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Microbiota as key factors in 
inflammatory bowel disease
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Inflammatory Bowel Disease (IBD) is characterized by prolonged inflammation 
of the gastrointestinal tract, which is thought to occur due to dysregulation of 
the immune system allowing the host’s cells to attack the GI tract and cause 
chronic inflammation. IBD can be caused by numerous factors such as genetics, 
gut microbiota, and environmental influences. In recent years, emphasis on 
commensal bacteria as a critical player in IBD has been at the forefront of new 
research. Each individual harbors a unique bacterial community that is influenced 
by diet, environment, and sanitary conditions. Importantly, it has been shown 
that there is a complex relationship among the microbiome, activation of the 
immune system, and autoimmune disorders. Studies have shown that not only 
does the microbiome possess pathogenic roles in the progression of IBD, but it 
can also play a protective role in mediating tissue damage. Therefore, to improve 
current IBD treatments, understanding not only the role of harmful bacteria 
but also the beneficial bacteria could lead to attractive new drug targets. Due 
to the considerable diversity of the microbiome, it has been challenging to 
characterize how particular microorganisms interact with the host and other 
microbiota. Fortunately, with the emergence of next-generation sequencing and 
the increased prevalence of germ-free animal models there has been significant 
advancement in microbiome studies. By utilizing human IBD studies and IBD 
mouse models focused on intraepithelial lymphocytes and innate lymphoid cells, 
this review will explore the multifaceted roles the microbiota plays in influencing 
the immune system in IBD.
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Introduction

Inflammatory bowel disease (IBD) is characterized as a chronic immune-mediated 
inflammatory disease affecting the gastrointestinal tract. IBD can be  divided into two 
subgroups: Crohn’s Disease (CD), and Ulcerative Colitis (UC) (Crohn’s and Colitis 
Foundation, 2014). CD can occur anywhere along the gastrointestinal tract and involve 
patches of healthy tissue mixed between inflamed areas, on the other hand, UC is limited to 
the colon and has continuous inflammation of large areas of the colon (Fakhoury et al., 2014). 
The National Institute of Allergy and Infectious Diseases (NIAID) is focusing on IBD as one 
of the specific autoimmune diseases for intense study.1 The prevalence of IBD is increasing 
worldwide, recent reports have recorded that an estimated 2 million people in North America, 

1 https://www.niaid.nih.gov/diseases-conditions/autoimmune-disease-research
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3.2 million people in Europe, and millions more in east and southern 
Asia, have been diagnosed with IBD as of 2020 (Ananthakrishnan 
et al., 2020; Olfatifar et al., 2021; Zhao et al., 2021). With rates of IBD 
rising all over the world, development of new strategies to combat 
IBD are critically needed. Although the underlying causes of IBD are 
ill-defined, IBD is thought to develop due to microbial, 
environmental, genetic, and immune-mediated factors (Khan et al., 
2019; Glassner et  al., 2020; Mentella et  al., 2020). Recently, the 
importance of the microbiome in the development of IBD has been 
at the forefront of study (Khan et  al., 2019; Somineni and 
Kugathasan, 2019).

Our microbiomes contain more than 100 trillion different 
microorganisms, including bacteria, viruses, fungi, and protozoa. The 
gastrointestinal (GI) tract is one niche that harbors significant 
populations of these microorganisms (Figure 1). The predominant 
bacterial populations in a healthy microbiome are Firmicutes, 
Actinobacteria, Bacteroidetes, and Verrucomicrobia (Pickard et  al., 
2017; Kho and Lal, 2018). Importantly, the distribution of bacterial 
species throughout the GI tract varies (Table 1). The colon harbors the 
greatest number and diversity of bacteria with the highest proportion 
of colon colonizing bacteria being Bacteroides, Bifidobacterium, and 
Clostridiales (Vuik et al., 2019). These bacteria can survive in this 
location because they might be adept at using enzymes to break down 
and digest complex polysaccharides which are indigestible by the host 
(Flint et  al., 2012). The stomach on the other hand contains 
comparatively few microorganisms due to its high-stress conditions, 
with its main populations being Streptococcus, Prevotella, Rothia, and 
Veillonella (Nardone and Compare, 2015). Moreover, the small 
intestine also contains lower bacterial populations compared to colon, 

most likely due to its proximity to the stomach, and is rich in mono- 
and di-saccharides which promote Proteobacteria and Firmicutes 
(Vuik et al., 2019; Leite et al., 2020). This description of the “healthy” 
microbiome is not complete however, as it is noted that during 
dysbiosis there is the possibility that these normally commensal 
bacteria can emerge as pathobionts due to the altered environment of 
the gut. Therefore, a comprehensive analysis of potential pathobionts 
and opportunistic microbes is required before we can define a truly 
“healthy” microbiome (Chervy et al., 2020; Mancini et al., 2021). The 
gut microbiome can play a critical role in gut homeostasis, metabolism, 
immune activation, and defending against intestinal pathogens. Thus, 
the study of how the gut microbiome influences the immune system 
to either combat or promote IBD will provide valuable insights for 
new drug targets or therapeutics.

The microbiome and inflammatory 
bowel disease

The gut microbiome contains high concentrations of commensals, 
such that immunomodulatory bacteria will constantly be providing 
stimuli to the host’s immune cells, especially dendritic cells and 
macrophages which extend their dendrites to capture such bacteria. 
During non-perturbed circumstances, this stimulation will lead to 
immunologic tolerance which prevents unwanted intestinal 
inflammation. It is believed that genetic susceptibility, environmental 
factors, and certain microbes can cause this controlled tolerance to 
become dysregulated and lead to the development of colitis. Although 
the mechanisms underlying how and why this occurs are not 

TABLE 1 Distinct microbiota associations.

Tissue Phyla: Genus Environment Reference

 • Stomach
 • Firmicutes: Lactobacillus, Streptococcus, Enterococcus, Veillonella

 • Proteobacteria: Helicobacter, Haemaphilus, Neisseria

 • Actinobacteria: Rothia, Propionibacterium

 • Bacteroidetes: Bacteroides Prevotella

 • Partially Aerobic

 • Highly acidic

 • Nardone and Compare (2015)

 • Yang et al. (2013)

 • Wu et al. (2014)

 • Martinez-Guryn et al. (2019)

 • Duodenum
 • Firmicutes: Lactobacillus, Clostridium, Staphylococcus, Streptococcus

 • Bacteroidetes: Bacteroides

 • Actinobacteria: Bifidobacterium

 • Proteobacteria: Neisseria

 • Partially Aerobic

 • Neutral

 • Wang et al. (2005)

 • Cheng et al. (2013)

 • Kastl et al. (2020)

 • Martinez-Guryn et al. (2019)

 • Jejunum  • Firmicutes: Streptococcus, Veillonella, Clostridium, Enterococcus, Lactobacillus

 • Proteobacteria: Escherichia, Haemophilus, Neisseria, Klebsiella, Citrobacter

 • Bacteroidetes: Prevotella, Bacteroides

 • Actinobacteria: Bifidobacterium, Rothia, Actinomyces

 • Fusobacteria: Fusobacterium, Leptotrichia

 • Partially Aerobic

 • Neutral

 • Sundin et al. (2017)

 • Martinez-Guryn et al. (2019)

 • Ileum  • Firmicutes: Clostridium, Peptostreptococcus, Lactobacilli, Enterococcus

 • Actinobacteria: Bifidobacterium

 • Proteobacteria: Heliobacter, Escherichia

 • Bacteroidetes: Bacteroides, Prevotella

 • Partially Aerobic

 • Acidic

 • Villmones et al. (2018)

 • Martinez-Guryn et al. (2019)

 • Colon
 • Firmicutes: Clostriudm, Ruminococcus, Lactobacilli

 • Proteobacteria: Escherichia, Enterobacter, Heliobacter, Klebsiella

 • Bacteroidetes: Bacteroidesm Orevotella, Alistipes

 • Actinobacteria: Bifidobacterium

 • Verrucomicrobia: Akkermansia

 • Highly Anaerobic

 • Neutral

 • Mailhe et al. (2018)

 • Thursby and Juge (2017)

 • Martinez-Guryn et al. (2019)

Associations of microbiota and regions of GI tract. There are specific bacteria that tend to colonize in distinct locations in the stomach and intestines. This is most likely due to the local micro-
environment that promotes certain bacteria over others.
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completely understood, many studies have indicated that the mere 
presence of bacteria significantly influences these processes. Studies 
have shown that genetically susceptible rodents that have been housed 
under germ-free (GF) conditions, show little to no intestinal 
inflammation. Whereas mice breed under specific pathogen free (SPF) 
conditions show symptoms of colitis (Sartor, 1997; Sellon et al., 1998; 
Keubler et al., 2015). Accordingly, mice that have been genetically 
targeted to delete the gene responsible for IL-10, a potent anti-
inflammatory cytokine, will develop inflammation in the cecum and 
colon spontaneously, and had increased highly activated CD4+ T cells 
when housed in SPF conditions (Sellon et al., 1998; Keubler et al., 
2015). Interestingly, IL-10 KO GF mice on the other hand had a lack 
of colitis and immune activation (Sellon et al., 1998). This induction 
of colitis in genetically susceptible mice has long been attributed to the 
human enterohepatic Helicobacter Helicobacter hepaticus 
(H. hepaticus) (Danne et al., 2017; Zhu et al., 2021). However, there is 
conflicting evidence to suggest that H. hepatoicus itself is not sufficient 
to induce colitis unless it is co-colonized with Lactobacillis reuteri 
(Dieleman et  al., 2000; Whary et  al., 2011). Additionally, fecal 
transplants from IBD human donors are sufficient to induce IBD 
symptoms in GF mice and that fecal transplantation from healthy 
donors does not induce these symptoms (Erben et  al., 2014; 
Weingarden and Vaughn, 2017; Jang et al., 2021). This is thought to 
occur by the IBD donor microbiota preferentially stimulating Th17 
and Th2 T cells over Tregs, while healthy microbiota induce more 
Tregs (Longman et al., 2013; Britton et al., 2019). Fittingly, it has been 
observed that when naïve CD4+ T cells were transferred from healthy 
mice into immunocompromised mice, colitis was induced (Powrie 
et al., 1994; Kullberg et al., 2006; Ostanin et al., 2009). The degree to 
which these mice were susceptible to colitis was directly associated 

with the composition of the mouse’s unique gut microbiome (Reinoso 
Webb et al., 2018), and this naive T cell transfer colitis model is widely 
used to study the effects of the microbiome on IBD pathogenesis 
(Ostanin et al., 2009).

Interestingly, it has been found that there are distinct actions that 
the hosts immune system with partake in response to colonization of 
the gut microbiota. For example, in 2014, it was observed that specific 
intestinal microbiota are preferentially coated with high levels of 
immunoglobulin A (IgA) and that the specific microbes that have this 
high IgA coating are found to dramatically increase susceptibility to 
colitis (Gaboriau-Routhiau et al., 2009; Palm et al., 2014). Utilizing 
this differential coating of IgA could be  a powerful tool in 
distinguishing between potentially pathogenic bacteria and healthy 
commensals (Pabst and Slack, 2020). In humans, it has been 
demonstrated that IBD severity is closely associated with disruptions 
in the normal microbiota, known as dysbiosis (Schaubeck et al., 2016). 
Not only is the diversity of bacteria in healthy intestinal tissue much 
greater than that of inflamed intestinal tissue, but there is a marked 
change in the predominant bacteria colonized. It has been observed 
that patients with IBD are observed to have a reduction in Firmicutes 
and an increase in Proteobacteria, and a few members of Bacteroidetes 
(Sepehri et al., 2007; Alam et al., 2020; Lee and Chang, 2021). This 
change in composition and diversity is thought to lead to an 
impairment of several key immunomodulatory functions and 
reduction in intestinal barrier integrity thus allowing inflammation to 
occur and stimulate unnecessary immune responses (Lee and Chang, 
2021). Importantly, in addition to diversity and composition of the 
microbiome being reduced an/or altered it has also been observed that 
the metagenomic, metatransciptomic, and metabolomic profiles of the 
microbiomes in IBD patients are altered (Lloyd-Price et al., 2019). For 

FIGURE 1

Location and functions of T cells, IELs, and ILCs in the Gut. Intestinal epithelial barrier with gut mucosa and Lamina Propria on either side. Commensal 
microbiota in the gut lumen will stimulate innate immune cells, DCs and Macrophages, as well as IELs. Depending on nature of stimulation and by 
which commensal will influence IEL cytokine production, along with IL-23 and IL-1b from DCs/Macs to trigger ILC1/ILC3 conversion. CD4+ CCR6+ 
ILC3s located in the crypt patch will produce IL-22 to stimulate repair and regeneration mechanisms.
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example, the measured metabolites produced by the microbiota in 
IBD patients are significantly less diverse than those without 
IBD. Additionally, they observe that Short Chain Fatty Acids (SCFAs) 
produced by the microbiota are reduced in patients with dysbiosis; 
specifically, the SCFA butyrate is consistently noted as being less 
abundant in dysbiosis. Lloyd-Price et al., 2019, hypothesize that this 
loss of butyrate is due to the depletion of important metabolite 
producers like F. prausnitzii and R. hominis (Lloyd-Price et al., 2019). 
Along these lines, this same group also observed that the primary bile 
acid cholate and its conjugates are consistently measured higher in 
dysbiosis from patients with CD, and conversely that the secondary 
bile acids deoxycholate and lithocholate are reduced in this condition 
(Duboc et al., 2013; Lloyd-Price et al., 2019). They conclude that the 
microbiota change in IBD-associated dysbiosis causes alterations in 
intestinal bile acid production which may lead to the inhibition of 
anti-inflammatory effects seen in some of the secreted bile acids 
resulting in chronic inflammation that is a hallmark of IBD (Duboc 
et  al., 2013). Lastly, it was noted that IBD specific signals are 
significantly detectable at the RNA level in dysbiosis, this includes 
pathways known to be  upregulated in IBD and known bacterial 
species that are observed to have different expression profiles in IBD 
patients (Schirmer et al., 2018). Adding to this complexity, recent 
studies showed that dysbiosis of oral microbiome in patients with 
periodontitis can also directly influence the development of gut 
inflammation by promoting harmful pathobiont colonization and 
supplying pathogenic T cells to the gut (Atarashi et al., 2017; Kitamoto 
et al., 2020; Kitamoto and Kamada, 2022). Microbiomes from other 
niches can influence microbiome-mediated gut tissue inflammation. 
However, treatment of IBD with antibiotics has shown conflicting 
outcomes; with some studies showing mild benefits and others with 
little to no effect (Nitzan et al., 2016; Abraham and Quigley, 2020). 
This may be explained by the variable locations of disease occurrence 
and the different mechanisms of action for the varying antibiotics 
tested. For example, if the treated antibiotics depleted more beneficial 
bacteria than pathogenic bacteria, the output of the treatment for IBD 
will be  detrimental. So far, our knowledge cannot predict such 
outcomes because of the diversity of bacteria and their unknow 
immunomodulatory functions. Finally, the genetic indicators that are 
known to be associated with IBD are generally related to how the 
immune system interacts with the gut microbiota (Imhann et al., 2017; 
Aschard et al., 2019; Cohen et al., 2019). Thus, characterizing how 
commensal bacteria interact with the host’s tissues and immune 
system will be  critical for combatting IBD. Taken together 
microbiome-dependent T cell activation and dysregulation can cause 
gut inflammation, while innate lymphoid cells (ILCs) and intra-
epithelial lymphocytes (IELs), which are also abundant in the intestine 
and function similarly as T cells, likewise contribute to IBD. In this 
review, we will examine the contribution of T cells, ILCs and IELs in 
IBD pathogenesis.

Microbiota influence on 
intra-epithelial lymphocytes

The microbiome has a significant impact on maturation and 
education of the immune system. To keep immune responses in check, 
commensal microbes induce immune tolerance to prevent unwanted 
immune activation and inflammation while still allowing for robust 
immune responses toward pathogens. This is a delicate process and any 

perturbations, such as dysbiosis or genetic susceptibility, may lead to 
improper immune responses and potentially IBD. One critical player 
are the intraepithelial lymphocytes (IELs). IELs are interspaced between 
epithelial cells in the intestinal barrier located underneath the mucosal 
layer. IELs are considered the first line of defense in the gastrointestinal 
tract as they are the first immune cell to encounter microbes colonizing 
the mucosa (Figure 1). Once IELs arrive at the intestinal barrier and 
position themselves between the epithelial cells, they do not return to 
circulation (Masopust et al., 2010; Van Kaer and Olivares-Villagómez, 
2018). The distribution of IELs is not consistent along the entire 
gastrointestinal tract and differs between mice and humans (Camerini 
et al., 1993; Beagley et al., 1995; Tamura et al., 2003). The microbiome 
is seen as a potent modulator of IEL phenotypic composition and clonal 
expansion (Helgeland et al., 2004). It was observed that in GF rats there 
was a significant reduction in CD4+ IELs compared to conventionalized 
rats that showed notable populations of both CD4+ IELs as well as CD4/
CD8α + double positive IELs (Helgeland et  al., 2004; Harada et  al., 
2022). Interestingly, the GF rats displayed similar numbers of CD8+ 
IELs compared to conventionalized rats, indicating that while CD4 
single and double positive IELs are highly influenced by the microbiota, 
CD8+ IELs seem to be relatively independent of microbiota (Bousso 
et al., 2000; Helgeland et al., 2004). Although it has been difficult to 
identify the different bacterial species in the microbiome that influence 
IEL composition, it has been noted that segmented filamentous bacteria 
(SFB) has the ability to significantly modulate IELs (Umesaki et al., 
1999; Helgeland et al., 2004).

The majority of IELs express a CD8αα homodimer with around 
90% of these expressing T cell receptors (TCRs) (Van Kaer and 
Olivares-Villagómez, 2018). These IELs can be  divided into two 
groups, natural or induced IELs. Induced IELs form from naïve T cells 
that encounter antigens in the gut-associated lymphoid tissue (GALT) 
and then migrate to the intestine. Induced IELs can be  further 
classified into CD4 or CD8αβ expressing. Induced IELs are typically 
thought to possess an effector-memory phenotype that aids in the 
defense against pathogens. Contrary to traditional thought there is 
some evidence to suggest that induced TCRαβ+ CD4+ IELs do not lose 
their CD8 chains such that they express both CD4 and CD8αα 
(Morrissey et al., 1995; Yap and Mariño, 2018). Studies have revealed 
that some commensals can modulate the generation and function of 
TCRαβ+ CD4+ CD8αα+ IELs (Zhou C. et al., 2019). They show that 
TCRαβ+ CD4+ IELs are absent in GF mice and that the addition of the 
commensal Lactobacillus reuteri can induce expansion of TCRαβ+ 
CD4+ IELs by downregulating ThPOK, a key transcriptional regulator 
of T cells (Cervantes-Barragan et  al., 2017). Importantly, this 
specialized IEL subset has been associated with IBD and has been 
found to, upon stimulation by microbiota, induce alteration of Foxp3+ 
Treg into TCRαβ+ CD4+ CD8αα+ IELs during intestinal inflammation 
(Das et al., 2003; Cervantes-Barragan et al., 2017; Zhou C. et al., 2019). 
Moreover, a very recent report from the Kasper lab showed that 
dietary Fatty Acids (FAs) can be bio-transformed into Conjugated 
Linoleic Acids (CLAs) predominantly by the microbiota in the small 
intestine. They demonstrate that the CLAs then act as important 
modulators to maintain a healthy CD4+ CD8αα+ IEL pool, highlighting 
gut commensal’s role in preserving mucosal defenses (Song et al., 
2023). The other subclass of induced IELs is TCRαβ+ CD8αβ+ IELs. 
These cells are derived from activated CD8+ T cells from the periphery 
and account for up to 15% of total IELs in mice and 80% in humans 
(Sujino et al., 2016). While physiological roles of these cells in intestine 
during homeostasis and pathogenesis are not fully understood yet, 
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several studies have uncovered links between TCRαβ+ CD8αβ+ IELs 
and the microbiome. One study demonstrated a significant increase 
in TCRαβ+ CD8αβ+ IELs when GF mice were microbially colonized 
in SPF conditions (Jarry et al., 1990). Others have shown that reducing 
specific bacterial species with antibiotics can increase the number of 
TCRαβ+ CD8αβ+ IELs (Imaoka et al., 1996). Natural IELs on the other 
hand, will home directly to the intestinal epithelium after thymic 
development. Natural IELs include TCRγδ+, which are known to have 
high mobility throughout the intestinal epithelium (Chen B. et al., 
2018). Interestingly, there is conflicting evidence for the role of 
TCRγδ+ IELs in colitis models. Some suggest that these cells act 
protectively against inflammatory damage to the epithelium; while 
others indicate that TCRγδ+ IELs act in a pathogenic fashion (Simpson 
et al., 1997; Canesso et al., 2017; Mariño et al., 2017; Nielsen et al., 
2017). Some studies suggest that TCRγδ+ IELs help protect the 
intestinal epithelium from inflammatory damage by secreting TGF-β 
and KGF (Yang et al., 2004; Hu et al., 2018; Michaudel and Sokol, 
2020). Although various papers indicated the relationships between 
microbiota and IELs up-regulation and activation, the repertoire of 
TCR on the IELs had been not investigated. Recently Bousbaine et al., 
reported that β-hexosaminidase, a conserved enzyme across 
commensals of the Bacteroidetes phylum, as a driver of CD4+ IEL 
differentiation. In addition, the paper nicely showed that the 
β-hexosaminidase-specific CD4+ IELs can play a protective role in a 
mouse model of colitis (Bousbaine et  al., 2022). Utilizing and 
enhancing the protective mechanisms of our immune cells is a 
promising path for IBD therapeutics.

Microbiota influence on innate 
lymphoid cells

Innate lymphoid cells (ILCs) are a class of immune cells that form 
from a common lymphoid progenitor (CLP) (Liu et al., 2011; Artis 

and Spits, 2015). ILCs are also associated with IBD pathogenesis by 
interacting directly and indirectly with the microbiota, regulating 
intestinal barrier integrity, and secreting cytokines. Dysfunction of 
ILCs will perturb gut homeostasis and can lead to gut inflammation 
and IBD. There are several subclasses of ILCs based on their 
phenotype: ILC1, ILC2, ILC3, NK/ LTi cells are usually included in 
descriptions of ILCs as they share many similarities in development 
and function (Liu et al., 2011; Panda and Colonna, 2019; Figure 2). 
ILCs are known to be primarily located at the mucosal surfaces. With 
the most well-known reservoir being the intestinal epithelial barrier, 
which allows extensive communication with the gut microbiota (Liu 
et al., 2011; Panda and Colonna, 2019). Although ILCs have been 
shown to modulate both innate and adaptive immunity through 
secretion of cytokines, they are considered a part of the innate 
immune system (Liu et al., 2011; Abt et al, 2015; Mortha and Burrows, 
2018; Vivier et al., 2018). ILCs are seen as the innate immune systems 
counterpart to T cells because they produce similar effector cytokines 
but require no education by antigen presenting cells via TCR is 
required (Vivier et al., 2018; Panda and Colonna, 2019). ILCs are 
tissue-resident cells that are found in high numbers within the mucosa 
and have been associated with maintaining homeostasis, intestinal 
repair, and regeneration (Liu et  al., 2011; Vivier et  al., 2018). 
Importantly ILCs will constantly produce their effector cytokines at 
steady-state conditions and are not rapidly replenished by the 
circulation (Giuffrida et al., 2018; Luo et al., 2021). ILC1 cells are 
known to produce the key cytokines IFN-γ and TNF-α, as well as 
provide resistance to intracellular pathogens; with their adaptive 
counterparty being Th1 cells which is also regulated by the same 
master transcription factor T-bet (Fuchs, 2016; Vivier et al., 2018). 
ILC2 cells, whose T cell counterpart is Th2 and master transcription 
factor being GATA3, secrete several interleukins: IL-4, IL-5, IL-9, and 
IL-13. ILC2s are involved in fighting parasitic infections and in type 
two mediated inflammation (Vivier et al., 2018). Next, the ILC3s are 
regulated by the transcription factor RORγt and produce the effector 

FIGURE 2

ILC vs T cell Differentiation. ILC and T cell differentiation. The Innate lymphoid progenitor (ILP) and the double positive T cell progenitor (DP TLP) arise 
from a common lymphoid progenitor (CLP). The ILP can then, depending on other signals, differentiate into ILC1/ILC2/ILC3/LTi cells which are part of 
the innate immunity. Similarly, the DP TLP can differentiate into a Th1/Th2/Th17/Treg identity and is part of the adaptive immunity.
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cytokines IL-17, IL-22, and GM-CSF similarly to Th17 cells (Qiu et al., 
2012; Vivier et al., 2018). They are involved in extracellular pathogen 
defense, epithelial repair, and homeostasis, along with stimulating 
AMP synthesis. LTi cells are important to the development of the 
secondary lymphoid organs, for example Peyer’s Patches on the small 
intestine (Sonnenberg et al., 2011; Van De Pavert, 2021). Although NK 
cells are also regulated by the transcription factor T-bet and produce 
IFNγ they are not directly differentiated into NK cells, instead arising 
from a separate, but related, NK progenitor that is reportedly governed 
by the expression of TOX, NFIL3, ID2, and ETS1 (Zhang and Huang, 
2017; Vivier et al., 2018). Importantly, although the other ILCs are 
closely related to CD4 T cells NK cells on the other hand resemble 
CD8 cytotoxic T cells (Zhang and Huang, 2017).

In an IBD context, the balance between ILCs, particularly ILC1 
and ILC3 is currently a major area of study, as this balance has been 
linked to intestinal inflammation (Chen L. et al., 2018; Castleman 
et al., 2020; Saez et al., 2021). However, ILC2s have recently been 
implicated in gut microbiome dependent inflammatory responses in 
the lung, indicating that ILC2s may also play a role in the development 
of inflammatory diseases but this is still unclear (Pu et al., 2021). 
ILC3s have been reported to perform several functions related to 
maintaining homeostasis in the gut. They can sense and communicate 
with the microbiota to influence intestinal epithelial cells to produce 
anti-microbial peptides, promote epithelial tissue repair and 
regeneration, and modulate the adaptive immune system (Buela et al., 
2015; Diefenbach et al., 2020; Romera-Hernández et al., 2020; Zhou 
and Sonnenberg, 2020; Sepahi et al., 2021). The hallmark of ILC3 is 
the production of IL-17 and IL-22 and, in certain conditions, 
GM-CSF. One way the microbiome communicates with ILCs is 
through Short Chain Fatty Acids (SCFAs). For example, dietary fiber 
can be metabolized by the gut microbiome to produce SCFAs that in 
turn act as regulators for immune cells including ILC3s (Gasaly et al., 
2021; Sepahi et al., 2021). Accordingly, the metabolites produced by 
commensals from dietary fibers regulate G-protein coupled receptors 
to promote optimal expansion of ILCs in the gut (Chun et al., 2019; 
Sonnenberg and Hepworth, 2019). It has been shown that metabolites 
produced by commensals will stimulate the AKT-STAT3 and 
ERK-STAT3 pathways to increase IL-22 production and ILC3 
generation (Sarrabayrouse et al., 2014).

IL-22 is known to promote epithelial barrier integrity and 
encourage epithelial regeneration (Chun et al., 2019; Poholek et al., 
2019). Its clinical relevance in IBD has been extensively documented. 
In short, IL-22 can induce mucosal repair and regeneration which is 
critical for treatment of IBD, and IL-23R, which is known to stimulate 
production of IL-22, is associated with the development of IBD 
(Geremia et al., 2011). Additionally, IL-22 is also demonstrated to 
stimulate the production of anti-microbial peptides (AMPs); 
specifically, the REGIII family (Chun et al., 2019; Willinger, 2019). 
ILC3s also communicate with the commensals by utilizing the ILC’s 
TLRs. TLR stimulation by commensal PAMPS can induce secretion 
of IL-22, IL-13, and IL-5 (Takatsu, 2011; Reece et al., 2014; Xuan et al., 
2021). In conjunction with directly regulating ILCs, commensals can 
also indirectly influence ILCs by modulating myeloid and epithelial 
cells in the intestine. In mice, commensal microbes will stimulate 
intestinal resident myeloid cells to secrete IL-1β and IL-23. These two 
key cytokines in turn will stimulate ILC3s to produce the GM-CSF; 
GM-CSF can induce Treg generation and expansion via dendritic 
cells, enhancing tolerance (Pickert et al., 2009; Mortha et al., 2014; 

Mizoguchi et al., 2018; Miljković et al., 2021). Concurrently, IL-1β will 
also influence ILC3s to secrete IL-2 which also drives Treg generation 
and tolerance (Mizoguchi et al., 2018; Zhou L. et al., 2019). This occurs 
as Tregs will inhibit ILC3-associated colitis by preventing the secretion 
of IL-23 and IL-1β from tissue-resident macrophages that block the 
production of IL-22 (Saez et al., 2021).

Additionally, ILC3s are associated with the IBD susceptibility gene 
TNFSF15 as well as the adaptive immune response. The TNFSF15 
gene encodes the protein TL1A which is the ligand for Death Receptor 
3 (DR3) (Jostins et al., 2012; Castellanos et al., 2018). This ligand TL1A 
will act in concert with IL-23 and IL-1β to enhance IL-22 secretion 
and promote ILC3 expansion ex vivo (Longman et al., 2014; Ahn et al., 
2015). Moreover, in mice colonized with Segmented Filamentous 
Bacteria (SFB) or IBD-associated microbiota such as Adherent-
Invasive E. coli (AIEC), there is an increase in ILC3-produced IL-22 
(Sano et al., 2015; Castellanos et al., 2018). It was revealed that this 
occurs by inducing TL1A expression on mononuclear phagocytes 
such that the increased expression of TL1A will lead to IL-22 secretion 
from ILC3s in a DR3 dependent manner. To confirm this association, 
ILC3 specific DR3 deletion in mice showed decreased IL-22 secretion 
from ILC3s and a higher susceptibility to chemical-induced colitis 
(Castellanos et  al., 2018). Not only has it been observed that the 
microbiota can influence ILCs, but they also impact T cells in response 
to certain bacterial stimuli. For example, E. coli has been shown to 
induce Th17 mucosal immunity exacerbating colitis or arthritis 
severity (Viladomiu et  al., 2017). In addition to commensals 
influencing ILCs, it has been demonstrated that cytokines produced 
by ILCs can regulate commensal bacteria; this is seen by T-bet+ type 
1 ILCs (ILC1) that produce IFNγ and TNFα that can increase the 
permeability of the colonic epithelial cell line and thus influence the 
movement of commensals across the intestinal epithelium (Clark 
et al., 2005). This crosstalk between ILCs and commensals via myeloid 
cells is critical in maintaining homeostasis in colitis models. 
Expression of IFNγ in ILC1 was dependent on proper T-bet expression 
and that mice deficient in T-bet developed ILC-associated colitis due 
to an increase in IL-17 production (Powell et al., 2012). Furthermore, 
ILCs are directly associated with IBD. It has been noted that in IBD 
tissue samples there is a reduced number of NKp44+ ILC3s compared 
to healthy control. This loss of ILC3s in IBD is accompanied by an 
increase of ILC1s and ILC2s in inflamed samples (Geremia and 
Arancibia-Cárcamo, 2017; Forkel et al., 2019). They also display a 
notable increase in secreted IFNγ, which is associated with 
inflammation. Additionally, in inflamed intestinal tissue, there is an 
inverse relationship between the numbers of NKp44+ ILC3s and the 
accumulation of IL-17A and IFNγ+ T cells in human (Forkel et al., 
2019). Metabolites secreted by the microbiota can influence immune 
responses via ILCs, the modulation of ILCs by commensals can 
produce helpful cytokines, and the imbalance between ILC subtypes 
may alter the pathogenesis of IBD (Mazmanian et al., 2005; Bernink 
et al., 2015).

Recently, another important role of ILC3s, its ability to perform 
MHC dependent functions, has been reported by various laboratories 
but originally from the Sonnenberg lab (Hepworth et  al., 2015; 
Akagbosu et al., 2022; Eshleman et al., 2023). They clearly showed that 
ILC3s express major histocompatibility complex class II (MHCII) and 
such MHCII+ ILC3 play important roles to control dysregulated CD4 
T cells during colitis. Recently, two groups showed that mice with 
specific deletions of MHCII on RORγt-expressing/expressed cells 
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failed to develop microbiota-specific Tregs (considered as inducible 
Tregs or peripheral Tregs), thus, mice develop severe colitis (Hepworth 
et al., 2015; Lyu et al., 2022). Therefore, they concluded that MHCII-
expressing RORγt+ ILC3 generate microbiota-specific regulatory T 
cells to establish tolerance in the gut. Although Akagbosu et al., 2022, 
saw similar gut inflammation phenotype using a related model (Cre-
ERT2 mediated inducible deletion), they claimed that non-ILC3 
RORγt+ antigen presenting cells as “Thetis” cells which carry 
combined features of mTECs and Dendritic cells. They also concluded 
that ILC3s were dispensable for the regulation of early-life peripheral 
tolerance using RORα-specific MHCII conditional deletion mice 
(Akagbosu et  al., 2022). Two mini reviews and spotlight papers 
explain more detailed points (Olyha and Stephanie, 2022; Stephen-
Victor and Chatila, 2022), while most ILC3s express MHCII, 
understanding the role of MHCII-expressing ILC3 will uncover novel 
features of ILC3s in terms of IBD in both mice and humans.

What are the differences among IELs, ILCs, 
and T cells?

Although these three cell types share similar features, they each 
have their own unique markers and characteristics that we are only 
now starting to uncover. Firstly. IELs are closely locating in-between 
intestinal epithelial cells to act as a first line of defense against 
pathogens. IELs, unlike T cells in the lamina propria, do not need to 
be primed, upon encountering a pathogen. IELs will immediately 
begin to secrete cytokines (Zhou C. et  al., 2019; Ma et  al., 2021). 
Although until recently IELs had been underappreciated as key players 
in intestinal homeostasis and IBD pathogenesis, recent studies have 
highlighted their contributions in those contexts (Hu and Edelblum, 
2017). For example, during dysbiosis, IELs have increased cytolytic 
potential which leads to damage to the intestinal epithelium which can 
exacerbate inflammatory responses (Setty et al., 2015). Similarly, it was 
observed that the cytokine IL-23 along with endoplasmic reticulum 
stress can lead to enhanced IEL lytic activity (Liu et al., 2011). Lastly, 
gut dysbiosis can also lead to a loss of critical regulatory IELs, which 
in turn then allows unwanted immune activation and inflammation 
(Hu and Edelblum, 2017). ILCs on the other hand, are normally 
located directly underneath the intestinal epithelium, a perfect 
position to receive signals from the epithelium, but some specialized 
subsets of ILCs, namely the CCR6+ ILC3 has been shown to home to 
the crypt patches to aid in crypt integrity and regeneration 
(Ohradanova-Repic et al., 2020). ILCs as the innate counterpart of T 
cells share many of the same features but importantly ILCs lack the 
rearranged antigen receptors that are the hallmark of conventional T 
cells. Since it is known that ILCs can act directly on the intestinal 
epithelial barrier, and can influence innate and adaptative immune 
responses, a comprehensive understanding on how microbiota 
influence ILCs is critical for future therapeutics (Ganal-Vonarburg 
and Duerr, 2020). It has been demonstrated that ILC3s play a critical 
role in IL-22 production, which leads to stimulation of repair and 
regenerative effects in the gut, and resistance against Citrobacter 
Rodentium infection (Guo et al., 2015). However robust study on ILC 
deficient mice and how specific microbiota affect them has been 
lacking. Finally, T cells are lymphocytes that originate as hematopoietic 
cells in the bone marrow and travel to the thymus to mature. For the 
intestines, once T cells leave the gut draining mesenteric lymph nodes 

(mLNs) following the antigen presentation by antigen presenting cells, 
they generally will reside in the underlying Lamina Propria where they 
partake in many different functions (Zhou C. et al., 2019; Ma et al., 
2021). Many studies have focused on the role that CD4+ T helper cells 
(Th) play in the development of autoimmune diseases. Specifically, it 
was discovered that Th17 cells are strongly associated with IBD 
pathogenesis (Yasuda et  al., 2019). During healthy intestinal 
conditions Th17 cells work to ensure the integrity of the intestinal 
epithelial barrier and communicate with other cells to produce 
important antimicrobial peptides (Blaschitz and Raffatellu, 2010). 
However, during disturbed conditions Th17 can secrete potent 
proinflammatory cytokines which will further enhance inflammation 
and IBD progression (Blaschitz and Raffatellu, 2010; Yasuda et al., 
2019). Another important T cell subset is the regulatory T cell (Treg) 
which normally secretes immunosuppressive cytokines like IL-10 
which is a key cytokine in maintaining homeostasis in the gut 
(Atarashi et al., 2011). It is noted that IBD patients have a distinct 
reduction in Tregs which might explain the increase in unwanted 
inflammatory responses normally seen in IBD (Mayne and Williams, 
2013; Clough et al., 2020). Additionally, there is evidence that altering 
the precarious balance between Tregs, and T helper subsets can 
contribute to the pathogenesis of IBD (Mayne and Williams, 2013). A 
very recent paper in 2022 details how specific microbiota can influence 
the generation of Tregs and Th17, cells highlighting the immense 
influence that the microbiome has over T cell differentiation and thus 
what immune responses will occur (Kedmi et al., 2022). Revealing 
how these different cells are stimulated and the specific roles they play 
in IBD will enable deep analysis of the interactions between the 
microbiota, the intestinal epithelium, and immune cells to allow us to 
more precisely modulate the microbiome to enhance health of 
the host.

Controlling gut inflammation with 
microbiota

To attenuate the inflammation in the gut during tissue damage 
and/or IBD, we must not only inhibit microbiome-dependent T cell 
dysregulation but also promote commensal-derived protective 
function of ILC3 and IELs. To this end, identification and 
characterization of specific commensal bacteria is critical to enable us 
to manipulate these functions. Current efforts are interested in 
identifying protective commensals, whether this be  through their 
interactions with the immune cells, production of beneficial SCFAs, 
or inducing intestinal cell regeneration. Along these lines, it was 
recently revealed that there are several strains of Clostridium and a 
strain of Faecalibacterium that can suppress the pro inflammatory 
activity of NF-kB (Bajer et  al., 2017; Giri et  al., 2022). Moreover, 
Butyrivibrio can induce Treg derived IL-10 to maintain gut 
homeostasis via butyrate secretion. There are many other ways that the 
microbiome can modulate gut inflammation, including the 
stimulation of several different SCFAs such as butyrate, acetate, and 
propionate (Silva et al., 2020). Moreover, the gut microbiota’s ability to 
stimulate IL-10, TGF-B, IL-4, IL-27, and IL-35 is also associated with 
anti-inflammatory effects (Al Bander et al., 2020; Silva et al., 2020). 
Taking advantage of these beneficial commensals could be used as a 
treatment for IBD or other inflammatory gut diseases. Conversely 
identification of pathogenic commensals could be used to predict if 
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someone may develop gut inflammation or could be used to selectively 
eliminated with antibiotic treatment.

Importantly, IL-23 plays a key role in the pathogenesis of 
autoimmune and chronic inflammatory diseases, due to IL-23R 
susceptibility alleles being associated with IBD. Blockade of IL-23R in 
human IBD animal models can often decrease gut inflammation 
(Buonocore et al., 2010; Parigi et al., 2022), while protective IL-22 
production from ILC3s requires the stimulation of IL-23R on ILC3 
(Geremia et al., 2011). On the other hand, it was reported that ILC 
drive innate intestinal pathology via IL-23 (Eken et al., 2014). This 
complexity might be due to the diverse causes of IBD development. 
However, to control and treat IBD, we must overcome this gap in 
knowledge to leverage the protective commensal-driven immune 
responses to improve patient outcomes. There are still many questions 
to fully understand the relationships among gut bacteria, gut 
inflammation, and immune cells in the gut (Sefik et al., 2015), but 
current emphasis is focusing on: (1) Will TCR specificities against gut 
commensals on the CD4 T cell be important factors to developing gut 
inflammation under disease conditions such as IL-10 KO and transfer 
colitis model? (2) Can commensal-inducing protective responses 
overcome autoimmune inflammatory signals to maintain homeostasis 
in the gut?

Discussion

The microbiome in IBD patients is distinctly different than that in 
a healthy individual. There is overwhelming evidence that suggests 
that the microbiome plays a critical role in maintaining homeostatic 
balance to prevent dysbiosis. Studies have revealed that commensal 
bacteria in coordination with the innate and adaptive immune 
systems, IELs, and ILCs all play critical roles in these processes. 
Current strategies, such as the use the Fecal Microbiota 
Transplantation (FMT) suggests that utilizing commensals to 
influence the microbiome interactions with the host’s immune system 
to promote homeostasis and prevent dysbiosis and inflammation is a 
promising area of research (Lopez and Grinspan, 2016). This may 
include colonizing known helpful or protective bacteria to IBD 
patients to try and resolve dysbiosis or even supplementing known 
beneficial commensal-produced metabolites to a certain part of the 
intestine to promote intestinal barrier integrity in IBD patients. 
Although much of the specifics concerning which bacterial 
populations are helpful or harmful in these processes are still 
unknown. Elucidating the extensive communication between 
commensal bacteria with IELs and ILCs will be key in uncovering the 
precise mechanisms that govern intestinal homeostasis and 
development of IBD. Taken together the microbiome is a uniquely 
evolving target for diagnosis and treatment of IBD and that future 

studies will need to focus deeply on how particular microbes interact 
with the host’s tissue to promote intestinal epithelium barrier integrity, 
prevent inflammation, and maintain intestinal homeostasis.

Future studies: distinguishing distinct 
features of IELs, ILCs, and T cells

Despite the similarity among these three cell types, many different 
functions have been reported. Since transcriptomic analysis became 
more reasonable to perform, researchers are re-considering not only 
these similarities but also their distinct and unique features in their 
expressing receptors and transcription factors. Moreover, their unique 
location has been considered more and more in these days. Zindl et al. 
nicely showed that a nonredundant function in IL-22 producing CD4 
T cells and ILC3s against Citrobacter rodentium infection in the crypt 
and villi in the intestine (Zindl et al., 2022). In the near future, we will 
be able to analyze the host-pathogen interaction at the single cell/
bacterium resolution.
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