effect size) and 

significantly more abundant at higher elevations (Figure 4E). For 
glacier soil, the genus Oryzihumus was strongly and significantly 
more abundant at higher elevations (Figure 4F); on the other hand, 
significantly and strongly less abundant at higher elevations were 
Nitrobacter, Cellulomonas, and Anaeromyxobacter, plus five 
additional unidentified genera (Figure 4F). About half (51.32%) of 
the 76 families found in this study were present in all the 
combinations of altitude and substrate; 18 families were common 

FIGURE 2

Community α-diversity analysis of the glacier ice (left column) and glacier soil (right column) microbiomes. The stacked bar plot depicts the relative 
abundance for the 20 most abundant families in all samples and was generated on all recorded families (A). Shannon and Simpson diversity 
measurements for glacier ice and soil samples and a comparison between the two categories of altitude; boxplots were not possible for soil samples 
due to small sample size (B). Robust linear regression with the Chao1 diversity index as the response variable and altitude as the regressor, it includes a 
0.95 confidence interval as a shaded area (C). Rarefaction curves for glacier ice and soil samples (D).
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FIGURE 3

Abundance heatmaps of the most abundant families and hierarchical clustering. The concentration of phosphate (PO4
3−), sodium (Na+), and chloride 

(Cl−) are included above each heatmap, as these physicochemical variables showed a significant correlation with the distribution of samples in an 
NMDS analysis. The red-dotted line above each cluster represents the distance at which groups are defined. Altitude is included for each sample below 
its name. Above the heatmaps is the estimated Shannon γ-diversity distribution for either soil or glacier ice metacommunities. The latter distribution 
has been inverted to accentuate its contrast to the former.
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to all soil samples, irrespective of the altitude category, and 19 
families were common to all glacier ice samples irrespective of the 
altitude category (Figure 4G). Remarkably, neither the substrate 
categories (i.e., glacier soil or glacier ice) nor the altitude categories 
(high or low) presented exclusive families, as all the 76 families were 
shared between categories (Figure 4G).

4. Discussion

Our study encompassed a gradient of elevation and two substrate 
groups (i.e., glacier soil and glacier ice). We found a difference in 
α-diversity along the elevation gradient for glacier ice, where 
low-altitude communities (<5,200 masl) presented higher α-diversity 
than high-altitude communities (>5,200 masl). However, glacier soil 
showed no effect of altitude on α-diversity. Correlations between 
elevation and diversity in microbial ecology can mask several 
underlying ecological and physicochemical parameters (Lanzén et al., 
2016). Previous studies have found environmental parameters that 
were significantly independent of elevation, and where the latter factor 
was secondary to other parameters in explaining the structure of 
bacterial communities (Fierer et al., 2011; Díaz et al., 2022). Although 
we acknowledge the possibility of confounding or unaccounted factors 
that could be underlying elevation as a significant component for 
bacterial diversity, such as soil moisture, soil nutrient status, substrate 
availability, and substrate quality, (Meier et  al., 2010; Nottingham 
et al., 2015), we have also included as part of our assessment a set of 
18 physicochemical parameters, whose correlations with the observed 
community diversity and structure are discussed in the 
next paragraphs.

Our results are consistent with earlier studies on microbial 
diversity along a mountain elevational gradient (Lanzén et al., 2016; 
Shen et al., 2020). Decreasing α-diversity with higher altitude was also 
reported for bacterial communities in mountain glaciers from the 
Austrian Alps (Wilhelm et  al., 2013), the Tianshan Mountains in 
Central Asia (Ren et al., 2017), and the Himalayas (Liu et al., 2011). 
Schütte et al. (2010), in a glacier foreland of the High Arctic, reported 
constant levels of diversity for different samples, irrespective of the 
chronosequence (i.e., glacier retreat). On the other hand, Schmidt 
et al. (2009) found that diversity increased along lower elevations from 
a receding glacier in southeastern Peru. Increments in biodiversity at 
lower glacial altitudes have been reported not only at the prokaryotic 
scale but also for macroinvertebrates and other groups of multicellular 
organisms (Milner et al., 2001; Jacobsen and Dangles, 2012; Cauvy-
Fraunié and Dangles, 2019). A recent synthesis on the effect of altitude 
on soil bacteria diversity can be found in Díaz et al. (2022), which 
shows that the issue is currently not fully understood and lacks 
universal consensus.

Our results conform to the possible effect of soil as a promoter of 
diversity and specialization in bacterial communities and its contrast 
to glacier ice environments. The alternating pattern in the radar plot 
for soil, where the means across samples of physicochemical 
parameters are not homogeneously distributed between altitudinal 
categories as they were in glacier ice (Figures  4C,D; 
Supplementary Figure S1), points to a more complex ecosystem 
in soil.

Five phyla were found to be common to all samples: Proteobacteria, 
Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes. This 

finding was consistent with the most abundant phyla previously 
reported in glacier environments (Simon et al., 2009; Xiang et al., 
2009; Schütte et al., 2010; Jacobsen and Dangles, 2012; Seok et al., 
2016). The occurrence of these psychrophilic phyla in other glacier 
ecosystems was also validated by culture-dependent methods (Cheng 
and Foght, 2007; Loveland-Curtze et al., 2009). Acidobacteria has been 
found as one of the most abundant phyla in glacier soils, but not in 
water (Lee et  al., 2013; Park et  al., 2015). The same trend was 
determined in our study, where Acidobacteria was the third most 
abundant phylum in glacier soil communities. The occurrence of 
superabundant families, such as Micromonosporaceae in sample 
CAY004 (4,948 masl), may be related to competitive exclusion, as 
antibiotic-producing bacteria may dominate over the rest of the 
species in the community. Members of Micromonosporaceae are a 
well-known source of antibiotics (Talukdar et al., 2016).

EC and pH have been reported as important environmental 
variables that may affect the microbiome in glacier water since these 
factors have a notable physiological effect on single-celled organisms 
(Brown et al., 2007; Wilhelm et al., 2014). However, pH and EC were 
not significant variables to explain the community structure in our 
survey of the CVC. We propose that significance was absorbed by 
other factors involved in EC such as the higher presence of salt ions in 
low-altitude glacier ice samples (Na+ and Cl−) and which coincide with 
the general direction of the EC vector in the ordination analysis 
(Figure 4A).

Other studies have shown that EC is greater at lower altitudes 
from the glacier summit (Milner et al., 2001, 2009). In the case of the 
CVC, we did not find evidence for a relation between EC and altitude 
or the composition of communities; however, Cl− and Na+, considered 
here as a proxy for EC, were strongly correlated to an observed pattern 
of community composition in glacier ice samples, in which a mixture 
of low- and high-altitude communities were clustered together 
(Figures 3, 4A). EC has been proposed as a driver for diversity in 
glacier ecosystems, as liquid water at lower altitudes may be linked 
with higher magnitudes of this parameter (Wilhelm et al., 2013). A 
negative correlation between altitude and EC has been reported for 
soil matrices at other study sites (Calvo et al., 2009; Wu et al., 2015). 
This may be related to higher concentrations of nutrients downstream, 
as rain and meltwaters flow down the glacier toward lower elevations, 
water may carry minerals and mobilized ions, which will enrich 
lower-elevation substrates and environments (Ciccazzo et al., 2016). 
Phosphorus has been considered as a limiting elemental resource for 
soil bacterial communities (Ragot et al., 2013); thus, this was the only 
variable (measured as PO4

3−) with a significant correlation to the 
observed bacterial community composition in glacier soil, and with 
higher concentrations at lower elevations (Figures  3, 4). The 
bioavailability of phosphate may play an important role in shaping 
bacterial communities at Andean glacier environments.

4.1. Differential abundance analysis

Selection pressures and living conditions in glacier ice are more 
demanding for unicellular organisms than other kinds of substrates 
such as soil (Ciccazzo et al., 2016; Cazzolla Gatti et al., 2018); thus, 
when compared to glacier ice, the glacier soil had more structured, 
diverse, and specialized communities, as measured by γ-diversity 
(Figure 3). The differential abundance analysis, between low- and 
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FIGURE 4

Ordination and differential abundance analysis. An NMDS for soil (A) and glacier ice (B) samples, with physicochemical variables as fitted vectors. Asterisks 
over the name of each environmental vector show significance (p < 0.05) for the correlation with the scores of samples. Samples are represented by color 
according to high-altitude (blue) or low-altitude (red). A convex hull around samples has been included to facilitate the contrast between the two 
categories of altitude. The radar plots for soil (C) and glacier ice (D) samples show average differences (as percentages) in the concentration or 
magnitude of physicochemical variables between high- and low-altitude samples. The volcano plots show the results of the differential abundance 
analysis at the genus level for glacier ice (E) and soil (F) samples. The cutoff to minimize the false discovery rate was set to p < 0.05 and is represented by 
the dashed horizontal line. The color of the data points varies accordingly to the intensity of the log2 fold change. A Venn diagram of the shared families 
between substrates and categories of altitude, only families that were detected more than five times in at least half of the samples were included (G).
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high-altitude samples, found at least four significant genera in glacier 
soil (Nitrobacter, Cellulomonas, Oryzihumus, and Anaeromyxobacter), 
but only one for glacier ice (Pseudomonas). The latter pattern may 
be related to markedly structured communities in glacier soil when 
compared to glacier ice. These salient genera detected by the 
differential abundance analysis could be proposed as biomarkers for 
the detection of either low- or high-altitude substrate samples and the 
effects of the receding glacier on the composition of 
bacterial communities.

Pseudomonas is a genus with psychrophilic species (Margesin 
et  al., 2009), such as those in the Pseudomonas fluorescens 
complex (Mukhia et  al., 2022). Species in this complex are 
capable of ice-nucleating activities (Obata et al., 1998). Within 
the P. fluorescens complex, there is a group named P. antarctica 
(Vásquez-Ponce et al., 2018), which consists of Antarctic species, 
but has also been reported from the East Rathong supraglacial 
site in Sikkim Himalaya (Mukhia et al., 2022). We found that this 
genus was significantly and strongly more abundant at higher 
altitudes (>5,200 masl) in glacier ice communities. Metabolic 
results of isolated bacteria from CVC using dedicated culture-
dependent methods (E. Rivadeneira, unpublished) and whole 
metagenome analysis are expected to elucidate the relevance of 
this group of microorganisms for glacial ecosystems. It is 
noteworthy that although the differential abundance analysis 
with glacier soil samples found 10 significant genera (two points 
are overlapping in Figure 4F), only four of them were assigned to 
a genus name. Nitrobacter, which was significantly more abundant 
at lower elevations, is a group that plays an important role in the 
nitrogen cycle by using energy from the oxidation of nitrate to fix 
CO2 via the Calvin cycle. Nitrobacter has been reported in glacier 
soils (Latha et  al., 2009) and was proposed as the 
chemoautotrophic bacterium responsible for carbon fixation 
(Werner and Newton, 2005). Likewise, the other significant 
genera in our differential abundance analysis, Cellulomonas 
(Steven et al., 2006; Latha et al., 2009), Oryzihumus (Kwon et al., 
2015; Zhang et  al., 2016; Tolotti et  al., 2020), and 
Anaeromyxobacter (Srinivas et al., 2011; Rime et al., 2015), were 
also previously reported in glacier microbiomes, but their 
ecological role has not yet been elucidated. Anaeromyxobacter, a 
common iron-reducing soil bacteria, has been shown to have the 
necessary molecular machinery for nitrogen fixation and 
assimilation of N2 gas by nitrogen (Masuda et al., 2017, 2020, 
2021). The nitrogen-fixing capabilities of Anaeromyxobacter may 
play an essential role in the unique chemistry of soils at extreme 
altitudes in the Andes, which are characterized by low nitrogen 
content (Schmidt et al., 2008; Knelman et al., 2014; Hu et al., 
2021). These three genera were significantly more abundant at 
lower elevations.

4.2. Human and animal-associated bacteria

Although mountain glaciers are extreme environments, and 
seldom visited by humans, they can be  under different threats, 
including human activities. Human and animal fecal bacterial taxa 
have been reported in different glaciers, by detecting fecal microbial 
biomarkers (Zdanowski et  al., 2017; Malešević et  al., 2019). 
The Ruminococcaceae and Lachnospiraceae families, which were 

proposed as human and animal fecal biomarkers (Mclellan et al., 
2013), have been found in all soil and glacier ice samples in the 
present study. The Ruminococcus genus was found in low-altitude 
glacier ice samples and represented 0.09% of the sequences in the 
Firmicutes phylum. Ruminococcus has been described as part of the 
bacterial consortia in sheep rumen (Krause et al., 1999). On the 
other hand, the genus Faecalibacterium considered a biomarker for 
poultry feces (Shen et al., 2013; Sun et al., 2016) was found in high-
altitude glacier ice samples and represented 0.5% of the sequences 
in the Firmicutes phylum. The Blautia genus, found in both soil and 
glacier ice samples, with abundances ranging between 0.03and 
0.05% respectively, has also been described as a biomarker for 
human feces (Koskey et al., 2014; Feng et al., 2018). The reasons for 
the presence of these fecal biomarkers are unknown but may 
be related to visitation by humans and native avian fauna, even 
though the samples were not collected on the touristic climbing 
routes. Nevertheless, the potential ecological significance of the 
detected biomarkers seems to be  marginal due to their low 
relative abundance.

4.3. Glacier meta-community

Meta-community theory assumes that communities are not 
closed and isolated, but that they interact at various scales (Miller 
et  al., 2018). One scale of interaction is spatial dynamics, which 
accounts for mass effect, rescue effect, colonization, dispersal, among 
other factors (Hanski and Gilpin, 1991). The ecology of glaciers can 
be classified as permanent habitats with indistinct boundaries (Leibold 
et al., 2004), since glacier soil and glacier ice are intimately in contact, 
allowing for colonization and dispersal effects (Wilhelm et al., 2013). 
Our findings support the concept of the meta-community in the CVC, 
as the intersections in the Venn diagram (Figure 4G) suggested that 
niches may occur through continuous ecosystems rather than having 
strictly categorical boundaries. This is particularly evident given that 
the central intersection of the Venn diagram held more than half of 
the detected families in this study (51.32%). The observed pattern in 
the meta-community at Cayambe, with a large overlap between 
communities, can be explained in terms of dispersal and colonization 
effects. Specifically, the hydraulic configuration of the glacial drainage 
may contribute to mass transport and the possibility of bacterial 
dispersal to colonize new glacier areas (Hotaling et al., 2017; Ortiz-
Álvarez et al., 2020).

Our understanding of bacterial biodiversity and its drivers for 
mountain glaciers is mostly unquantified, overlooked, and 
underestimated due to the lack of data (Hotaling et al., 2017; Stibal 
et al., 2020). Therefore, this first assessment of the bacterial community 
in the CVC provides a new and useful perspective on the possible 
consequences of glacier retreat and climate change on microbial 
diversity and its associated ecosystems.
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