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Background: Previous studies have implicated a vital association between gut 
microbiota/gut microbial metabolites and low back pain (LBP), but their causal 
relationship is still unclear. Therefore, we  aim to comprehensively investigate 
their causal relationship and identify the effect of gut microbiota/gut microbial 
metabolites on risk of LBP using a two-sample Mendelian randomization (MR) 
study.

Methods: Summary data from genome-wide association studies (GWAS) 
of gut microbiota (18,340 participants), gut microbial metabolites (2,076 
participants) and LBP (FinnGen biobank) were separately obtained. The inverse 
variance-weighted (IVW) method was used as the main MR analysis. Mendelian 
randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger 
regression were conducted to evaluate the horizontal pleiotropy and to eliminate 
outlier single-nucleotide polymorphisms (SNPs). Cochran’s Q-test was applied 
for heterogeneity detection. Besides, leave-one-out analysis was conducted 
to determine whether the causal association signals were driven by any single 
SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse 
causation.

Results: We discovered that 20 gut microbial taxa and 2 gut microbial metabolites 
were causally related to LBP (p < 0.05). Among them, the lower level of family 
Ruminococcaceae (OR: 0.771, 95% CI: 0.652–0.913, FDR-corrected p = 0.045) 
and Lactobacillaceae (OR: 0.875, 95% CI: 0.801–0.955, FDR-corrected p = 0.045) 
retained a strong causal relationship with higher risk of LBP after the Benjamini–
Hochberg Corrected test. The Cochrane’s Q test revealed no Heterogeneity 
(p > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant 
horizontal pleiotropy (p > 0.05). Furthermore, leave-one-out analysis confirmed 
the robustness of MR results. After adding BMI to the multivariate MR analysis, the 
17 gut microbial taxa exposure-outcome effect were significantly attenuated and 
tended to be null.

Conclusion: Our findings confirm the the potential causal effect of specific gut 
microbiota and gut microbial metabolites on LBP, which offers new insights into 
the gut microbiota-mediated mechanism of LBP and provides the theoretical 
basis for further explorations of targeted prevention strategies.

OPEN ACCESS

EDITED BY

Jinbo Xiong,  
Ningbo University,  
China

REVIEWED BY

Li-Hua Chen,  
Nantong University,  
China
Giuseppe Murdaca,  
University of Genoa,  
Italy
Marcos Edgar Herkenhoff,  
University of São Paulo,  
Brazil

*CORRESPONDENCE

Yidan Tang  
 yidantang@qq.com  

Tao Zhu  
 739501155@qq.com

†These authors have contributed equally to this 
work and share first authorship

SPECIALTY SECTION

This article was submitted to  
Systems Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 02 February 2023
ACCEPTED 23 March 2023
PUBLISHED 14 April 2023

CITATION

Su M, Tang Y, Kong W, Zhang S and 
Zhu T (2023) Genetically supported causality 
between gut microbiota, gut metabolites and 
low back pain: a two-sample Mendelian 
randomization study.
Front. Microbiol. 14:1157451.
doi: 10.3389/fmicb.2023.1157451

COPYRIGHT

© 2023 Su, Tang, Kong, Zhang and Zhu. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 14 April 2023
DOI 10.3389/fmicb.2023.1157451

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1157451%EF%BB%BF&domain=pdf&date_stamp=2023-04-14
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1157451/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1157451/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1157451/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1157451/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1157451/full
mailto:yidantang@qq.com
mailto:739501155@qq.com
https://doi.org/10.3389/fmicb.2023.1157451
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1157451


Su et al. 10.3389/fmicb.2023.1157451

Frontiers in Microbiology 02 frontiersin.org

KEYWORDS

Mendelian, gut microbiota, gut microbial metabolites, low back pain, sciatica, causality

1. Introduction

Low back pain (LBP) is a symptom that refers to the pain and 
discomfort below the costal edge, above the buttock creases, and 
between the axillary midline, with or without leg pain (Koes et al., 
2006). As the leading cause of years lived with disability worldwide, 
LBP is one of the most prevalent diseases with adverse societal impact 
(Chen et al., 2022). According to a systematic review including 165 
studies from 54 countries, the point prevalence of LBP is 11.9 ± 2.0% 
(Hoy et al., 2012). Although LBP is usually self-limited, it’s estimated 
that 5–10% of people with LBP will develop chronic condition, which 
could result in higher socioeconomic burden and less measurable 
expenses such as problems doing household duties, caregiving, 
depression, and anxiety (Meucci et al., 2015). A growing number of 
medical practice guidelines have recommended many treatments to 
reduce the pain and its consequence, yet the management of LBP 
remains challenging (Bunzli et al., 2013; Waterschoot et al., 2014; 
Wertli et al., 2014). Given the high prevalence and heavy burden of 
LBP globally, there is an urgent need to identify potential causal risk 
factors for LBP.

The etiologies of LBP are multifactorial, including biological, 
psychological, and social factors (Knezevic et al., 2021). With 13 
trillion bacterial cells, the human gut plays an important role in 
modulating host metabolites, vitamin production, colonization 
resistance, and immunological homeostasis. A growing body of 
evidence suggests that gut microbiota dysbiosis is associated with 
metabolic, immune, neurological and musculoskeletal disorders 
(Moon et al., 2018; Strandwitz, 2018; Boer et al., 2019). Recent 
studies suggest that gut microbiome may also be associated with 
pain condition including visceral pain, nociplastic pain, complex 
regional pain syndrome and headaches (Minerbi and Shen, 2022). 
A cohort study reported that patients with back pain showed a 
higher abundance of Adlercreutzia, Roseburia, and Uncl. 
Christensenellacae than controls in overweight and obese indic 
xviduals (Dekker Nitert et al., 2020). Additionally, it’s reported 
that the composition of the gut microbiota has been associated 
with pain conditions partly through altered concentration of gut 
microbial metabolites, highlighting the potential mechanisms 
involving the levels of circulating metabolites (Lührs et al., 2002; 
Shao et al., 2015; Patterson et al., 2019; Blaak et al., 2020). The 
dysregulation of gut microbial metabolites is potentially 
connected to pain (Li J. S. et al., 2022). However, the causal effect 
of gut microbiota and gut microbial metabolites on the risk of 
LBP has yet to be established because of potential biases.

Mendelian randomization (MR) is an efficient method for 
causality inference, utilizing genetic variants as instrumental variables 
(IVs) to research the causal effect of exposure on outcome (Katan, 
1986; Smith and Ebrahim, 2003). This work selected gut microbiota 
and gut microbial metabolites as exposure and LBP as an outcome for 
MR analysis to explore the potential causal relationship, aiming to 

provide a theoretical basis for further research into the complex 
mechanisms and risk factors of LBP.

2. Materials and methods

2.1. Ethics approval statement

The summary-level data used in this study are available for 
download. Each GWAS involved in this study was ethically approved 
by the respective institutions.

2.2. Study design

Gut microbiota and gut microbial metabolites were selected as the 
exposure while the LBP served as the outcome. All statistics involved 
in the analysis were derived from publicly available genome-wide 
association studies (GWAS). Single-nucleotide polymorphisms 
(SNPs) associated with gut microbial taxa and gut microbial 
metabolites were extracted as IVs. Based on the summary-level data 
from GWAS of gut microbiota, gut microbial metabolites and LBP, 

FIGURE 1

Flowchart of the study. GWAS, genome-wide association study; SNP, 
single-nucleotide poly-morphism; MR, Mendelian randomization.
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we conducted a two-sample MR analysis. The flowchart of the study 
is shown in Figure 1.

2.3. Exposure data of gut microbiota and 
gut microbial metabolites

Summary statistics for gut microbiota were obtained from a large-
scale GWAS study conducted by the MiBioGen consortium, which 
coordinated 16S rRNA gene sequencing profiles from 18,340 individuals 
(24 cohorts) (Kurilshikov et al., 2021). In total, 211 taxa (131 genera, 35 
families, 20 orders, 16 classes, and 9 phyla) were included in the 
microbiome quantitative trait loci mapping analysis. Moreover, summary 
data for gut microbial metabolites were drawn from a GWAS study of the 
human metabolome, which was conducted among 2,076 participants 
(Rhee et  al., 2013). Given the significance of microbiota-derived 
metabolites in microbiota-host interaction in nervous system and pain 
behavior, we  chose key metabolites with available GWAS, including 
propionic acid, β-hydroxybutyric acid (BHB), serotonin, γ-aminobutyric 
acid (GABA), trimethylamine N-oxide (TMAO), betaine, choline, and 
carnitine. According to prior research, these gut microbial metabolites 
play critical roles in maintaining healthy nervous system, if dysregulated, 
are potentially causally connected to pain (Yang and Chiu, 2017; Guo 
et al., 2019; Li J. S. et al., 2022).

2.4. Outcome data of low back pain

The GWAS summary statistics of genetic associations for LBP 
were extracted from the largest GWAS meta-analysis, the FinnGen 
Biobank.1 After adjusting for age, sex, genetic relatedness, genotyping 
batch, and principal components, 13,178 LBP cases and 164,682 
controls were used for analysis. In addition, considering that radicular 
pain or radiculopathy (previously called sciatica) sometimes present 
as LBP, 19,509 lower back pain or/and sciatica cases and 199,283 
controls were also included for analysis (Maher et al., 2017; Table 1).

2.5. Genetic instruments selection and 
harmonization

To ensure the robustness and accuracy of results, the SNPs were 
quality checked to obtain compliant IVs. Principles of SNPs selection 
were as follows: (A) the SNPs should be  strongly associated with 

1 https://r5.finngen.fi/

exposures; (B) the SNPs should not be related to confounders; (C) the 
SNPs should be associated with outcomes mediated by the exposures 
(Burgess et al., 2019). Since the number of eligible IVs (genome-wide 
statistical significance threshold, p < 5 × 10−8) was extremely small, the 
locus-wide significance threshold (p < 1 × 10−5) was selected to obtain 
a more comprehensive result (Jia et al., 2019; Lv et al., 2021). Then, to 
eliminate linkage disequilibrium (LD), a clumping method with 
r2 = 0.001 and kb = 10,000 was applied. Lastly, the F statistics were 
calculated to assess the strength of the selected SNPs using the formula:
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In this formula, R2 is the fraction of variability explained by each 
SNP, N is the GWAS sample size, and k is the number of SNPs. A F 
statistic of 10 indicates that there is no convincing evidence of 
instrument bias (Yengo et al., 2018).

2.6. Multivariate MR analysis

Obesity has recently been identified as a major confounder in the 
association of intestinal diseases, as it is somehow associated with the 
health outcome under study, while possibly affecting the composition of 
the microbiome at the same time (Vujkovic-Cvijin et al., 2020). To address 
this issue and avoid potential bias associated with sample overlap (Burgess 
et al., 2016), we performed multivariate MR (MVMR) as a sensitivity 
analysis to correct for measured confounder and the body mass index 
[BMI, (SD, ~4.8 kg/m2)] was employed as the potential confounder. 
We selected GWAS meta-analyses for BMI that is currently publicly 
available and has a relatively large sample size (Locke et al., 2015).

2.7. Statistical analysis

The inverse variance weighted (IVW) method was used as the 
primary analysis for MR. The MR-Egger, weighted median, weighted 
mode and simple mode were utilized as sensitivity analysis methods 
to assess the robustness of significant results. Outlying genetic 
variables may have a considerable influence on MR-Egger, leading to 
inaccurate calculations. Even if all of the IVs are invalid, the MR-Egger 
method can still produce unbiased estimates. If SNPs providing 50% 
of the weight are reliable instruments, the weighted median estimate, 
as the weighted median of the SNP-specific estimates, yields valid 
results (Bowden et  al., 2016). If the most common horizontal 
pleiotropy value is zero, regardless of the type of horizontal pleiotropy, 

TABLE 1 Details of GWAS studies.

Phenotypes Consortium Population Sample size (Case/
Control)

Low back pain FinnGen biobank Europeans 13,178/164,682

Lower back pain or/and sciatica FinnGen biobank Europeans 19,509/199,283

Gut microbiota MiBioGen Europeans 18,340

Gut microbial metabolites FHS Offspring Cohort Europeans 2,076

FHS, Framingham Heart Study.
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the simple mode-based estimate is consistent. When the majority of 
IVs have identical causal estimates, the weighted mode method is still 
viable even if the remaining instrumental variables do not match the 
MR method’s conditions for causal inference. For MVMR analysis, the 
inverse-variance weighted method was employed.

The possible pleiotropic effects were assessed using MR-Egger 
regression, which provides a valid test of horizontal pleiotropy as well 
as a valid test of the causal null hypothesis under the instrument 
strength independent of direct effect assumption (InSIDE) (Bowden 
et  al., 2015). Besides, MR pleiotropy residual sum and outlier 
(MR-PRESSO) test also was performed to identify possible horizontal 
pleiotropy and eliminate pleiotropy impacts by removing outliers 
(Verbanck et al., 2018). Furthermore, Cochran’s Q-statistic was used 
to detect the heterogeneity. Odds ratios (ORs) with 95% confidence 
intervals (CIs) were used to represent the relationship between gut 
microbiota/gut microbial metabolites and LBP. A reverse causality 
analysis is also performed to evaluate the reverse causal relation-ship.

A value of p of <0.05 was considered as the significance threshold. 
To adjust for multiple testing (multiple exposures), the statistical 
significance of the MR effect estimates was defined at a Benjamini–
Hochberg false discovery rate (FDR) of less than 5%. All the analyses 
were conducted by applying packages “TwoSampleMR,” “MRPRESSO” 
and “MendelianRandomization” in R version 4.2.1. The analysis codes 
were showed in Supplementary Table 1.

3. Results

3.1. Selection of instrumental variables

Initially, 13,749 (gut microbiota; locus-wide significance level, 
p < 1 × 10−5) and 66 (gut microbial metabolites; locus-wide 
significance level, p < 1 × 10−5) SNPs were identified as potential IVs 
from large-scale GWAS after removing palindromic SNPs 
(Supplementary Tables 2, 3). It contained 211 bacterial traits, which 
included five biological classifications: phylum (245 SNPs), class (425 
SNPs), order (523 SNPs), family (803 SNPs), and genus (2,703 SNPs). 
8 gut microbial metabolites were identified, including BHB (5 SNPs), 
betaine (13 SNPs), carnitine (12 SNPs), choline (7 SNPs), GABA (11 
SNPs), propionic acid (3 SNPs), serotonin (8 SNPs) and TMAO (8 
SNPs). After clumping and harmonization, 5,078 (p < 1 × 10−5) and 66 
(p < 1 × 10−5) SNPs were selected as IVs. The F-statistics of IVs were all 
generally greater than 10, indicating no evidence of weak instrument 
bias. The key features of SNPs, including effect allele, other allele, beta, 
SE, and value of p, were systematically gathered for further analysis 
(Supplementary Tables 4, 5).

3.2. Causal effects of gut microbiota on 
low back pain

A total of 20 causal associations from gut microbiota features (1 
phylum, 2 class, 5 family, 11 genera and 1 order) to LBP traits were 
identified by the IVW method (Supplementary Tables 6, 7).

The results of IVW analyses demonstrated that genetically greater 
abundance of class Coriobacteriia (OR: 1.178, 95% CI: 1.018–1.364, 
p = 0.028), family Coriobacteriaceae (OR: 1.178, 95% CI: 1.018–1.364, 
p = 0.028), family Prevotellaceae (OR: 1.206, 95% CI: 1.043–1.394, 

p = 0.011), genus Allisonella (OR: 1.080, 95% CI: 1.011–1.154, 
p = 0.023), genus Marvinbryantia (OR: 1.193, 95% CI: 1.032–1.380, 
p = 0.017), genus Oxalobacter (OR: 1.089, 95% CI: 1.015–1.167, 
p = 0.017), genus Tyzzerella3 (OR: 1.095, 95% CI: 1.014–1.183, 
p = 0.021), and order Coriobacteriales (OR: 1.178, 95% CI: 1.018, 
p = 0.028) were positively correlated with the risk of LBP (only low 
back pain). Besides, the genetically predicted abundance of class 
Clostridi (OR: 0.88, 95% CI: 0.785–0.986, p = 0.028), family 
Lactobacillaceae (OR: 0.852; 95% CI: 0.766–0.947, p = 0.003), family 
Ruminococcaceae (OR: 0.771, 95% CI: 0.652–0.913, p = 0.003), family 
Rikenellaceaegenus (OR: 0.894, 95% CI: 0.804–0.994, p = 0.039), genus 
Turicibacte (OR: 0.907, 95% CI: 0.835–0.985, p = 0.021), genus 
Eisenbergiella (OR: 0.905, 95% CI: 0.827–0.991, p = 0.031), genus 
Lactobacillus (OR: 0.884, 95% CI: 0.804–0.972, p = 0.011), genus 
Olsenella (OR: 0.898, 95% CI: 0.835–0.966, p = 0.004), genus 
Oscillibacter (OR: 0.903, 95% CI: 0.818–0.996, p = 0.041), genus 
Roseburia (OR: 0.807, 95% CI: 0.700–0.929, p = 0.003) and genus 
RuminococcaceaeUCG011 (OR: 0.880, 95% CI: 0.806–0.961, p = 0.005) 
were correlated with a reduced risk of LBP (only low back pain) 
(Figure 2).

Moreover, the IVW results demonstrated that class Coriobacteriia 
(OR: 1.159, 95% CI: 1.026–1.309, p = 0.018), family Coriobacteriaceae 
(OR: 1.159, 95% CI: 1.026–1.309, p = 0.018), family Prevotellaceae (OR: 
1.166, 95% CI: 1.019–1.334, p = 0.026), genus Marvinbryantia (OR: 
1.160, 95% CI: 1.018–1.321, p = 0.026), genus Tyzzerella3 (OR: 1.073, 
95% CI: 1.006–1.144, p = 0.032), order Coriobacteriales (OR: 1.159, 
95% CI: 1.026–1.309, p = 0.018), phylum Verrucomicrobia (OR: 1.133, 
95% CI: 1.024–1.253, p = 0.015) were positively correlated with the risk 
of LBP or/and sciatica. Moreover, class Clostridia (OR: 0.880, 95% CI: 
0.785–0.986, p = 0.028), family Lactobacillaceae (OR: 0.875, 95% CI: 
0.801–0.955, p = 0.003), family Rikenellaceae (OR: 0.894, 95% CI: 
0.804–0.994, p = 0.039), family Ruminococcaceae (OR: 0.798, 95% CI: 
0.694–0.919, p = 0.002), genus Eisenbergiella (OR: 0.909, 95% CI: 
0.845–0.978, p = 0.011), genus Olsenella (OR: 0.895, 95% CI: 0.843–
0.951, p = 0.004), genus Roseburia (OR: 0.856, 95% CI: 0.753–0.972, 
p = 0.017), genus RuminococcaceaeUCG011 (OR: 0.914, 95% CI: 
0.852–0.981, p = 0.012), genus Turicibacter (OR: 0.907, 95% CI: 0.835–
0.985, p = 0.021), were negatively correlated with the risk of LBP or/
and sciatica (Figure 3).

3.3. Causal effects of gut microbial 
metabolites on low back pain

IVW results indicated that a higher genetically predicted BHB 
(OR: 1.067, 95% CI: 1.002–1.135, p = 0.043) was associated with the 
higher risk of LBP or/and sciatica. Besides, a higher genetically 
predicted TMAO were associated with the higher risk of LBP (OR: 
1.064, 95% CI: 1.008–1.122, p = 0.023). In addition, there was no 
indication of a causal relationship between the remaining six gut 
microbial metabolites and LBP (Supplementary Tables 8, 9).

3.4. Benjamini–Hochberg corrected test, 
sensitivity analysis and reverse analysis

Results from the Benjamini–Hochberg Corrected test revealed 
that a lower level of family Ruminococcaceae and family 
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Lactobacillaceae retains a strong causal relationship with the 
higher risk of LBP (IVW FDR-corrected p = 0.045) 
(Supplementary Table  7). Q statistics from IVW test and 
MR-Egger regression showed no evidence of heterogeneity in 
most causal relationships (p > 0.05) (Supplementary Tables 10, 11). 

None of the MR-Egger regression intercepts deviated from zero, 
indicating that there was no indication of horizontal pleiotropy 
(all intercept p > 0.05) (Supplementary Tables 12, 13). MR-PRESSO 
test uncovered no evidence of horizontal pleiotropy in causal 
relationships (p > 0.05) (Supplementary Table  14). Besides, 

FIGURE 2

Forest plots summarizing the Mendelian randomization results of gut microbiota taxa with a causal relationship to low back pain. OR, odds ratio; CI, 
confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization.
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Leave-one-out analysis indicated that the causal association 
signals were not driven by any single SNP 
(Supplementary Tables 15, 16). In reverse MR analysis, there was 
no evidence of a causal effect of LBP on gut microbiota 
(Supplementary Table 17).

3.5. Exploration of BMI as potential 
confounding factor

Obesity was recently identified as a major confounding factor in 
microbiome-disease associations. We perform a multivariable MR to 

FIGURE 3

Forest plots summarizing the Mendelian randomization results of gut microbiota taxa with a causal relationship to low back pain or/and sciatica.
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check if the causal effects were still robust by the inclusion of obesity. 
After adjusted for BMI, the IVW results of MVMR analyses 
demonstrated that genus Allisonella (OR: 1.106, 95% CI: 1.030–1.188, 
p = 0.006), genus Eisenbergiella (OR: 0.903, 95% CI: 0.818–0.996, 
p = 0.041), TMAO (OR: 1.064, 95% CI: 1.010–1.121, p = 0.019) were 
significantly correlated with the risk of LBP (only low back pain), and 
genus Eisenbergiella (OR: 0.902, 95% CI: 0.831–0.980, p = 0.015), 
genus Olsenella (OR: 0.921, 95% CI: 0.859–0.987, p = 0.020) and BHB 
(OR: 1.051, 95% CI: 1.011–1.093, p = 0.012) were significantly 
correlated with the risk of LBP or/and sciatica. However, the remaining 
associations found may be  confounded to some extent by BMI 
(Supplementary Table 18).

4. Discussion

To the best of our knowledge, this is the first MR analysis report 
to establish the causal relationship between gut microbiota/
metabolites and LBP. In this two-sample MR study, we identified that 
20 gut microbial taxa and 2 gut microbial metabolites were causally 
correlated with LBP (Figure  4). However, their effects were 
substantially reduced in MVMR analyses incorporating BMI.

The potential mechanisms of the gut microbiota involving in the 
pathogenesis of LBP was discussed in many prior studies. It’s believed 
that all the elements comprising the lumbar spine, such as muscles, 
fascia, ligaments, tendons, joints, neurovascular elements, vertebrae 
and intervertebral discs can contribute to LBP, and intervertebral disc 
degeneration is regarded as one of the most likely causes (Khan et al., 
2017; Knezevic et al., 2021). Rajasekaran et al. (2020) found a higher 

abundance of Oxalobacter in India human degenerated intervertebral 
disc and Lactobacillus was found to be  abundant in normal disc 
compared to disc herniation, which follows a similar trend to our 
results. In lumbar disc herniation mouse models, a relatively high 
abundance of Ruminococcaceae in gut is associated with improved 
behavior, increased cell proliferation and decreased apoptosis (Wang 
et  al., 2021). Therefore, gut microbiota may affect LBP mediating 
dysbiosis of microbiota in intervertebral disc. LBP that extends into 
the leg, usually below the knee, is radicular pain or neuropathic pain 
(previously called sciatica). The prevalence of neuropathic pain has 
ranged between 16 and 55% in patients with chronic LBP (Knezevic 
et al., 2021). Rothhammer et al. discovered that dietary tryptophan 
metabolized by Clostrid could act directly on astrocytes, limiting 
inflammation and providing neuroprotective effects to reduce 
neuropathic pain in mice (Rothhammer et  al., 2018). Our results 
agreed with the probiotic effect of Clostrid from previous studies. 
Analysis of 16S rRNA gene sequencing of fecal displayed that 
Verrucomicrobia is highly correlated with neuropathic pain according 
to animal experiment (Li R. et  al., 2022). Furthermore, clinical 
research found that Verrucomicrobia is increased in the gut of patients 
with neuralgia (Zhang et al., 2019; Lin et al., 2020).

Except for disc generation and radicular pain mentioned above, 
facet arthropathy, myofascial pain, spondyloarthropathies and 
sacroiliac joint pain all contribute to the pathogenesis of LBP 
(Knezevic et al., 2021). Facet joints that connect adjacent vertebrae are 
also prone to degenerative changes, most commonly osteoarthritis. In 
osteoarthritis mouse models, Lactobacillaceae treatment was founded 
to decrease pain severity and cartilage destruction (Jhun et al., 2021). 
Similarly, a community-based observational study in China including 

FIGURE 4

Causal links between gut microbiota, gut microbial metabolites and low back pain. BHB, β-hydroxybutyric acid; TMAO, trimethylamine N-oxide.
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1,388 participants provided the evidence that a low relative abundance 
of Roseburia is associated with symptomatic osteoarthritis (Wei et al., 
2021). Additionally, several studies had demonstrated that a decreased 
relative abundance of the genus Roseburia is associated with 
inflammatory diseases (Tamanai-Shacoori et al., 2017; Quiroga et al., 
2020; Nie et al., 2021). The function of reliving inflammatory may be a 
potential approach of Roseburia affecting LBP. Chevalier et al. had 
confirmed that transplantation of Turicibacter in gut could prevent 
bone loss in female mice, so that Turicibacter could serve as a 
protective factor for osteoporosis (Chevalier et al., 2020). Likewise, 
muscles can also be pain generators of LBP, A large-scale survey in 
Japan including 848 participants indicated that Eisenbergiella is 
positively associated with skeletal muscle mass/body weight, which 
might help increase the resistibility of LBP (Sugimura et al., 2022). In 
line with these studies, our study suggested that the increased relative 
abundance of Lactobacillus, Rikenella, Lactobacillaceae, Roseburia, 
Ruminococcaceae, Turicibacter, Eisenbergiella was causally associated 
with a lower risk of LBP.

As a family of chronic and inflammatory autoimmune disease, 
spondyloarthropathy affect multiple joints, with ankylosing 
spondylitis preferentially affecting the low back and sacroiliac joint 
(Shen et al., 2022). Analysis of 16S rRNA gene sequencing of fecal in 
85 patients and 62 healthy controls in China displayed that Prevotella 
is highly correlated with ankylosing spondylitis (Zhou et al., 2020), 
which is consistent with our results. In addition, the prevalence for 
spondyloarthropathies was 0.05–0.25% for enteropathic axial arthritis 
and Olsenella was found to be  associated with decreased disease 
activity index in inflammatory bowel disease mouse models (Reveille, 
2011; Zhang et al., 2020). At the same time, extensive research have 
detected a relationship between vitamin D and LBP (Zadro et al., 
2017; Al-Taiar et al., 2020; Kanaujia et al., 2021; Xu et al., 2021). A 
large-scale randomized controlled trial demonstrated that vitamin D 
could reduce the risk of autoimmune diseases including inflammatory 
arthropathy (Hahn et  al., 2022). The mechanism that provides 
rationale for the link between vitamin D and the risk of LBP remains 
ambiguous. One the one hand, vitamin D is recognized to induce 
changes in bone metabolism and could regulate the inflammatory 
cytokines that control pain (Xu et al., 2021; Murdaca et al., 2022). On 
the other hand, vitamin D deficiency deeply influences the 
microbiome by altering the microbiome composition and the integrity 
of the gut epithelial barrier (Murdaca et al., 2021a). Multiple studies 
have shown that vitamin D deficiency is associated with microbiome 
dysbiosis, with consequent increases in inflammatory disorders 
(Murdaca et al., 2019, 2021b). Therefore, there may be a link between 
gut microbiota, vitamin D and LBP.

A two-sample bidirectional MR study provided robust evidence 
that Allisonella may be a risk of multisite chronic pain (Lin et al., 
2022), including LBP, which supported our results. Coriobacteriales is 
an order of Coriobacteriia, whose subordinate family comprises 
Coriobacteriaceae. Available literature indicated that Coriobacteriia is 
significantly more abundant in bipolar disorder and colorectal 
carcinomas (Painold et al., 2019), whereas there is little evidence about 
the relationship with pain. The exact mechanism of these gut microbial 
taxa on the development of LBP warrants additional investigations.

On the other hand, gut microbial metabolites, as the main way for 
gut microbiota to affect host function, are involved in the occurrence 
and development of various diseases (Bai et al., 2022; Teunis et al., 2022; 
Yu et  al., 2022). In recent years, the functional mechanism of gut 

microbial metabolites in nervous-related disorders have received 
extensive attention. Among them, gut microbial metabolites play a 
regulatory role in the development of a variety of chronic pain, such as 
visceral pain, inflammatory pain, neuropathic pain and headache (Li 
J. S. et  al., 2022). TMAO is a gut microbiota-derived metabolite 
produced from choline and carnitine, which are essential nutrients 
contained in many foods, including red meat, eggs and dairy (Koeth 
et  al., 2013; Hazen and Brown, 2014). TMAO is involved in pain 
generation and transmission by significantly triggering oxidative stress 
and decrease anti-inflammatory factor (Silvestre et al., 2020; Ko et al., 
2022). The result of our study was in accordance with the most available 
evidence. As one of the endogenous ketone metabolites, BHB is a small, 
water-soluble and lipid-derived molecule (Nosadini et al., 1989; Fukao 
et al., 2004; Cheng et al., 2019). Previous research indicated that an 
increase levels of BHB in plasma is associated with reduced pain 
sensitivity (Lautenbacher et al., 1991; Smith et al., 2013) and caloric 
restriction could alleviate complete Freund’s adjuvant-induced 
inflammatory pain via elevating BHB expression (Liu et  al., 2022). 
Interestingly, after treatment with non-steroidal anti-inflammatory 
drugs, early postpartum Holstein Friesian dairy cows experienced pain 
relief and a reduction in serum BHB concentrations (Schmitt et al., 
2023). Here, we observed elevated BHB was a risk factor of LBP. The 
exact mechanism of BHB on the pathogenesis of LBP 
warrants verification.

The advantages of this study as follows: MR employs genetic 
variants as environmental exposure proxies to identify the causal 
relationship between an exposure and a disease outcome. Because 
genetic differences are assumed to be assigned at random before birth, 
they are highly independent of environmental variables and established 
well before sickness onset, avoiding residual confounding and reverse 
causation problems that limit traditional observational studies (Smith 
and Ebrahim, 2003). Then, this study takes advantage of publicly 
available datasets to gain more precise estimates and greater statistical 
power due to the large sample sizes of GWAS. Last but not least, MVMR 
as a sensitivity analysis to correct for measured confounder and the BMI 
is believed to increase the robustness and reproducibility in resolving 
the gut microbiome that are truly associated with LBP. In brief, this 
study was adequately powered to detect a significant association 
between gut microbiota/gut microbial metabolites and LBP.

However, there are some limitations in this study. First, to limit 
population stratification bias, the majority of participants in the 
GWAS pooled data included in our study were of European ancestry, 
which may partially bias our estimates. Though some previous studies 
using 16S rRNA-based phylogeny have also demonstrated that LBP is 
potentially related to gut dysbacteria (such as Oxalobacter, 
Lactobacillus, Prevotella, Roseburia and Eisenbergiella etc.) among 
Asian population, causal relationship between gut microbiota/
metabolites and LBP in people from other regions remain unclear 
(Rajasekaran et al., 2020; Zhou et al., 2020; Wei et al., 2021; Sugimura 
et al., 2022). Second, due to a lack of demographic data (e. g. gender 
and ethnicity) in the original study, additional subgroup analysis was 
not feasible. Third, science the SNPs obtained using the genome-wide 
statistical significance threshold (p < 5 × 10−8) were insufficient for 
further analysis, only the SNPs that met the locus-wide significance 
level (p < 1 × 10−5) were identified. These limits reduced the results’ 
generalizability and may have weakened the study’s accuracy. After a 
causal relationship is demonstrated, the next step is exploring possible 
mechanisms that allow the microbiome to affect the host health.
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In conclusion, we  comprehensively confirmed the causal 
association between gut microbiota/gut microbial metabolites and 
LBP. Nine bacterial features and two gut microbial metabolites showed 
a positive causal direction with LBP, whereas another eleven bacterial 
features showed a negative causal direction with LBP. These strains 
may become novel biomarkers and provide insights for the treatment 
and prevention of LBP.
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