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Introduction: Coronaviruses (CoVs) are naturally found in bats and can

occasionally cause infection and transmission in humans and othermammals. Our

study aimed to build a deep learning (DL) method to predict the adaptation of bat

CoVs to other mammals.

Methods: The CoV genome was represented with a method of dinucleotide

composition representation (DCR) for the twomain viral genes,ORF1ab and Spike.

DCR features were first analyzed for their distribution among adaptive hosts and

then trained with a DL classifier of convolutional neural networks (CNN) to predict

the adaptation of bat CoVs.

Results and discussion: The results demonstrated inter-host separation and

intra-host clustering of DCR-represented CoVs for six host types: Artiodactyla,

Carnivora, Chiroptera, Primates, Rodentia/Lagomorpha, and Suiformes. The

DCR-based CNN with five host labels (without Chiroptera) predicted a

dominant adaptation of bat CoVs to Artiodactyla hosts, then to Carnivora

and Rodentia/Lagomorpha mammals, and later to primates. Moreover, a

linear asymptotic adaptation of all CoVs (except Suiformes) from Artiodactyla

to Carnivora and Rodentia/Lagomorpha and then to Primates indicates an

asymptotic bats-other mammals-human adaptation.

Conclusion: Genomic dinucleotides represented as DCR indicate a host-specific

separation, and clustering predicts a linear asymptotic adaptation shift of bat CoVs

from other mammals to humans via deep learning.

KEYWORDS

bat coronavirus, asymptotic adaptation, deep learning, dinucleotide composition

representation (DCR), convolutional neural networks

1. Introduction

RNA viruses from natural reservoir hosts continuously pose a threat to human health,

such as coronaviruses (CoVs) from bats (Liu et al., 2021; Wang et al., 2022) and avian

influenza viruses from birds (Liu et al., 2014; Sun et al., 2014; Deng et al., 2017). In particular,

bat-originated CoVs either caused high-pathogenic but low-transmissible infections of

Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS)

or launched a widespread pandemic of low-pathogenic human CoVs, such as HcoV-NL63,

HcoV-229E, HcoV-OC43, and HKU1 (Su et al., 2016; Forni et al., 2017). The ongoing
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global spread of SARS-CoV-2 has not only caused huge damage

to public health (WHO, 2022) but also radically changed social

habits and lifestyles (West et al., 2020; El-Sayed and Kamel, 2021).

Orthocoronavirinae, known as CoV, is one of the two subfamilies

in Coronavirinae and consists of four genera of alpha-, beta-,

gamma-, and delta-coronaviruses that infect mammalian or avian

hosts, especially those specific to species (Woo et al., 2012). The

two former CoV members only infect mammals, and the two

latter CoVs dominantly infect birds, with some exceptions for

mammalian infection (Woo et al., 2012; Ji et al., 2022). According to

current CoV databases, almost all human CoVs, with HcoV-OC43

and HKU1 as the exceptional origins of rodents (Forni et al., 2017),

have been indicated to have originated in bats (Cui et al., 2019;

Ruiz-Aravena et al., 2022). SARS-CoV-2 likely originated from bats

as well (Zhou et al., 2020). Additionally, approximately half of the

20 Alphacoronavirus or Betacoronavirus species were identified

only in bats (Cui et al., 2019). Taken together, bats are most likely

natural reservoirs of CoVs.

Bats are the second largest order of mammals after rodents,

widely inhabiting all continents except Antarctica (Gentles et al.,

2020), accounting for approximately one-third of CoV sequences

before Coronavirus Disease 2019 (COVID-19) (Ruiz-Aravena et al.,

2022). The natural reservoir role of bats for CoVs is attributed

to host/virus co-existence in an equilibrium pattern, which is

also interpreted as the virus adapting to the host, enabling

effective bat infection and inter-bat transmission but with limited

pathogenicity (Li et al., 2020, 2022) due to several factors. First,

bats exhibit extraordinary immune tolerance, which maintains a

moderate immune response to invading viruses such as CoVs,

leading to limited viral replication and asymptomatic or mild

CoV infections (Baker et al., 2013; Olival et al., 2017; Banerjee

et al., 2018; Skirmuntt et al., 2020; Sia et al., 2022). Second, bats

have a high body temperature, which resembles other mammals’

febrile responses and infection immune responses, helping to

keep virus infections at a tolerable level (O’Shea et al., 2014).

Third, factors such as the large and closely aggregated population,

sustained flight capability, and extreme roosting proximity of

bats support the widespread and sustained existence of CoVs

within the bat population (Maganga et al., 2014; Olival et al.,

2017; Roes, 2020). Thus, the sustained infection and transmission

in bats provide CoVs with a high probability of accumulating

mutations, leading to variants with marginal adaptation to other

mammalian hosts and causing spillover infections in humans and

other mammals.

Numerous bat CoVs have been isolated and sequenced in

recent years. A total of 78% (2,209/2,820) of the recorded CoV

sequences in NCBI were uploaded since 2015, before the COVID-

19 pandemic (https://www.ncbi.nlm.nih.gov/nuccore). However, it

is challenging to assess the risk of new bat CoV isolates that

cause infection or pandemics in human or other mammalian

populations (Seyran et al., 2021). Traditional phylogenetic analysis

can sufficiently evaluate the cross-species infection risk or any bat

CoV (Lima et al., 2013; Seyran et al., 2021). More recently, machine

learning or deep learning approaches based on big sequencing

data have led to remarkable predictions of the host adaptation

(Li et al., 2022; Nan et al., 2022), evolution (Hie et al., 2021),

transmissibility (Fischhoff et al., 2021), virus–host interaction

(Dey et al., 2020), and pathogenicity (Gussow et al., 2020) of

SARS-CoV-2 and other viruses (Li et al., 2020). Host-specific

compositional features in the virus genome have been indicated by

the representation traits, such as dinucleotides (DNTs) (Li et al.,

2020), DNT composition representation (DCR) (Li et al., 2022),

and Uniform Manifold Approximation and Projection (UMAP)

(Hie et al., 2021). Unfortunately, there is no pipeline or framework

available to predict the adaptation of recorded or newly isolated

bat CoVs to main mammalian hosts, such as Primates, Rodents,

Artiodactyla, Suiformes, or Carnivora.

The present study aimed to represent the genome composition

of the twomain genes, i.e., Spike, the receptor binding glycoprotein,

and ORF1ab, the RNA-dependent RNA polymerase complex, and

then to predict the adaptive host of recorded or newly isolated

CoVs. In this study, the viral genome representation and adaptive

host prediction framework provide an intelligent approach to

assessing the risk of cross-species infection and transmission for

bat CoVs.

2. Methods

2.1. Data preprocessing and genomic
compositional trait parsing of ssRNA viruses

Full genome sequences of coronaviruses were downloaded

from the NCBI nucleotide database (https://www.ncbi.nlm.nih.

gov/nuccore) and cleaned by removing records with multiple

imprecise nucleotides or filtering with sequence length thresholds

of 27,000 and 32,000 bp. Six types of adaptive host labels,

including Chiroptera (CHI), Artiodactyla (ART), Suiformes (SUI),

Rodents/Lagomorphs (Rodents, ROD), Carnivora (CAR), and

Primates (PRI), were extracted from the “FEATURES”-“source”-

“host” of each sequence record in the genebank sequence files

and were manually checked one by one according to the host

family (genus for porcine CoVs). The coding sequences of the

two main CoV genes, ORF1ab and Spike, were parsed with the

Biopython Python package. Genomic nucleotide composition traits

of mononucleotide (NT), dinucleotide (DNT), DNT composition

representation (DCR), trinucleotide (codon), codon pair, and

amino acid (AA) were counted as a frequency value for each

ORF1ab or spike sequence sample with a nucleotide counting

script. The traits of NT, DNT, and DCR were counted as codon

nucleotide-dependent sequences (Li et al., 2022). In sum, 12, 48,

1,536, 64, 3,721, and 20 features of the aforementioned six types

of compositional traits were counted and utilized for genome

composition analysis.

2.2. Clustering in genomic composition
traits of coronaviruses

To visualize data distribution and clustering, dimension

reduction was performed using Principal Component Analysis

(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)

for the full-dimension features of 12 NTs, 48 DNTs, 1,536 DCRs, 64

codons, 3,721 codon pairs, or 20 Aas forORF1ab or Spike. PCA and

t-SNE were performed using sklearn.decomposition.PCA (Jolliffe

and Cadima, 2016) and sklearn.manifold.TSNE (https://scikit-

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1157608
https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://scikit-learn.org/stable/about.html#citing-scikit-learn


Li et al. 10.3389/fmicb.2023.1157608

learn.org/stable/about.html#citing-scikit-learn), respectively. Two

main components (PCA1 and PCA2, or t-SNE1 and t-SNE2) were

plotted with a host label for each data point using the Python

Seaborn package. An unsupervised machine learning approach

based on hierarchical clustering was used to observe the clustering

and homology of CoVs with various adaptation host labels based

on full-dimension features of each compositional trait. Euclidean

distance was utilized as a hierarchical clustering scalar, and

hierarchical clustering was performed using the sns.clustermap

package. Additionally, to balance the biased sample number of

CoVs with the six host labels, random down- and up-sampling were

performed using the imblearn.over_sampling.SMOTE package

before dimension reduction and visualization.

2.3. Building and training of deep learning
predictors for adaptive hosts

To predict the adaptation of bat CoVs to other mammalian

hosts, a deep learning predictor of convolutional neural networks

(CNN) (Li et al., 2022) was built based on the 1,536 DCR

features and five host labels (ART, SUI, ROD, CAR, and PRI). Five

adaptive hosts were labeled as {0: ’SUI,’ 1:’ART’, 2:’ROD’, 3:’CAR’,4:

’PRI’}, respectively. Two packages, pandas.DataFrame.sample and

imblearn.over_sampling.SMOTE, were utilized to perform down-

and up-sampling to maintain the sample number balance of

various host-originated CoVs. Two CNN models were built, one

for ORF1ab and another for Spike. sklearn.model_selection import

train_test_split was utilized for random training/test data splitting

with a test data size of 25%. All bat CoV samples, either forORF1ab

or Spike, were not included in either the training or test data sets

to avoid data leaks and were only utilized for the adaptive host

prediction with trained models. The 1,536 DCR features ofORF1ab

or Spike sequences were reshaped into an array of (6, 16, 16) for a

3D-CNN model of three convolutional layers. Out-channels of (8,

16, 32), a stride of (1, 1, 1), a padding of (0,1,1), and a kernel_size

of (1, 3, 3) were set for the three layers of CNN. ReLU activation

and average pooling were followed for each CNN layer. Two linear

transformations were performed into the 192- and 5-dimensions,

respectively, from the 768- and 192-dimensions of a fully connected

layer. The sigmoid activation function was utilized for the 192-

dimensions of the full-connected layer after one time of linear

transformation to output prediction, and the Softmax function was

utilized to output the prediction probability. A learning rate of

0.001 and a training epoch of 50 were set uniformly for theORF1ab

or Spike 3D-CNNmodel.

2.4. Evaluating the deep learning predictor

To evaluate the predictor’s performance, the prediction of

adaptive hosts and the adaptation probability for each host label

were the outputs for eachmodel. The confusionmatrix (Townsend,

1971) and micro-average receiver operating characteristic (ROC)

(Fawcett, 2005) with AUCs were plotted. A pair plot of the

PCA-reduced, fully connected layer data (768-dimension) was

performed with the two components to visualize the separation

or clustering of the CoVs from different or the same host(s).

The PCA1 value was also plotted and compared between/among

these CoVs. Statistical significance in the PCA1 value of the PCA-

reduced fully connected data was analyzed using an unpaired,

non-parametric Mann–Whitney test, based on the hypothesis of

non-Gaussian data distribution using GraphPad Prism 9.

2.5. Predict adaptive hosts for bat
coronaviruses via the deep learning
predictor

To evaluate the adaptive host(s) of bat CoVs, each of the bat

CoV samples was predicted using the trained ORF1ab or Spike

3D-CNN model based on 1,536 ORF1ab or Spike DCR data. The

adaptation and adaptation probability were output for each of

the five hosts (ART, SUI, ROD, CAR, and PRI). The probability

vector (five probability values) of all bat CoVs and the CoVs from

other mammalian hosts were reduced to two main values by PCA

and plotted, with each data point labeled with its host type or

virus name.

3. Results

3.1. The architecture of genomic parsing
and adaptation for predicting bat CoVs

To represent viral genome composition, full-length CoV

sequences were selected and labeled with each of the six adaptive

hosts (ART, CHI, CAR, ROD, PRI, and SUI). Complete open

reading frames (ORFs) of Spike and ORF1ab were parsed for

adaptation analysis. Six types of codon-dependent compositional

traits of mononucleotides (NTs, NNTdimension = 12), amino acids

(AAs, NAAdimension = 20), DNTs (NDNTdimension = 48), codons

(Ncodondimension = 64), DCR (NDCRdimension = 1,536), and codon

pairs (codonpairs, Ncodonpairdimension = 3,721) were embedded

for Spike and ORF1ab, respectively, with previously reported

approaches (Li et al., 2022) (Figure 1A). Unsupervised machine

learning methods such as t-SNE, PCA, and hierarchical clustering

were performed to visualize the separation and clustering of CoVs

based on their abovementioned traits (Figure 1B). A DCR-based

CNN (Li et al., 2022) was utilized to classify the CoVs based on each

of the five adaptive host labels (Figure 1C). Finally, the adaptive

host was predicted for bat CoVs, which were recorded in the

database (Figure 1D) or were newly isolated and sequenced CoV

strains (Figure 1E).

3.2. Representation and visualization of
DCR and other compositional traits for
CoVs

Dimension reduction was performed using t-SNE or PCA into

two main components for each trait type of the CoVs. We then

used Synthetic Minority Over-sampling Technique (SMOTE) to
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FIGURE 1

A pipeline for genome decomposition and adaptive host prediction of coronaviruses. The study was designed as the following pipeline of four

sections. (A) Coronavirus (CoV) open reading frame (ORF) parsing (ORF1ab and Spike), adaptive host labeling (ART, Artiodactyla; CHI, Chiroptera;

CAR, Carnivora; ROD, Rodents and Lagomorphs; PRI, Primates; SUI, Suiformes) and genome decomposition (into six types of NT, nucleotide; AA,

amino acid; DNT, dinucleotide, codon; DCR, DNT compositional representation and codon pair); (B, C) unsupervised machine learning analysis

(t-distributed stochastic neighbor embedding: t-SNE, Principal Component Analysis: PCA and hierarchical clustering) (B) and supervised deep

learning (DCR-based Convolutional Neural Networks, CNN) prediction building of CoV genes; (D) field coronavirus sample collection, sequencing

and Multiple Sequence Aligning (MSA); (E) host adaptation prediction of novel isolated CoV strains based on their decomposed DCR or based on their

reference CoV sequences.

correct the data imbalance among host labels by up- and down-

sampling. Given the high importance of SARS-CoV-2-related

pangolin CoVs, we also added pangolin CoV data for unsupervised

learning analysis. In the ORF1ab DNT trait, we observed a clear

separation among CoVs with the five host labels in the two

reduced t-SNE components (upper part, Figure 2A) and a much

more diffuse distribution in the two reduced PCA components

(lower part, Figure 2A). The intra-host clustering and the inter-

host separation were also indicated using the hierarchical clustering

of ORF1ab DNTs (Figure 2B). Similar clustering and separation

of ORF1ab DCR were also observed post-t-SNE/PCA reduction

and using hierarchical clustering (Figures 2C, D). The Spike in

DNT and DCR also indicated intra-host clustering and inter-

host separation in both DNT and DCR traits using the three

types of unsupervised machine learning methods (Figures 2E–H).

Interestingly, the pangolin CoVs were closely clustered with PRI

CoVs, either for the reduced DNT or DCR features of ORF1ab

(Figures 2A–D) of Spike. Moreover, the compositional traits of

AAs and NTs forORF1ab (Supplementary Figures S1a–f) and Spike

(Supplementary Figures S1g–l) and the compositional traits of

codons and codonpairs for ORF1ab (Supplementary Figures S2a–

f) and Spike (Supplementary Figures S2g–l) were also observed.

Additionally, some obvious disseminated distribution for ROD or

CAR samples was mainly enlarged for abnormally disseminated

samples using SMOTE sampling; the wide distribution of

CHI samples had no association with data sampling and

probably implied the wide host adaptation of CHI CoVs.

Taking these results together, there was a host specificity in

DCR and other compositional traits for the ORF1ab and Spike

of CoVs.

Additionally, the other three genes, E,M, and N, were analyzed

for the abovementioned six types of compositional traits. The

severe mixture was observed for each type of trait in the two-

dimensional space of t-SNE1 and t-SNE2 or of PCA1 and PCA2 (in

order of amino acid, NTS, DNTS, DCR, codons, and codonpairs,

respectively, for a-f, Supplementary Figures S3–S5).

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1157608
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2023.1157608

FIGURE 2

Distribution and clustering analysis of CoVs with host labels using unsupervised machine learning methods based on DNTs and DCR. Distribution of

the two main components of compositional DNTs with t-SNE [(A) up] or PCA [(A) down] reduction and hierarchical clustering of 48 compositional

DNTs of CoV ORF1ab (B); (C, D) distribution of the two main t-SNE [(C) up] and PCA [(C) down] DCR components of ORF1ab and hierarchical

clustering of all 1,536 DCR features (D); (E–H) Similar unsupervised machine learning analysis of DNTs (E, F) and DCR features (G, H) of Spike.

3.3. Performance of the DCR-based CNN
model to predict adaptive hosts CoVs

A deep learning model of CNN was built to predict the

adaptation of bat CoVs to various types of mammalian hosts.

The classification model with five labels (ART, CAR, ROD, PRI,

and SUI) was trained using the 1,536-dimension DCR features of

either ORF1ab or Spike. A training epoch-dependent performance

elevation was observed for the classification of valid data based

on DCR features of ORF1ab according to the confusion matrix

(for epochs 10, 30, and 50, respectively, in Figures 3A–C; or

for epochs 10–50, respectively, in Supplementary Figures S6a–

e) or area under the receiver operating characteristic curve

(ROC_AUC) (Figures 3D–F; Supplementary Figures S6f–j).

Another model based on spike DCR features was also trained

for the classification of CoV adaptive hosts. A high prediction
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accuracy was also obtained post-50-epoch training, as indicated by

the confusion matrix (higher than 97% for epoch 50, Figures 3G–

I; Supplementary Figures S6k–o) or ROC_AUC (Figures 3J–L;

Supplementary Figures S6p–t). The training loss for either classifier

descended quickly within the first 10 epochs and reached a plateau

at approximately 20 epochs (respectively for ORF1ab and Spike

Figures 3M, N; Supplementary Figures S6p–t).

To interpret the two trained classifiers, the reduction of the

model’s full-connected layer with PCA was visualized by plotting

each pair of PCA1/PCA2 and PCA2/PCA1. The plotting results

demonstrated that there was a sequential distribution of SUI, ART

ROD, CAR, and PRI for the ORF1ab samples with five host labels

for epochs 10, 30, and 50 (Figures 4A–C) or for 10–50 epochs

(Supplementary Figures S7a–e). A significant separation of PRI

(from other mammalian hosts) CoV samples was also observed

from the distribution of the trained full-connected layer of spike

DCR for epochs 10, 30, and 50 (Figures 4D–F) or for 10–50

epochs (Supplementary Figures S7f, g), with a different sequence

of CAR, ART, SUI, and ROD for the other four host labels. The

statistical analysis of the PCA1 values for each group indicated a

significant difference between each neighboring pair of hosts in the

ORF1ab samples (P < 0.01, except for ART vs. ROD with P > 0.5,

Figure 4G). The difference was also significant for the neighboring

ART/SUI or ROD/PRI ORF1ab samples (P < 0.01, Figure 4H).

3.4. DCR-based CNN predicts asymptotic
bat-to-human adaptation of bat CoVs

To assess the adaptation of bat CoVs to other mammalian

hosts, bat CoV sequences were fed to the two trained classifiers for

ORF1ab and Spike. The results showed that 53% of CoV ORF1ab

sequences were predicted as ART adaptive, while the percentages of

adaptive samples for SUI, PRI, CAR, and ROD were 26, 11, 5, and

4%, respectively (Figure 5A). The average standardized probability

of the predicted five groups of ART, PRI, SUI, CAR, and ROD

were 0.640, 0.477, 0.276, 0.085, and 0.042, respectively (Figure 5B).

The second classifier predicted almost the same percentage of

Spike-adapted CV for ART hosts (54%). The percentages of

adaptive samples for the other four types of hosts were 7, 12, 22,

and 5%, respectively (Figure 5C), with an average standardized

probability of 0.623, 0.451, 0.081, 0.456, and 0.048 for the five

groups (Figure 5D). To further assess the distribution of bat CoVs

and other mammalian CoVs in the adaptation space of mammalian

hosts, five probability values for the five hosts were taken as a

vector for each sample and were reduced to two main components

with PCA. Interestingly, except for CoVs with an SUI host label,

other mammalian but bat ORF1ab samples were almost linearly

distributed, with ART samples on the lower left, CAR, and ROD

samples in the middle, and PRI samples mainly on the upper right

(Figure 5E), indicating a linear asymptotic adaptation shift from

ART to CAR/ROD and then to PRI. Particularly, there was a linear-

like distribution of all human CoV or human CoV-related ORF1ab

samples in the two-dimensional space. MERS/bat MERS-related

CoVs, SARS/bat SARS-like CoVs, and human CoVs of OC43, 229E,

and others were successively distributed from the lower left to the

upper right (Figure 5E). Similar linear asymptotic adaptation shifts

of CoV spike samples were also observed (Figure 5F). Additionally,

bat CoVs were disseminated in the adaptation space, with varied

distances in PCA1 or PCA2 values for each of the five groups of

CoVs (Figures 5E, F). Taken together, the two adaptation classifiers

predicted a unanimous linear asymptotic adaptation shift from the

ART host to humans.

4. Discussion

The present study aimed to predict the potential for viruses,

such as influenza A viruses and coronaviruses, to cause infection

and transmission in the human population.

Thus, we defined it as “the capability to infect humans easily, to

transmit among populations efficiently, and to be virulent to some

degree to humans” previously (Li et al., 2020, 2022). Genomic traits

for virus adaptation have been biologically interpreted as shaping

viral mRNA decay (Contu et al., 2021), methylation (Upadhyay

et al., 2013), translation (Chen et al., 2020), replication efficiency

(Forsberg, 2003; Bahir et al., 2009; Li et al., 2011), and antagonizing

host anti-virus immune response (Xia, 2020), all of which

reflect viral adaptive phenotypic traits to their hosts. Moreover,

such adaptive genotypes were distinguishable and predictable

with machine learning or deep learning approaches. Adaptation

phenotypes of viruses to bats and other mammals are supported by

parallel viral genotypes. A coarse-grained representation of the viral

genome as compositional traits, such as DNT and DCR, is host-

specific and predictable with machine learning or deep learning

approaches for CoVs (Pollock et al., 2020; Li et al., 2022; Nan

et al., 2022), influenza viruses (Taubenberger and Kash, 2010; Li

et al., 2020), and other viruses (Bahir et al., 2009; Babayan et al.,

2018; Chen et al., 2020). Fine-tuned sequential representation has

been indicated to be sensitive to predicting the adaptation of

SARS-CoV-2 Omicron sublineages with deep learning (Nan et al.,

2022). In the present study, representative compositional traits of

DCR and others confirmed the intra-host clustering and inter-host

separability of various host-specific CoVs. Interestingly, there was

a disseminated distribution of bat (CHI) CoVs into the areas of

the CoVs with other host labels, indicating multiple adaptations to

other hosts of bat CoVs. Additionally, the dispersed distribution

of ROD samples was mainly caused by SMOTE up-sampling.

Pangolin has been shown to play an intermediate role in the cross-

species infection of SARS-CoV-2 viruses (Lam et al., 2020; Xiao

et al., 2020) or MERS-CoV (Chen et al., 2020). The compositional

traits indicated a close clustering of these pangolin CoVs with

human CoVs, either for ORF1ab or Spike genes, implying a human

adaptation. However, we did not set pangolin as an independent

host label for supervised learning due to the small sample size

of the whole genome and also due to the too-close clustering

of pangolin viruses to human CoVs. Multiple genes other than

ORF1ab and Spikemight mediate the adaptation of CoVs to human

and other mammalian hosts. However, the three other genes, E,M,

and N, were mixed for CoVs of various host labels, suggesting less

host specificity.

In the present study, the deep learning classifier with five

host labels (ART, CAR, ROD, SUI, and PRI) targeting either

the ORF1ab or Spike gene, accurately predicted the host of the

five groups of CoVs. A complete landscape of mammalian CoV
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FIGURE 3

Performance of the DCR-based deep learning approach for predicting adaptive hosts of bat coronaviruses. The performance of the DCR-based deep

learning predictor was evaluated with a confusion matrix [(A–C) for training epochs of 10, 30, and 50, respectively] and receiver operating

characteristic ROC curve () [(D–F) for training epochs of 10, 30, and 50, respectively] for CoV ORF1ab; a similar evaluation was performed with a

confusion matrix [(G–I), respectively] and ROC [(J–L), respectively] for CoV Spike. (M, N) Curve of the average training loss for validated data for the

predictors for ORF1ab (M) and Spike (N). ART, Artiodactyla; SUI, Suiformes; ROD, Rodents and Lagomorphs; CAR, Carnivora; PRI, Primates.
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FIGURE 4

Visualization of the complete connection layer post-deep learning training of CoV ORF1ab and Spike. Full connection layers after three rounds of

convolution were reduced by PCA into two principal components and plotted to visualize the distribution of CoV samples with the five host labels.

Pair plots of reduced PCA1 and PCA2, post-training epochs of 10, 30, and 50, were plotted for ORF1ab (A–C) or Spike (D–F), respectively. (G, H)

Statistics of the reduced PCA1 value post-training epoch of 50 [(G) for ORF1ab and (H) for Spike].

samples in the predicted adaptation space constructed by the

adaptation probability for the five hosts (Figure 5) unanimously

showed a clearer intra-host clustering and inter-host separability of

all CoV samples than the distribution of the original DCR features.

Interestingly, a linear-like distribution of the CoV samples, except

for the SUI CoVs, was observed in the adaptation space, suggesting

CoV’s asymptotic adaptation from ART to CAR/ROD and then to

PRI hosts. Taking these results together, we proposed a possible

niche distance-related landscape of host adaptation for bat CoVs

(Figure 6): a dominant adaptation to the ART hosts, followed by
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FIGURE 5

Prediction and prediction probabilities of bats and other coronaviruses. (A, B): Prediction (A) and prediction probability (B) of ORF1ab for the

adaptation to the five mammalian hosts of bat coronaviruses; (C, D) prediction (C) and prediction probability (D) of Spike for the adaptation to the

five mammalian hosts of bat coronaviruses; (E, F) visualization of the PCA-reduced prediction probability of ORF1ab (E) and Spike (F) for bat and

other coronaviruses.
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FIGURE 6

Summary diagram of adaptive hosts predicted by DCR-based deep

learning. Adaption of Chiroptera CoVs to sequential ecological

niches of ART/SUI, ROD/CAR, and then PRI are shown. ART,

Artiodactyla; CAR, Carnivora; CHI, Chiroptera; PRI, Primates; ROD,

Rodents and Lagomorphs; SUI, Suiformes.

a relatively less adaptation to CAR/ROD hosts, and finally to PRI

hosts. Such asymptotic adaptation to the bat’s close and far niche

distances (Corman et al., 2018) reconfirmed the mediation of these

natural hosts in the adaptation shift of bat CoVs to human beings.

The ranked adaptation for bat CoVs provides more clues that CoVs

might shift more probably from ART to a CAR/ROD host and then

to humans than directly from CHI hosts, considering the closer

niche distance between humans and these mediator hosts.

Additionally, the domestic pig in the SUI host type is the

key mediator for the adaptation shift to a human host for the

other major respiratory infectious agent, influenza A viruses

(Neumann et al., 2009); however, the results in the present study

indicated a significantly independent distribution of SUI CoVs

from the linear-like and asymptotic distribution of the CoVs from

other mammals. CoVs have been reported to cause infection

and transmission in domestic pigs worldwide, such as porcine

transmissible gastroenteritis virus (TGEV) (Brian and Baric, 2005),

porcine enteric diarrhea virus (PEDV) (Lin et al., 2016), and swine

acute diarrhea syndrome (SADS) CoV (Zhou et al., 2018). SUI

CoVs are not likely to cause transmission in the human population,

although the porcine delta coronavirus has been reported to

infect malnourished Haitian children (Lednicky et al., 2021). SUI

CoVs did not cause cross-species transmission in humans, as they

were not closely related to human CoVs in the adaptation space

predicted in this study. Therefore, we speculate that the risk of

SUI CoVs threatening human populations is lower. However, it is

important to note that overfitting can occur in machine learning

or deep learning models to varying degrees. Additionally, there is a

significant bias, with a smaller number of ROD CoVs and a much

larger number of SUI or ART CoVs. The use of up-sampling for

ROD CoVs and down-sampling for SUI and ART CoVs may lead

to overfitting of the model and potentially explain the wide range of

predicted adaptation probabilities (Figure 4).

In summary, the genomic dinucleotides represented as DCR

indicate a host-specific separation and clustering that can predict

a linear and asymptotic adaptation shift of bat CoVs from other

mammals to humans through deep learning techniques.
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