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Infection with Extended-spectrum beta-lactamase -producing Enterobacterales 
(ESBL-E) is common in infants and leads to increased intensive care unit admission 
and mortality, but the role of maternal transmission in colonization of infants is 
unclear. Using paired isolates from 50 pairs of mothers and neonates admitted 
to a Cambodian hospital, we investigated antimicrobial resistance in Escherichia 
coli and Klebsiella pneumoniae using whole genome sequencing. We detected 
a wide variety of ESBL-E genes present in this population along with high levels 
of multidrug resistance. From 21 pairs where the same organism was present 
in both mother and neonate, we  identified eight pairs with identical or near-
identical isolates from both individuals suggestive of transmission at or around 
birth, including a pair with transmission of multiple strains. We found no evidence 
for transmission of plasmids only from mother to infant. This suggests vertical 
transmission outside hospitals as a common cause of ESBL-E colonization in 
neonates.
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Introduction

Antimicrobial resistance (AMR) is a major global health problem, and multiple studies 
have shown high rates of AMR in low and middle-income countries in Southeast Asia 
compared to other regions (Woerther et al., 2013; Zellweger et al., 2017; Reed et al., 2019). 
AMR is a particular problem in neonates, where infection with Extended-spectrum beta-
lactamase -producing Enterobacterales (ESBL-E) are common and associated with admission 
to ICU and death (Stoesser et al., 2014; Fox-Lewis et al., 2018; Roberts et al., 2019). ESBL-E 
infections have become one of the main challenges for antibiotic treatment leading to the 
increase in mortality, healthcare cost and threatening the effectiveness of first line sepsis 
treatments in low resource countries such as Cambodia. Rates of ESBL-E in Cambodia have 
been shown to rise between 2012 and 2015. However, multidrug resistance infection cases 
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in Cambodia may be  under-reported compared to neighboring 
countries due to lack of infrastructure (Vlieghe et al., 2013), and 
AMR data in Cambodia is improving but currently limited (Reed 
et al., 2019).

Cambodia shows a high prevalence of ESBL-E colonization in the 
early neonatal period (Turner et al., 2016) suggestive of mother-to-
child transmission at or shortly after delivery. A high number of 
infants are likely to already be colonized prior to hospital admission, 
and community acquisition may be  important in the neonatal 
population (Smit et  al., 2018). Maternal transmission has been 
implicated in ESBL-E acquisition by neonates by looking at prevalence 
(Heigl et  al., 2020), or by using matched antimicrobial resistance 
phenotypes (Frank Wolf et al., 2021), pulsed-field gel electrophoresis 
(Rettedal et al., 2015), and repetitive element PCR typing (Peretz et al., 
2017) to compare strains between mother and infant. Most recently, 
the BARNARDS study identified identical isolates between mother 
and infant in E. coli using whole-genome sequencing, suggesting 
mother-to-child transmission in a large south Asian and African 
dataset (Carvalho et al., 2022).

Whole-genome sequencing (WGS) of clinical isolates has emerged 
as an extremely valuable tool with many applications in clinical 
microbiology including tracking outbreaks, monitoring trends in 
infections and investigating pathogen transmission routes (Didelot 
et al., 2012). Several studies have shown that high-resolution data 
from WGS are a proven tool to track the possible transmission of 
Klebsiella pneumoniae circulating both in the intensive care unit 
(Gorrie et al., 2017) and in an outbreak via plasmid transmission 
(Mathers et al., 2011). However, most current datasets are short-read 
data, and the assembly of short-reads datasets usually results in 
multiple contigs and ambiguous alignments instead of a complete 
genome (Treangen and Salzberg, 2011). To overcome this challenge, 
Oxford Nanopore MinION platform can produce long reads enabling 
improved quality genome assembly including complete assembly of 
plasmids (Koren and Phillippy, 2015).

We used whole-genome sequencing to obtain ESBL-E genomes 
from pairs of mothers and neonates admitted to Angkor Hospital for 
Children, Siem Reap, Cambodia. Using complete genomes generated 
using short- and long-read sequencing, we  identified patterns of 
antimicrobial resistance and investigated potential transmission 
events between mothers and neonates to better understand the 
importance of maternal transmission versus community acquisition 
in early colonization of neonates.

Materials and methods

Study location

Angkor Hospital for Children is a non-governmental pediatric 
referral hospital with a dedicated neonatal intensive care unit (NICU) 
and special care baby unit (SCBU). The hospital has no maternity unit, 
thus all neonatal admissions are outborn. Over a 1 year period all 
infants aged ≤28 days were eligible for study enrolment on admission 
to the NICU or SCBU, excluding those who had any previous 
healthcare service exposure following delivery (e.g., overnight 
admission to a hospital/health center or transfer from another 
AHC ward).

Sample collection, isolation, and 
phenotyping

Mothers provided written informed consent to participate in 
study. Those unable to read and write gave a thumbprint instead, 
with an impartial witness present during the consent process. 
Mothers consented on behalf of infants. A rectal swab was taken 
from the infant within 24 h of admission to the neonatal unit (at a 
median of 11 days of age [range 0–30]), and a maternal stool sample 
was collected as soon as possible after infant admission. Samples 
were cultured onsite on selective chromogenic ESBL detection agar 
(CHROMagar ESBL medium; CHROMagar, France) and all 
morphotypes followed up for analysis. Species identification was 
confirmed by standard biochemical tests and antimicrobial 
susceptibilities were determined by disk diffusion, following CLSI 
methodology and using 2017 breakpoints (CLSI, 2017). Double disk 
diffusion tests were done to confirm ESBL production (cefotaxime 
and ceftazidime with/without clavulanate; BBL, Becton Dickinson, 
United States).

Bacterial growth and DNA extraction

96 isolates of E. coli and K. pneumoniae were cultured from frozen 
stocks (−80°C) and grown in LB broth at 37°C for 3 h. 900 μL of 
bacterial culture was spun down at 21,200 rcf for 5 min before the 
supernatant was removed. The bacterial cells were lysed with 600 μL 
of nucleic lysis solution (Promega, United States) at 80°C for 10 min. 
The cell lysate was then transferred to a new tube containing 250 μL 
of glass beads with 5 μL of RNase A solution (Qiagen, Germany), and 
the cells were further lysed by vortexing for 10 min. The cell lysate was 
incubated at 37°C for 30 min to remove the RNA. The mixture was 
purified using magnetic beads (Agencourt AMPure XP beads, 
Beckman Coulter, United States) with a 1:4 volume ratio of lysate 
mixture and magnetic beads. The extracted DNA was redissolved in 
distilled sterilized water and then stored in the freezer (−20°C) prior 
to library preparation for sequencing.

Sequencing

Sequencing libraries were prepared from extracted DNA using 
Nextera XT library preparation kits (FC-131-1096, Illumina, 
United States) and Nextera XT Index Kits 96 samples (FC-131-1002) 
and sequenced on an Illumina MiSeq with 300 bp paired-end reads. 
36 isolates were selected for long-read sequencing. The Rapid 
Barcoding Kit (SQK-RBK004, Nanopore, United Kingdom) was used 
to prepare DNA libraries according to the Nanopore protocol with 12 
barcoded samples per flow cell. The prepared libraries were pooled 
and purified using an additional step with magnetic beads (Agencourt 
AMPure XP beads, Beckman Coulter, United  States) using a 1:1 
volume ratio of pooled libraries and the magnetic beads. The purified 
libraries were then sequenced on a MinION R9.4 flow cell according 
to the Nanopore protocol. The sequences were deposited in the 
European Nucleotide Archive (ENA) at EMBL-EBI under project 
accession number PRJEB37551 https://www.ebi.ac.uk/ena/browser/
view/PRJEB37551.
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Bioinformatic analysis

Raw sequence data were processed using the Bactopia pipeline 1.4 
(Petit and Read, 2020). Reads were mapped against E. coli K-12 
substrain MG1655 reference sequence for all Escherichia isolates1 and 
K. pneumoniae HS112862 for all Klebsiella isolates, and the genome 
assemblies were also used as references for confirmation of 
transmission. Mashtree 1.1.2 (Katz, 2021) was used to generate 
phylogenetic trees from all samples and visualized using ggtree 3.1.2 
(Yu et al., 2017). Ska 1.0 (Harris, 2018) was used to perform split k-mer 
analysis using the default cutoffs (95% kmer identity and < 20 SNPs to 
call transmission clusters). Snippy 4.6.0 (Seemann, 2018) was used to 
produce variant calls, and snippy-core was used to mask repetitive 
regions and produce a core SNP alignment. SNP distances between 
samples were called with snp-dists 0.6.3 (Seemann, 2021a). MLST was 
determined using mlst 2.19.0 (Seemann, 2021b) and the PubMLST 
database (Jolley and Maiden, 2010). Genome assemblies were 
performed using Unicycler 0.4.8 (Wick et al., 2017). Escherichia species 
and phylogroups were determined using ClermonTyping (Beghain 
et al., 2018). Klebsiella phylogroups and virulence genes were obtained 
through Kleborate (Lam et al., 2021). Antimicrobial resistance genes 
and mutations were determined using NCBI AMRFinder+3.8.4 
(Feldgarden et  al., 2019), and upset plots were visualized using 
ComplexUpset (Krassowski, 2020). Platon 1.5.0 (Schwengers et al., 
2020) was used to identify contigs originating from plasmids and the 
mobilization proteins, replication proteins, and incompatibility groups 
on each contig. The Platon identification was used to determine 
whether the AMR genes were part of the chromosome or present on 
plasmids. Flanker 0.1.5 (Matlock et al., 2021) was used to extract 20 kb 
genomic regions surrounding AMR genes, treating plasmids as circular 
if the Unicycler assembler reported them as circular. Isolates were 
removed if the AMR gene was on a contig less than 5 kb in length. 
Clinker (Gilchrist and Chooi, 2021) was used to visualize the regions, 
with links drawn between genes with 95% or greater identity.

Results

Between March 23, 2016 and March 13, 2017, 121 isolates were 
cultured from swabs from 50 pairs of mothers and infants. 25/50 
(50%) of infants and 47/50 (94%) of mothers were colonized with an 
ESBL-E, including 17/50 pairs where both mother and infant were 
colonized with E. coli and 4/50 pairs colonized with K. pneumoniae. 
Nine pairs had the same species isolated from both mother and infant 
with identical antibiograms, which we  considered as potential 
transmission pairs (Figure 1 and Supplementary Table 1).

Sequencing and genome assembly

We sequenced 96 isolates in total on Illumina MiSeq—68 isolates 
from 20 of the 21 pairs where both mother and infant were colonized, 
including eight of nine pairs considered as potential transmission 
pairs (one pair could not be retrieved for sequencing), and 28 other 

1 https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845.2/

2 https://www.ncbi.nlm.nih.gov/assembly/GCF_000240185.1/

randomly selected isolates from the study. We sequenced up to four 
isolates per individual based on the number of distinct morphotypes 
identified during bacterial growth (Supplementary Table 2).

We performed long-read sequencing on the 18 isolates identified 
as possible transmission pairs based on the phenotypic data, as well as 
18 other isolates which were observed to have closely related core 
genomes or similar patterns of antimicrobial resistance genes based 
on Illumina data. We used hybrid assembly of the long and short-read 
data to obtain complete genomes and resolve the plasmids in these 
strains in order to confirm transmission events and identify whether 
these transmission events involved complete isolates, or plasmid 
horizontal transmission between different isolates. We  obtained 
between 1 and 9 contigs for each of the 36 isolates, including one 
contig of 4.5 Mb or larger assumed to be the chromosome, and 0–8 
plasmid contigs per isolate.

Species determination and sequence 
typing

The species of each isolate was determined from the whole 
genome sequencing using ClermonTyping (for Escherichia species) 
and Kleborate (for Klebsiella species). This showed that the 
K. pneumoniae isolates included three isolates of K. quasipneumoniae 
subsp. similipneumoniae and one isolate of K. quasipneumoniae subsp. 
quasipneumoniae, and the E. coli isolates included three isolates of 
E.fergusonii and two isolates of E. clade-1 (Figure 2).

No phylogroups or MLST were predominant in the isolates. 
Among E. coli isolates, the most common MLST was ST38 and the 
closely related ST3268 and ST3052 and ST318, as well as three isolates 
from the ST131 pandemic clade (Supplementary Figure 1). Of the 
three ST131 isolates, two were clade C and one was clade A. In the 
K. pneumoniae isolates there were no dominant sequence types, with 
ST17 the only sequence type present more than once in unpaired 
isolates, and four isolates had novel sequence types 
(Supplementary Figure 2). No virulence determinants were found in 
the K. pneumoniae isolates and all had a virulence score of 0 as 
determined by Kleborate.

Antimicrobial resistance

95 of 96 isolates had an ESBL gene present in the genome, as 
expected as they were selected for the presence of ESBLs. One isolate 
(EbB064) had no ESBL genes present in the sequenced genome, 
despite having phenotypic resistance to third generation 
cephalosporins. Four K. pneumoniae and one K. quasipneumoniae 
subsp. similipneumoniae isolates had blaSHV-2A genes predicted to cause 
ESBL resistance, with two cases of blaSHV-2A carried on a plasmid, one 
case where the gene is chromosomal, and one pair of isolates carrying 
the gene on both a plasmid and in the chromosome. Multidrug 
resistance was extremely common in these isolates, with 64% (61/96) 
of isolates genotypically resistant to six antimicrobial classes, including 
two isolates resistant to eight classes (Figure 3). No carbapenemase 
resistance was found in this dataset. Colistin resistance was observed 
through presence of mcr-1.1 and mcr-3.5 genes in three E. coli isolates. 
A point mutation of pmrB (R256G) was reported in three 
K. pneumoniae isolates but this has been previously demonstrated not 
to cause colistin resistance in isolation (Cheng et al., 2015) and we did 
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not consider these isolates resistant. AMRfinder analysis reported 
resistance to phenicol/quinolone via oqxAB and resistance to 
fosfomycin via fosA in K. pneumoniae, but Kleborate confirmed these 
were intrinsic and no acquired resistance was reported, and so these 
isolates were not recorded as resistant through presence of these genes 
(Lam et al., 2021).

A wide range of beta-lactamase genes were carried, including nine 
different blaCTX-M genes, and genes from the blaCMY, blaOXA, blaDHA, 
blaSHV, and blaVEB families (Figure 4). The most common were blaCTX-

M-15, found in 31 isolates, and blaCTX-M-55, found in 24 isolates. 25 
isolates had an ESBL gene in the chromosome, while seven isolates 
had ESBL genes present on plasmids as well as integrated into 
the chromosome.

Identification of transmission events

For each potential pair of isolates from a mother-infant pair, 
we identified potential transmission events as either transmission of a 
strain with complete genome (chromosome only, or chromosome and 
plasmid), transmission of plasmids, or no transmission.

For eight of the nine pairs which had the same antibiogram in 
both strains, the mother and infant strains shared the same MLST and 
the same set of acquired antimicrobial resistance genes, and a further 
pair of isolates differed only by one antimicrobial resistance gene. 
We used split k-mer analysis to identify transmission clusters in the 
complete dataset, and confirmed this using the complete genome 
assembled from one of the paired strains as a reference for mapping 

FIGURE 1

Flow diagram showing study design and sample collection. 3GC-R, third generation cephalosporin resistant.
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and variant calling. We removed variant calls in repetitive regions but 
did not correct for recombination as we assume no recombination will 
occur in the timeframe of maternal transmission.

Eight of these nine pairs were identified as transmission clusters 
using ska with default filters (95% kmer similarity and a SNP distance 
threshold of 20), and had 0–4 SNP differences between them 
(Figure 5). To confirm these results, we used one strain from each pair 
as a reference genome, and performed mapping and variant calling. 
Mapping to one pair as a reference gave similar results in all cases with 
0–4 SNP differences from the mapping-based approach. We identified 
one pair where complete strains of both E. coli and K. pneumoniae 
were transmitted.

We also looked at two other pairs of isolates from the whole 
collection which were identified as a possible transmission cluster by 
ska (Figure 5). In one case, the two isolates (EbB096 and EbB097) were 
from the same individual, and likely represent the same isolate which 
was sequenced twice due to appearing as different morphotypes 
during bacterial growth. The other pair of isolates (EbB002 and 
EbB018) were identified as a transmission cluster by ska, but with 14 
SNP differences between the isolates. Mapping to one of the paired 
isolates as a reference gave similar results, with 13 SNP differences 
between isolates. This pair of isolates came from an unpaired mother 
and infant, and were collected 54 days apart.

Plasmid transmission

For each of the transmission pairs we performed whole genome 
alignment using minimap to determine if the transmission included 

plasmids. Seven of the eight transmission clusters included plasmids, 
with only one pair where only the chromosome was present in both 
assemblies. While the plasmids appear to be transmitted in all strains, 
in three of the eight transmitted pairs there were rearrangements 
between plasmids. In one pair (isolates EbB065 and EbB066), one 
isolate had two circular contigs of 280 and 95 kb, while the other 
isolate has only one non-circular contig of 372 kb, which likely 
represents a misassembly of two plasmids into one contig 
(Supplementary Figure 3). In another pair (EbB043 and EbB045), an 
88 kb non-circular contig from one isolate is present in the 
chromosome of the paired isolate, representing either a misassembly, 
or potentially insertion into the chromosome 
(Supplementary Figure 4). In a third pair (EbB104 and EbB105), the 
same plasmid material is assembled into a single plasmid in both 
strains, but with rearrangements between the plasmids, including a 
tandem duplication of the blaCTX-M-65 gene seen in two copies in 
EbB104 and three copies in EbB105 (Supplementary Figure 5).

We also considered the possibility that maternal transmission of 
plasmids could occur in the absence of transmission of a complete 
strain, which would not be  discovered using mapping-based 
approaches but may be identified by similar antimicrobial resistance 
profiles. To check for plasmid-borne resistance genes shared between 
strains, we compared the antimicrobial resistance profiles of all strains. 
There were no cases of identical or near-identical antimicrobial 
resistance profiles in paired strains which do not have similar core 
genomes. We did identify three clusters of unpaired samples with 
identical or near-identical antimicrobial resistance profiles which do 
not have similar core genomes: EbB004 and EbB039, EbB031 and 
EbB041, and EbB036/EbB037 and EbB091.

FIGURE 2

Phylogeny based on mashtree of all samples showing species, and presence of selected AMR genes in each sample.
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Strains EbB004 has a 127 kb plasmid carrying incFII and incFIB, 
while EbB039 has a 221 kb plasmid with incFII, incFIB, col156 and 
P0111 replicons. The two plasmids shared a 50 kb segment with an 
internal inversion, including the blaCTX-M-27 gene, and eight other genes 
conferring resistance to aminoglycosides, trimethoprim, macrolides, 
sulfonamides, and tetracycline.

Strains EbB031 and Eb041 both belong to ST44 and have a SNP 
distance of 349 measured by ska. They also share a 170 kb plasmid 
with a similar resistance cassette carrying both blaCTX-M-15 and blaOXA-1, 
as well as resistance to aminoglycosides, trimethoprim, macrolides, 
sulfonamides, tetracycline, and chloramphenicol.

Strains EbB036 and EbB037 are a transmission pair which share 
an antimicrobial resistance profile with strain EbB091. However, none 
of these strains contain plasmids, and the shared resistance profiles are 
driven by chromosomal qnrS1 and blaCTX-M-15 integrated in 
different locations.

Finally, we looked at the genomic context of ESBLs found in 
more than one strain to determine if shared mobile elements were 
driving the spread of ESBLs in this dataset. Observing the 20 kb 
regions around each ESBL, many of the ESBL genes were present 
in different contexts and were not present on shared plasmids or 
as shared mobile elements integrated into plasmids 
or chromosomes.

Discussion

We use complete genomes combining short and long-read 
sequencing to show that maternal transmission is an important source 
of neonatal colonization. We used hybrid assemblies generated from 
short and long reads to identify transmission clusters, as recent findings 
from assemblies using Oxford Nanopore Technologies long reads alone 
show that they are not sufficient to reliably identify transmission 
clusters of closely related samples (Foster-Nyarko et al., 2023).

The isolates in this study were pre-selected to include only those with 
ESBLs and may not represent a true population survey. Previous estimates 
of carriage rates in Cambodia have ranged from 20% in rural villages in 
2011 (Atterby et al., 2019), 42.7% for E. coli and 33.7% for K. pneumoniae 
between 2012 and 2015 (Caron et al., 2018), and 92.8% for E. coli and 
44.1% for K. pneumoniae in Siem Reap province in 2019 (Singh et al., 
2020). Despite the selection for ESBL carriage, the results are largely 
concordant with previous studies investigating all isolates, with high levels 
of genetic diversity, no dominant sequence types, and a range of 
antimicrobial resistance genes (Huynh et al., 2020). Despite the presence 
of ST131 isolates in this dataset, they were not dominant in carriage. A 
wide range of ESBL genes were seen in these isolates, with blaCTX-M-15 and 
blaCTX-M-55 the most common, but no dominant gene or lineage. Previous 
studies have reported hypervirulent K. pneumoniae clones as a cause of 

FIGURE 3

Upset plot showing shared classes of antimicrobial resistance genes between isolates. Isolate counts are shown as bars, with antimicrobial resistance 
gene combinations displayed in the lower panel.
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community-acquired infection in southeast Asia (Wyres et al., 2020), but 
we did not detect any K. pneumoniae virulence genes in this dataset.

We identified three isolates of K. quasipneumoniae subsp. 
similipneumoniae and one isolate of K. quasipneumoniae subsp. 
quasipneumoniae among our Klebsiella isolates. Klebsiella 
quasipneumoniae was commonly thought to be  less virulent than 
K. pneumoniae (Long et  al., 2017) and an opportunistic human 
pathogen but has been previously shown to carry the ESBL gene blaCTX-

M-15 (Becker et al., 2018) and the carbapenemase gene blaKPC (Mathers 
et  al., 2019), showing the importance of K. quasipneumoniae as a 
potential vector for horizontal transmission of antimicrobial resistance 
genes. We determined that four isolates of K. quasipneumoniae carried 
in this study each contained a different ESBL gene (blaCTX-M-3, blaCTX-M-

14, blaCTX-M-27, and blaSHV-2A), suggesting that K. quasipneumoniae may 
be a community reservoir of ESBL genes as well as K. pneumoniae.

We document seven cases of maternal transmission across 50 pairs 
of mothers and infants. We initially identified potential transmission pairs 
in this study by looking for similar patterns of phenotypic antimicrobial 
resistance. Using similar antimicrobial resistance phenotypes in the same 
organism as the sole criteria for detecting transmission, we would have 
detected all of the transmission pairs, and called only one false positive 
transmission. Using similar antimicrobial resistance and requiring the 
same MLST would have successfully detected all transmission pairs 
confirmed using complete genomes, and would have excluded the false 
positive. This suggests that previous studies of maternal transmission 

A B

C

FIGURE 4

(A) Phylogeny from mashtree showing presence/absence of ESBL genes. (B) Frequency of ESBL genes in the isolates; and (C) Number of ESBL genes 
per isolate.

FIGURE 5

Diagram of clusters identified using ska. Circles show strains of 
Escherichia coli while squares are Klebsiella pneumoniae. The 
number on the bar joining each pair represents the SNP distance 
between the two strains. Shapes are colored according to the 
mother-infant pairs they were isolated from, with gray shapes for 
strains taken from unpaired individuals.
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using MLST or PFGE genotyping to identify transmissions are likely to 
have correctly called transmission events.

However, we detected at least one pair of isolates which were closely 
related by antimicrobial resistance phenotypes, MLST, and had a low 
number of SNPs between them. Using the extra non-genetic information 
available to us, we can be sure these isolates are from individuals from 
unrelated pairs and do not represent maternal transmission between these 
individuals. As the samples were collected on admission to the hospital, 
this is more likely to be community transmission than due to a common 
source in the hospital. Recent studies which identified hospital 
transmission in E. coli and K. pneumoniae have chosen SNP threshold of 
17 SNPs (Ludden et al., 2021), 21 SNPs (David et al., 2019), and 23 SNPs 
(Sherry et al., 2019), and would have identified this pair as a transmission 
event. This suggests that community transmission of isolates can produce 
transmission events with a low SNP distance which look similar to 
maternal transmission and may confound transmission studies. Our 
small data set suggests that the threshold for determining maternal 
transmission could be set at a lower bound than the thresholds used in 
studies of hospital transmission.

We were unable to find any examples of transmission of plasmids 
between mothers and infants outside the transmission of a complete 
strain. Across the whole dataset there were few shared plasmids 
outside transmission pairs, indicating that no dominant plasmids are 
responsible for the spread of antimicrobial resistance. The few strains 
with similar plasmids from unrelated individuals, such as EbB031 and 
EbB041, were also closely related in the core genome and suggests 
community circulation of strains rather than plasmid transmission. 
Plasmid transmission has been implicated in the dissemination of 
carbapenemase resistance (Mathers et al., 2011; León-Sampedro et al., 
2021) and ESBL genes (Hawkey et al., 2022) but could not be detected 
during transmission from mother to infant in this study.

The complete genome sequences allowed us to look at the different 
antimicrobial resistance genes in context, and show that the ESBL 
genes are present in different contexts in both plasmid and 
chromosome, and that no common transposable element is 
responsible for antimicrobial resistance transmission in this dataset. 
Our limited set of ST131 genomes showed the characteristic incF 
plasmids carrying blaCTX-M-27, as previously reported as part of the 
diverse plasmidome of ST131 (Kondratyeva et al., 2020).

Our study suggests that vertical transmission outside the hospital is 
a common source of neonatal colonization. Strategies to reduce neonatal 
infections need to consider that maternal transmission is a frequent 
occurrence, and that AMR strains are circulating in the community and 
widely carried by mothers and infants. Strategies which focus solely on 
hospital-based intervention may be  unsuccessful at preventing 
transmission and colonization which occurs in the community.
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