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Introduction: Understanding microbial gradual shifts along species replacement 
can help elucidate the mechanisms driving secondary succession, and predict 
microbial responses to changing environments. However, how climate-induced 
species replacement alters microbial processes, and whether microbial shifts 
follow predictable assembly trajectories remain unclear.

Methods: Using space-for-time substitution approach, we  studied shifts in 
bacterial and fungal communities in the succession from Leptodermis oblonga to 
Vitex negundo var. heterophylla shrubland in Taihang Mountain.

Results and Discussion: Species replacement, induced by climate related 
environmental change, significantly increased the above-ground biomass of 
shrublands, and TP and TK contents in topsoil. The succession from L. oblonga to 
V. negundo var. heterophylla communities resulted in the gradually replacement 
of cold-tolerant microbes with warm-affinity ones, and alterations of microbial 
communities involved in soil biogeochemical processes. Soil and plant variables, 
such as above-ground biomass, soil pH, total phosphorus, and total potassium, 
well explained the variations in microbial communities, indicating that the 
coordinated changes in plant communities and soil properties during secondary 
succession caused accompanied shifts in microbial diversity and composition.
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1. Introduction

Soil microorganisms are an integral component of forest ecosystem, playing an essential role 
in regulating critical ecosystem processes such as primary production and nutrient cycling (de 
Gannes et al., 2016; Zhong et al., 2018). Changes in microbial communities occurring with 
secondary succession are closely related to shifts in ecological function (Heine et al., 2019; 
Zhong et al., 2019; Liu J. et al., 2020), and microbial diversity and composition are mainly 
mediated by plant traits and soil properties (Chai et al., 2019; Yan et al., 2020). Therefore, 
understanding shifts in microbial communities across successional stages could help illuminate 
the coupling relationships among plants, soil, and microbial community during the process of 
secondary succession (Zhong et al., 2018; Jiang et al., 2021).

Secondary succession, induced by replacement of dominant species, cause gradual shifts in 
plant community and soil properties, and thus resulting in microbial succession (Schmidt et al., 
2014; Heine et al., 2019; Zhang et al., 2021). Previous studies have reported changes in and 
drivers of microbial diversity and composition along successional gradients in different 

OPEN ACCESS

EDITED BY

Tengxiang Lian,  
South China Agricultural University, China

REVIEWED BY

Jisong Yang,  
Ludong University, China
Xue Sha,  
Northwest A&F University, China

*CORRESPONDENCE

Wenxu Dong  
 dongwx@sjziam.ac.cn

†These authors have contributed equally to this 
work

SPECIALTY SECTION

This article was submitted to  
Microbe and Virus Interactions with Plants,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 04 February 2023
ACCEPTED 16 March 2023
PUBLISHED 05 April 2023

CITATION

Liu X, Zhou W, Wang X, Wu H and 
Dong W (2023) Microbial gradual shifts during 
the process of species replacement in Taihang 
Mountain.
Front. Microbiol. 14:1158731.
doi: 10.3389/fmicb.2023.1158731

COPYRIGHT

© 2023 Liu, Zhou, Wang, Wu and Dong. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 05 April 2023
DOI 10.3389/fmicb.2023.1158731

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1158731%EF%BB%BF&domain=pdf&date_stamp=2023-04-05
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1158731/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1158731/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1158731/full
mailto:dongwx@sjziam.ac.cn
https://doi.org/10.3389/fmicb.2023.1158731
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1158731


Liu et al. 10.3389/fmicb.2023.1158731

Frontiers in Microbiology 02 frontiersin.org

ecosystems (Nacke et al., 2016; Szoboszlay et al., 2017; Ding et al., 
2020; Wang G. et al., 2022). However, due to the inherent heterogeneity 
among different successional environments, bacteria and fungi may 
perform different or even opposite shift and reassemble patterns (Gao 
et al., 2015; Zhou et al., 2017; Li C. et al., 2018). Therefore, how species 
replacement alters microbial processes, and whether microbial shifts 
follow predictable assembly trajectories remain unclear (Schmidt 
et al., 2014; Chai et al., 2019). Furthermore, current studies mostly 
focused on microbial succession in different vegetation types (forest, 
grasslands, farmland, etc.) (Cui et al., 2019; Liu Y. et al., 2020), but 
neglected microbial gradual shifts during the process of species 
replacement. Still, it remains unclear whether microbial shift and 
reassemble smoothly during the process of vegetation succession (Liu 
J. et al., 2020).

Climate and environment changes are expected to affect plant 
communities and consequently microbial composition (Cregger et al., 
2012; Mou et al., 2022). Shifts in plant communities, such as plant 
diversity, composition, and biomass, can alter litter inputs and root 
exudates, which in turn influence microbial diversity and its related 
microbial process (Bakker et al., 2014; Lange et al., 2015; Xu et al., 
2020; Wang G. et al., 2022). Moreover, soil properties such as pH and 
nutrient concentrations can regulate microbial composition or 
metabolic diversity through their effects on enzyme kinetics and 
nutrient diffusion (Zhang et al., 2016; Han et al., 2021). In turn, the 
shifts in microbial composition can also influence plant diversity by 
regulating nutrient bioaccessibility and then altering plant dominance 
(Van Der Heijden et al., 2008; Philippot et al., 2013; Kyaschenko et al., 
2017). Thus, vegetation succession is essentially the interaction among 
plant, soil, and microorganisms (He et al., 2008; Kielak et al., 2008), a 
better understanding shifts in microbial composition along species 
replacement could help delineate the mechanisms that drive secondary 
succession and predict how microbes will respond to changing 
environments (Fierer et al., 2010; Jiang et al., 2021).

The current study was conducted in the hilly area of Taihang 
Mountain. In this region, before 1970s, large-scale human-induced 
deforestation such as clear-cutting, tilling, logging, and grazing has 
severely destroyed the original forest vegetation, and converted it into 
degraded shrub-herb communities (Calvo et al., 2002; Liu et al., 2012; 
Baudena et  al., 2020). Starting from 1980s, a series of vegetation 
conservation projects such as banning grazing and returning marginal 
cropland to forest or grassland, were implemented to limit human 
disturbance, avoid soil degradation, and promote vegetation recovery 
(Liu et  al., 2012; Guo et  al., 2021). In addition, according to 
meteorological data of the study site, air temperatures exhibited a 
gradually increasing trend in the past 50 years (Figure 1). As affected 
by climate related environmental change, the vegetation in the area 
has experienced transition from perennial herbs to shrub-herb and 
then shrub communities, and shrublands have undergone gradual 
succession from Vitex negundo var. heterophylla and Leptodermis 
oblonga co-dominate to V. negundo var. heterophylla dominant 
communities (data not published). As succession progresses, 
community height, cover, and aboveground biomass increased 
gradually, while species diversity decreased generally (data not 
published). Thus, it offers an ideal landscape to investigate how the 
environmentally induced species replacement alters microbial 
processes. Here, we selected three successional stages (V. negundo var. 
heterophylla shrubland Orthodonic, V. negundo var. heterophylla and 
L. oblonga co-dominate shrubland (VLS), and L. oblonga shrubland 

(LS)) to (1) elucidate how microbial diversity and composition shifts 
along species replacement; (2) identify the indicator species of 
shrubland during the process of secondary succession; and (3) 
determine which factors are closely related to shifts in 
microbial community.

2. Materials and methods

2.1. Site description

This study was conducted in the Niujiazhuang Catchment (area: 
9.3 km2) of middle Taihang Mountain, China (114°15′50″ E, 37°52′44″ 
N). Elevation across the study area ranges from 247 to 1,040 m a.s.l. 
and slope varies from 20 to 45°. This region has a typical temperate 
continental monsoon climate with wet warm summers and cool dry 
winters. Annual average precipitation from 1962 to 2020 is about 
519 mm, 74% of which falling between June and September, and 
monthly mean air temperature ranges from −3.07°C in January to 
26.8°C in July (Figure 1). The soil type is mainly highly-weathered 
mountainous cinnamon, classified as Ustalf (Liu et al., 2014). These 
soils are fertile and well-structured on shady slopes and skeletal and 
rocky on dry sunny slopes.

The original forests in the area have been severely destroyed and 
replaced by degraded shrub-herb communities. To better understand 
the succession processes of shrub-herb communities, we established 
144 2 m × 2 m permanent plots in the Niujiazhuang Catchment, and 
conducted vegetation and soil census in 1986 and 2008, and in 2020, 
permanent plots were grouped by vegetation type and geographic 

1970 1980 1990 2000 2010 2020

10

12

14

16
1970 1980 1990 2000 2010 2020

0

500

1000

1500

Pr
ec

ip
ita

tio
n 

(m
m

)

Precipitation

A
ir

 te
m

pe
ra

tu
re

 
o C

Air temperature

R2=0.344

FIGURE 1

Annual variability of precipitation (A) and air temperature (B) in the 
hilly area of Taihang Mountain from 1962 to 2020. Precipitation is 
annual total and air temperature is annual average.

https://doi.org/10.3389/fmicb.2023.1158731
https://www.frontiersin.org/journals/microbiology


Liu et al. 10.3389/fmicb.2023.1158731

Frontiers in Microbiology 03 frontiersin.org

location, and 34 plots with expanded area of 16 m2 were selected for 
re-census. In 1986, most plots were dominated by perennial herbs, 
with a high number of species composition and abundance, and low 
number of aboveground biomasses (Liu et al., 2011). From 1986 to 
2008, along the decrease of herbaceous species, abundance, and 
biomass, the proportion of perennial herbs declined in favor of shrubs 
dominated by V. negundo var. heterophylla and Ziziphus jujuba var. 
spinosa on south-facing slope, and L. oblonga on north-facing slope 
(Liu et  al., 2012). After a few years, in 2020, V. negundo var. 
heterophylla has become the most dominant species in the hilly area 
of Taihang Mountain, as it had highest importance value, height, 
cover, and biomass in all layers (data not published).

2.2. Vegetation investigation and soil 
sampling

Due to lack long-term monitoring of microbial dynamics, we used 
space-for-time substitution to analyze how microbial shifts as plants 
transitioned from LS to VLS and then VS. Along with vegetation 
census in September 2020, according to dominant species, soil 
properties, and spatial distribution, a total of 20 plots (8 VS, 6 VLS, 
and 6 LS) were selected to represent the typical successional stages 
during the process of species replacement. Except for slope aspect (VS 
often grows on sunny slope, while VLS and LS concentrate on shady 
slope), all plots have similar geographical distribution, including 
elevations, slope gradient, slope position, and soil type. In each plot, 
the species, number, height, cover, and aboveground biomass of 
shrubs and herbs were recorded, and topographic factors such as 
elevation, slope gradient, slope aspect, and slope position were also 
recorded. The aboveground biomass of shrubs and herbs were 
measured by expanding the sampling domain to neighboring areas of 
the plot. The plant samples were oven-dried at 80°C to a constant 
weight and weighed for dry matter.

In each plot, soil samples were collected from the top 20 cm using 
a 5 cm diameter soil auger. After removing visible plant roots, stones, 
litter, and debris, nine soil cores were collected along an S-shaped 
transect and then mixed together to form three composite sample. 
Thus, a total of 60 soil samples were collected (20 plots × 3 replicates). 
Each soil sample was divided into two subsamples after removing 
visible plant roots, stones, litter, and debris. One subsample was 
immediately stored at −80°C for DNA analysis, and the other was 
air-dried for physicochemical analysis.

2.3. Soil physicochemical properties

Soil density (SD) at 0–20 cm depth was estimated in undisturbed 
samples, collected with cylindrical stainless steel rings (100 cm3), from 
three samples per plot. Soil pH was determined in 1:2.5 soil/water 
suspension using a pH meter (PHS-3C, Shanghai, China) (Bao, 2000). 
Soil organic matter (SOM) was determined by the Walkley-Black 
potassium dichromate oxidation method after H2SO4-HCLO4 
digestion (Nelson and Sommers, 1982). Total nitrogen (TN) was 
determined by the Kjeldahl method with an automated Kjeldahl 
apparatus (Kjeltec 8,400, Foss, Sweden) (Bremner, 1996). Total 
phosphorus (TP) was digested by perchloric acid and determined by 
the molybdate colorimetric method with a UV spectrophotometer 

(UV-2450, Shimadzu, Japan) (O’Halloran and Cade-Menun, 2006). 
Total potassium (TK) was determined by flame atomic absorption 
spectrophotometer (Analytikjena, Germany).

2.4. Soil DNA extraction, polymerase chain 
reaction amplification, and illumina 
sequencing

Soil DNA was extracted for three sub-samples from 0.5 g of soil 
using FastDNA Spin Kit (MP Biomedicals, Cleveland, United States) 
following the manufacturer’s instructions. DNA concentration was 
determined with a NanoDrop ND-2000 spectrophotometer 
(NanoDrop Thermo Scientific, Wilmington, DE, United States), and 
DNA quality was evaluated by 1% agarose gel electrophoresis. 
Polymerase chain reaction (PCR) amplification of bacterial 16S rRNA 
V4-V5 region and fungal ITS1 region were conducted using the 
515F/907R and ITS1F/ITS2R primer sets, respectively (Peng et al., 
2019; Zhong et al., 2019). Detailed protocols for PCR amplification 
have been described in previous reports (Song et al., 2018; Zhao et al., 
2019; Zhong et al., 2019). Each DNA extract was amplified in three 
replicates and then were mixed into one PCR product. After 
amplification, each mixed gene was detected by 2% agarose gel 
electrophoresis, purified with AxyPrepDNA purification kit (Axygen, 
United States), and quantified by Quantus™ Fluorometer (Promega, 
Madison, WI, United States) (Zhang et al., 2016; Liu et al., 2018). 
Subsequently, all amplicons were sequenced on the Illumina Miseq 
platform (Personal Biotechnology Co., Ltd., Shanghai, China). 
Approximately 50,884 and 14,868 high quality sequences per sample 
with an average length of 363 and 447 bp were obtained for bacteria 
and fungi, respectively.

Raw sequencing data were demultiplexed, quality-filtered, and 
analyzed using QIIME (Caporaso et al., 2010). After reads<50 bp and 
any unresolved nucleotides were discarded, noise filtering and 
chimera removal were performed using USEARCH (Edgar, 2010; 
Edgar et  al., 2011), and high-quality sequences were assigned to 
operational taxonomic units (OTUs) using Silva and Unite databases 
with a similarity threshold of 97% (Caporaso et al., 2010). Finally, a 
total of 9,025 bacterial and 6,344 fungal OTUs were detected after 
trimming, assembly, and quality filtering.

2.5. Statistical analyses

Microbial community diversity (shannon), richness (Chao1), and 
rarefaction curve were performed using Mothur version 1.30.2. The 
Kolmogorov–Smirnov test was used to check the data distribution, 
and all data sets met the normality assumption for one-way analysis 
of variance (ANOVA). ANOVA followed by least significant difference 
(LSD) multiple comparison (p < 0.05) was used to assess the differences 
in plant traits (cover, height, and aboveground biomass), soil 
properties (pH, SOM, TN, TP, TK, and SD), and microbial alpha 
diversity (Shannon and Chao1 indices) and abundances among 
successional stages. Venn diagrams of shared and unique OTUs 
among different successional stages were performed using R-package 
VennDiagram. Indicator species analysis in the R indicspecies package 
was used to identify OTUs that were significantly associated with three 
successional stages, and discuss their potential as indicator species. 
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Principal component analysis (PCA) was performed to explain the 
relationship between microbial genes (OTU) and environment 
variables (pH, SOM, TN, TP, TK, SD, cover, height, and aboveground 
biomass) during succession. ANOVA analysis was performed using 
SPSS 19 for Windows (SPSS Inc., Chicago, United States), diversity 
index and rarefaction curve were calculated using Mothur software,1 
PCA and indicator species analysis were conducted in R software 
package v4.2.1.2

3. Results

3.1. Plant and soil properties

In 2020, the mean height, cover, and aboveground biomass of 
VS, VLS, and LS were 2.19 m, 97.2%, and 15.7 Mg ha−1 (Figure 2). 
VS exhibited significantly higher community height and 
aboveground biomass compared with VLS and LS, who showed 

1 https://mothur.org/wiki/calculators/

2 http://www.r-project.org/

higher community cover (p < 0.05). However, no significant 
differences in plant traits were detected between VLS and LS 
(p > 0.05) (Figure 2).

Among three successional stages, there were no significant 
differences regarding soil pH, SOM, and TN (p > 0.05) (Figure 3). VS 
and VLS showed significantly higher TP than LS, and VS exhibited 
higher SD relative to VLS and LS (p < 0.05) (Figure 3). Compared to 
VS, VLS showed a lower TK, while compared to LS they displayed 
higher TK (p < 0.05) (Figure 3).

3.2. Diversity and composition of microbial 
communities

Proteobacteria (30.1%) was the most dominant bacterial 
phylum in all samples, followed by Acidobacteriota (22.5%) and 
Actinobacteriota (18.1%) (Figure  4). The relative abundance of 
Proteobacteria and Acidobacteriota decreased, while that of 
Actinobacteriota increased with succession (p < 0.05) (Figure 4). The 
fungal communities were dominated by Ascomycota (52.4%), 
Mortierellomycota (19.0%), and Basidiomycota (19.5%) across three 
successional stages (Figure 4). There were no significant differences 
in relative abundance of Mortierellomycota (p > 0.05), but significant 
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FIGURE 2

Changes in height (A), cover (B), and aboveground biomass (C) of shrub-herb communities across successional stages. Different letters indicate 
significant differences at p < 0.05 according to ANOVA. VS, Vitex negundo var. heterophylla shrubland; VLS, Vitex negundo var. heterophylla and 
Leptodermis oblonga shrubland; LS, Leptodermis oblonga shrubland.
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increases in Ascomycota abundance and decreases in Basidiomycota 
abundance as succession progresses (p < 0.05) (Figure 4).

Rarefaction curves suggested that the overall bacterial and fungal 
OTUs were well captured at the current sequence depth (Figure 5). VS 
and VLS showed higher bacterial diversity than LS (p < 0.05), but there 
were no significant differences in fungal diversity among different 
successional stages (p > 0.05) (Figure 5). Soils in VS and VLS exhibited 
higher bacterial and fungal richness, compared to the soils in LS 
(p < 0.05) (Figure 5).

Venn diagrams indicated that the three successional stages shared 
50.9% bacterial and 23.0% fungal OTUs (Figure 6). The core bacterial 
microbiome was dominated by Proteobacteria and Planctomycetota, 

among which Alphaproteobacteria (34.4%), Planctomycetes (30.6%), 
and Gammaproteobacteria (20.3%) were identified as the most 
predominant classes (Figure 6). Most of the core fungal microbiome 
belonged to Ascomycota, and 75.8% of these taxa belonged to 
Sordariomycetes, Dothideomycetes, and Eurotiomycetes (Figure 6).

3.3. Indicator species of successional 
stages

Indicator species of bacterial and fungal community varied among 
three successional stages (Figure 7; Supplementary Table S1). For bacteria, 
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Changes in soil pH (A), soil organic matter (B), total N (C), total P (D), total K (E), and soil density (F) in topsoil (0–20 cm) across successional stages. 
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the most abundant OTU in VS was assigned to Vicinamibacteraceae, a 
typically aerobic heterotroph that can survive in arid environments 
(Huber and Overmann, 2018; Wang K. et al., 2022). Whereas, the most 
abundant OTU in LS belonged to Acidobacteriales, an order comprising 
aerobic or facultatively anaerobic, and mostly acidophilic and mesophilic 
bacterium (Kuramae and de Assis Costa, 2019). In addition, OTU3915, 
together with OTU1302 and OTU3414, were the indicator species in VLS, 
and performed major roles in soil nitrogen and phosphorus cycles 
(Supplementary Table S1). Correspondingly, for fungi, the most abundant 
OTU in VS belonged to Pleiochaeta, a genus with pathogenic members 
that could cause leaf spots on legumes (Marin-Felix et al., 2017). However, 
one of the most abundant OTUs in VLS was classified as a member of the 
phylum Ascomycota with a relative abundance of 11.0%. Furthermore, 
the most abundant OTU in LS was OTU7420, and belonged to 
Basidiomycota, the major degraders of different components in wood 
(Taylor et al., 2015).

3.4. Shifts in microbial community

Eurythermal bacterial OTUs growing across a large temperature 
gradient increased in abundance due to species replacement, however, 
some stenothermal species with narrow growth temperature ranges 

declined with succession (Figure 8; Supplementary Figures S1, S2; 
Supplementary Tables S2, S3). Among indicator OTUs showing 
increased relative abundance following species replacement were 
acidophilic bacteria, such as Acidibacter and Catenulispora, pathogenic 
taxa, such as Enterobacter and Legionella, heat-tolerant taxa, such as 
Legionella and Rhodovastum, and some metabolism bacteria 
(Supplementary Table S2). The bacterial groups that declined with 
succession were mainly those associated with nitrogen cycling and 
biodegradation of organic pollutants, as well as a few psychrotolerant, 
acidophilic, and pathogenic bacteria (Supplementary Table S3).

Fungal indicator OTUs were more likely to decline with succession 
than bacterial ones (Figure  8; Supplementary Figures S3, S4; 
Supplementary Tables S4, S5). Ascomycota was the most abundant fungi 
phyla in all samples, and a majority of indicator OTUs in Ascomycota 
declined due to species replacement, while a minority expanded with 
succession (Supplementary Figures S3, S4; Supplementary Tables S4, S5). 
Among indicator OTUs showing declined relative abundance were 
endophytic taxa, such as Apiospora and Aureobasidium, saprobic taxa, 
such as Chaetosphaeria and Endophragmiella, and some pathogenic fungi 
(Supplementary Figure S3; Supplementary Table S4). The fungal groups 
that increased with succession were mainly rock-inhabiting, nematode-
trapping, endophytic, and pathogenic species (Supplementary Figure S4; 
Supplementary Table S5).
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3.5. Key factors driving the shifts in 
microbial community

According to the PCA results, the shifts in microbial community 
composition across successional stages were strongly associated with 
soil properties and plant traits (Figure  9). Soil pH, TK, and 
aboveground biomass significantly affected bacterial community 
composition, it could explain 49.8% of bacterial community variation 
(Figure  9). For fungal communities, soil pH, TK, aboveground 

biomass, and TP were best suited to explain the shifts in microbial 
composition, and explained 27.9% of the total variability of fungal 
community dynamics (Figure 9).

4. Discussion

Secondary succession in shrub-herb communities following 
disturbance has commonly been shown to directly alter species 
composition and ecosystem functions (Heine et al., 2019; Yan et al., 
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2020), and such changes in turn affect soil biochemical processes in 
degraded environments (Zhao et al., 2019; Jiang et al., 2021). In our 
results, during the process of species replacement, the aboveground 
biomass of shrubland increased over 3 times, from 7.3 Mg ha−1 in LS 
to 22.2 Mg ha−1 in VS (Figure 2), similar to the results of Li Q. et al. 
(2018) and Ma and Wang (2020). Aboveground biomass increased 
significantly in the presence of V. negundo var. heterophylla, indicating 
that these shrublands in the hilly area of Taihang Mountain are 
important carbon pools, and if all the established shrublands in this 
area are eventual replaced by V. negundo var. heterophylla, it will have 
great potential for carbon sequestration. These changes in plant 
community due to species replacement altered the distribution of soil 
nutrients, especially TP and TK (Figure 3; Feng et al., 2007; Sullivan 
et al., 2019; Segura et al., 2020). Possible explanations for the increased 
TP and TK with succession can be ascribed to plant species and local 
topographic features (Zhu et al., 2016; Jucker et al., 2018). The high 
morphological plasticity of V. negundo var. heterophylla (Moreira 
et al., 2003; Wang et al., 2017), allows it to use nutrients of fractured 
rocks on barren land, and facilitates P and K translocation from 
deeper soil layers to topsoil (Sullivan et al., 2019; Segura et al., 2020). 
Altogether, the coordinated changes in vegetation and soil highlight 

the importance of above- and belowground linkages as succession 
progresses (Roy-Bolduc et al., 2016).

The coordinated changes in plant and soil during secondary 
succession also caused accompanied shifts in microbial diversity 
and composition (Zhong et al., 2018; Chai et al., 2019; Zhao et al., 
2019). As expected, our results showed that aboveground biomass 
significantly influenced microbial community composition 
across successional stages (Figure 9), consistent with previous 
findings (Chen et al., 2016; Zhang et al., 2016; Kyaschenko et al., 
2017). This result may be  ascribed to the fact that increased 
aboveground biomass with succession could accelerate 
accumulation of plant-derived resources and nutrients for 
microbial growth (Kardol et  al., 2006; Lange et  al., 2015). In 
addition, belowground soil properties, such as soil pH and 
nutrient concentrations, have also been identified as potential 
ecological drivers for shaping soil microbial processes (Figure 9; 
Kaiser et al., 2010; Hu et al., 2014). In this regard, large number 
of studies have confirmed the effects of soil pH on microbial 
community structure and function (Siciliano et al., 2014; Tripathi 
et al., 2015; Lu et al., 2022), and demonstrated that the differences 
in microbial community could be  explained primarily by the 
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FIGURE 7

Indicator species by treatment regime. Circles represent OTUs, and the size of each circle represents its relative abundance. OTUs with low 
abundances (bacteria<0.1%, and fungi<0.3%) were not shown. VS, Vitex negundo var. heterophylla shrubland; VLS, Vitex negundo var. heterophylla and 
Leptodermis oblonga shrubland; LS, Leptodermis oblonga shrubland.
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variation in soil pH (Zhang et  al., 2018; Chai et  al., 2019). 
Moreover, we  also found that TP and TK were significantly 
correlated with microbial community structure (Figure 9). Soil 
phosphorus and potassium were mainly derived from parent 
material, along the depleted and fixed in plants and animal 
tissues, their concentrations may restrict microbial growth and 
metabolisms (Zhao et  al., 2013; Hou et  al., 2017; Song et  al., 
2018). Therefore, both plant and soil properties shift driven by 
vegetation succession could structure soil microbial communities 
(Koyama et al., 2018).

Species replacement, induced by climate related environmental 
change, resulted in a gradually replacement of cold-tolerant 
microbes with warm-affinity ones (Figure  8; 
Supplementary Figures S1, S2). The relative abundance of bacteria 
growing optimally above 30°C increased (Figure 8; Pagnier et al., 

2010; Falagán and Johnson, 2014; Percival and Williams, 2014), 
and the indicator species in VS can survive in environments where 
water is extremely scarce (Huber and Overmann, 2018; Wang 
K. et al., 2022). The consistent increases in warm-affinity taxa along 
species replacement reflected a high tolerance for drought and heat 
stress of V. negundo var. heterophylla for survival in harsh 
environment, so it has potential to expand its range under climate 
warming (Du et al., 2014; Li et al., 2017; Wang et al., 2017). In 
addition, species replacement altered the relative abundance of 
several bacterial groups involved in soil biogeochemical processes 
(Supplementary Figures S1, S2). These included declining 
populations of Asticcacaulis (Poindexter, 2015) and Dongia (Liu 
et  al., 2010), and increasing abundances of Novosphingobium 
(Kumar et  al., 2022) and Rhizobacter (Goto, 2015), previously 
identified as major degraders of organic compounds. Moreover, 
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species replacement also produced significant expansion in 
Microlunatus (Hanada and Nakamura, 2015) and Rhodovastum 
(Okamura et al., 2009), and decline in Dyella (Xie and Yokota, 
2005) and Rivibacter (Stackebrandt et  al., 2009), which was 
previously linked to soil nutrient cycles. However, populations of 
Enterobacter (Iversen, 2014) and Rhizorhapis (Francis et al., 2014) 
also increased following species replacement, a group of animal or 
plant pathogens. Therefore, secondary succession, induced by the 
replacement of dominant species, resulted in significant changes in 
soil environment and bacterial microbial community.

Ascomycota was the most abundant phylum of fungi, the decline 
of their dominant taxa was consistent with the finding of Zhang et al. 
(2018) and Chai et al. (2019). Generally, members of Ascomycota 
are dominant in stressful environments (Tripathi et al., 2016), the 
decline of dominant taxa indicated that soil ecological 
environments were improved through vegetation succession (Dong 
et  al., 2016; Chai et  al., 2019). In contrast, the overall relative 
abundance of Ascomycota increased with succession (Figure 4), 
similar to the observations in fire-affected and exposed soil 
environments (Taş et al., 2014; Wilhelm et al., 2017), this pattern 

likely reflected the increase of rock-inhabiting and some other 
extremotolerant fungi (thermophilic, desiccation-tolerant, etc.) 
during gradual expansion of V. negundo var. heterophylla toward 
harsh environment (Morgenstern et al., 2012; Egidi et al., 2014; 
Hubka et  al., 2014). Notably, the nematophagous subset of 
Ascomycota, including Dactylellina, Purpureocillium, and 
Pochonia, that expanded in most plots following species 
replacement have all been reported in mountain environments and 
forest soils (Li et al., 2006; Deng et al., 2020; Gouveia et al., 2022). 
Numerous nematophagous fungi can immobilize and digest 
nematodes, and are thought to be  important in regulating 
entomopathogenic nematode populations in the field (Wang et al., 
2006; Willett et al., 2017). All these results indicated that various 
fungal microbial communities exhibited different adaptions to 
shifts in environmental conditions during secondary succession 
(Schmidt et al., 2014; Alfaro et al., 2017).

5. Conclusion

Secondary succession from L. oblonga to V. negundo var. heterophylla 
shrubland in Taihang Mountain significantly increased the above-
ground biomass of shrublands, and TP and TK contents in topsoil. 
Species replacement, induced by climate related environmental change, 
resulted in the gradually replacement of cold-tolerant microbes with 
warm-affinity ones, and alterations of microbial communities involved 
in soil biogeochemical processes. Soil and plant variables, such as above-
ground biomass, soil pH, TP, and TK, well explained the variations in 
microbial communities. Altogether, the coordinated changes in plant 
communities and soil properties during secondary succession caused 
accompanied shifts in microbial diversity and composition.
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