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Researches have demonstrated that microorganisms are indispensable for the 
nutrition transportation, growth and development of human bodies, and disorder 
and imbalance of microbiota may lead to the occurrence of diseases. Therefore, it 
is crucial to study relationships between microbes and diseases. In this manuscript, 
we  proposed a novel prediction model named MADGAN to infer potential 
microbe-disease associations by combining biological information of microbes 
and diseases with the generative adversarial networks. To our knowledge, it is the 
first attempt to use the generative adversarial network to complete this important 
task. In MADGAN, we  firstly constructed different features for microbes and 
diseases based on multiple similarity metrics. And then, we further adopted graph 
convolution neural network (GCN) to derive different features for microbes and 
diseases automatically. Finally, we  trained MADGAN to identify latent microbe-
disease associations by games between the generation network and the decision 
network. Especially, in order to prevent over-smoothing during the model training 
process, we introduced the cross-level weight distribution structure to enhance 
the depth of the network based on the idea of residual network. Moreover, in 
order to validate the performance of MADGAN, we conducted comprehensive 
experiments and case studies based on databases of HMDAD and Disbiome 
respectively, and experimental results demonstrated that MADGAN not only 
achieved satisfactory prediction performances, but also outperformed existing 
state-of-the-art prediction models.
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1. Introduction

Microbes are far more numerous than human cells (Integrative HMP (iHMP) Research 
Network Consortium, 2014; Sender et al., 2016), and play an important role in human beings 
(Human Microbiome Project Consortium, 2012). The microorganisms parasitic on the human 
body constitute the human microbial community, and their composition varies from person to 
person (Human Microbiome Project Consortium, 2012). These microbial populations can not 
only protect the human body from foreign microorganisms and pathogens, but also participate 
in intestinal digestion and absorption, and promote metabolism (Guarner and Malagelada, 2003; 

OPEN ACCESS

EDITED BY

Lihong Peng,  
Hunan University of Technology,  
China

REVIEWED BY

Min Chen,  
Hunan Institute of Technology,  
China
Yuansheng Liu,  
Hunan University,  
China

*CORRESPONDENCE

Lei Wang  
 wanglei@xtu.edu.cn  

Xianyou Zhu  
 zxy@hynu.edu.cn

SPECIALTY SECTION

This article was submitted to  
Systems Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 05 February 2023
ACCEPTED 02 March 2023
PUBLISHED 23 March 2023

CITATION

Hu W, Yang X, Wang L and Zhu X (2023) 
MADGAN:A microbe-disease association 
prediction model based on generative 
adversarial networks.
Front. Microbiol. 14:1159076.
doi: 10.3389/fmicb.2023.1159076

COPYRIGHT

© 2023 Hu, Yang, Wang and Zhu. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 23 March 2023
DOI 10.3389/fmicb.2023.1159076

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1159076%EF%BB%BF&domain=pdf&date_stamp=2023-03-23
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1159076/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1159076/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1159076/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1159076/full
mailto:wanglei@xtu.edu.cn
mailto:zxy@hynu.edu.cn
https://doi.org/10.3389/fmicb.2023.1159076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1159076


Hu et al. 10.3389/fmicb.2023.1159076

Frontiers in Microbiology 02 frontiersin.org

Kau et al., 2011). Therefore, to some extent, the human microbial 
population can even be regarded as human “forgotten organs”(Quigley, 
2013), the imbalance of microorganisms will not only lead to the 
occurrence of nervous system diseases, but also affect the immune and 
metabolic functions of the human body (Cenit et al., 2017; Li et al., 
2017). For example, changes in intestinal microbiota are highly 
correlated with the pathogenesis of various nervous system diseases, 
including depression, autism (Kim et al., 2018), asthma (Al-Moamary 
et al., 2021) and cancer (Schwabe and Jobin, 2013), etc. Of course, 
there is also evidence showing that microbial populations can help 
regulate disease as well (Cryan and Dinan, 2012). For instance, 
researches show that lactic acid bacteria and bifid bacteria play a 
positive role in regulating anxiety, cognition, pain and depression 
symptoms (Desbonnet et al., 2010). In addition, Huang pointed out 
that microorganisms can affect the hypersensitivity and asthma of 
susceptible people. Early intervention to promote the healthy 
composition of human microbiome may help prevent asthma (Huang, 
2013). Hence, it is meaningful to infer potential relationships between 
microorganisms and diseases, which can not only help researchers 
understand the pathogenesis of diseases, but also help us to prevent, 
diagnose and treat diseases, thus promoting global human health. 
Utilizing biotechnology to identify microbe-disease associations is 
time-consuming, costly and blind, so it is meaningful to identify 
potential microbe-disease associations through computational 
methods. Up to now, representative calculative methods can 
be roughly divided into four categories, such as the network-based, 
binary local features-based, matrix factorization/completion-based 
and graph neural network-based methods. Among them, the network-
based methods infer latent microbe-disease associations by mainly 
adopting the topology information of different networks. For example, 
Chen et al. (2017) proposed a KATZ-based model KATZHMDA to 
infer possible microbe-disease associations based on a newly 
constructed heterogeneous network, which scores potential disease 
related microbes by step size and path numbers. Zeng et al. (2022) 
introduced the knowledge graph into the field of drug discovery, 
integrated data information through a displayed structure, and 
strengthened the structured connection and semantic relationship 
between entities. However, the methods based on binary local features 
focus on taking microbes and diseases as local objects, and identify 
potential microbe-disease associations by combining the features 
between them. For instance, Huang et al. (2017) developed a combined 
recommendation algorithm based on neighborhood and graph by 
integrating two independent recommendation models to recommend 
disease related microbes. In addition, Matrix factorization/
completion-based methods aim to decompose the known incidence 
matrix into two characteristic matrices, and approximate the incidence 
matrix with the product of the two matrices. For instance, Shen et al. 
(2017) proposed a matrix factorization-based model for microbe-
disease association prediction, which integrated known microbe-
disease associations and introduced a collaborative matrix 
factorization scheme to update the correlation matrix about microbes 
and diseases for inferring the most possible disease-related microbes. 
Finally, the graph neural network-based methods used to learn 
structural data by taking microbe and disease related data as the input 
of the neural networks, so as to extract and explore features and 
patterns in graph structural data. For example, Long et al. (2021) 
developed a graph attention network with inductive matrix 
completion to detect potential microbe-disease associations. Cheng 

et al. (2021) used the deep generative model as an entry point to 
discuss and study the de novo molecular design for drug discovery (de 
novo molecular design for drug discovery).

The emergence of generative adversarial networks is another 
milestone in the field of computer vision. It provides a new tool for 
solving various image prediction problems. For instance, in 2014, Lan 
et al. proposed a framework for estimating the generative adversarial 
network model through the confrontation process, and improved the 
ability of the model through the mutual game between generative 
adversarial networks (Goodfellow et  al., 2020). However, the 
generative adversarial network still has problems such as unstable 
results and difficult training. Hence, Arjovsky et al. (2017) conducted 
a theoretical analysis of the generative adversarial network and 
provided an optimal solution. Later, new results appeared in the field 
of image processing, such as Style GAN (Karras et al., 2019), Cycle 
GAN (Zhu et al., 2017), SeCGAN (Wu et al., 2019), etc. In recent 
years, many researchers have begun to explore the application of 
generative adversarial networks in other fields. For example, Lei et al. 
(2019) applied it in the direction of dynamic information generation 
to build a nonlinear time link prediction model. Dai et al. (2021) 
introduced generative adversarial networks to natural language 
translation work. Zheng et al. (2022) utilized a generative adversarial 
network model to predict urban traffic flow.

In this paper, a generative adversarial network framework called 
MADGAN was designed for latent microbe-disease association 
prediction, in which, a GCN was adopted to obtain the microbe-
disease association features first, and then, we would train the ability 
of MADGAN by games between the generation network and the 
decision network. And at the same time, inspired by the idea of 
residual network, we introduced the cross-level weight distribution 
structure to enhance the depth of the network to prevent over-
smoothing during the model training process. Finally, intensive 
experiments based on the k-fold cross-validation framework were 
implemented to compare the prediction performance between 
MADGAN and state-of-the-art prediction models. And as a result, 
MADGAN was proved to be of satisfactory prediction ability and 
outperformed existing representative competing models.

2. Materials and methods

2.1. Construction of the microbe-disease 
association network

In this section, we  would download known microbe-disease 
associations from two well-known public databases including 
HMDAD (Ma et  al., 2017) and Disbiome (Janssens et  al., 2018) 
respectively. Among them, HMDAD1 is the first microbe-disease 
association database constructed by ma et al. in 2017, which contains 
483 known microbe-disease associations. After removing duplicate 
data, we  finally obtained 450 different known microbe-disease 
associations between 39 diseases and 292 microbes. Besides, 
Disbiome2 is a public microbe-disease association database 

1 http://www.cuilab.cn/hmdad

2 https://disbiome.ugent.be/home
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constructed by Janssens et  al., in which, there are 5,573 known 
associations between 240 diseases and 1,098 microbes collected from 
published academic papers. After removing duplicate data, we finally 
derived 4,351 known microbe-disease associations between 218 
diseases and 1,052 microbes. For convenience, let nd  and nm  denote 
the numbers of newly-downloaded diseases and microbes respectively, 
then we can obtain a adjacency matrix A n nd m∈ × as follows: for any 
given disease di  and a microbe mj , if there is a known association 
between them, there is Aij =1, otherwise, there is Aij =0.

2.2. Multiple similarity calculation of 
disease

2.2.1. Gaussian interaction profile kernel similarity 
of disease

Based on the assumption that two similar diseases will show 
similar interaction and non-interaction relationship with the same 
microorganism (Chen et  al., 2017), in this section, we  will first 
calculate the Gaussian interaction profile kernel similarity between a 
pair of diseases di and d j  as follows:

 
GD d d A i A ji j d, , ,( ) = − ( ) − ( )( )exp : : ||||λ 2

 
(1)

Where A i, :( )  and A j, :( ) represent the ith and jth  rows of the 
adjacency matrix A  respectively, and λd  denotes the normalized 
kernel bandwidths that can be calculated as follows:

 

λd

d i
n

n
A id

=
( )







=∑

1

1
1

2|| : ||,

 

(2)

2.2.2. Cosine similarity of disease
Based on the assumption that if two diseases are similar to each 

other, then their cosine curves will be more coincident, in this section, 
we will define the cosine similarity between a pair of diseases di and 
d j  as follows:

 
CD d d A i A j A i A ji j, , , , | , |( ) = ( ) ⋅ ( )( ) ( ) ∗ ( )( ): : / | : | :

 
(3)

The result of cosine similarity has good stability and certainty, the 
calculation speed is fast and the result is more intuitive. Suitable for 
large-scale information retrieval. Where A i A j, ,: :( ) ⋅ ( )  denotes 
multiplying the vectors of row i  and row j , A i, :( )  represents the 
mode of A i, :( ) , and A j, :( )  represents the mode of A j, :( ) . 
| : | | : |A i A j, ,( ) ∗ ( )  represents the multiplication of two moduli, and 
then the value of the modulus is removed by the product of the vector, 
and finally the cosine value of the angle between the two diseases is 
obtained, that is, the cosine similarity. The calculation result of cosine 
similarity is between −1 and 1. When the similarity between two 
diseases is extremely high, the calculation result tends to be 1. When 
the similarity between two diseases is very low, the calculation result 
tends to −1.

2.2.3. Functional similarity of disease
Based on the assumption that similar diseases tend to interact 

with similar genes, in this section, we  will calculate the disease 
functional similarity based on the functional associations between 
disease-related genes (Xu and Li, 2006; Wei and Liu, 2020) as follows: 
Firstly, we  download the gene interactions from HumanNet 
database3, in which, every interaction has an associated log-likelihood 
score (LLS). And then, for any given diseases di  and d j , let 
G g g gi i i im= …{ }

1 2
, , , and G g g gj j j jn= …{ }

1 2
, , ,  denote the newly-

obtained gene sets of di  and d j  separately, we  will define the 
functional similarity between di  and d j  as follows:

 
DFS d d

F g F g

m ni
g G G k g G G k
k i

j
k j

i

, j( ) =
( ) + ( )

+
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(4)

Where F g FSS g gG p
g G

p qt
q t

( ) = ( )( )
∈

max , , and FSS g gp q,( )  is 

the functional similarity score between the genes g p  and gq , which 
can be calculated as follows:

 

FSS g g
if p q
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=
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−

≠
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max min  

(5)

Where LLSmax  and LLSmin  represent the maximum value of 
LLS and the minimum value of LLS in HumanNet, respectively.

Thereafter, by combining above GIP kernel similarity, disease 
cosine similarity and functional similarity of disease, we can obtain an 
integrated similarity matrix of disease as follows:

 
DS GD CD DFS

=
+ +

3  
(6)

2.3. Multiple similarity calculation of microbe

2.3.1. Gaussian interaction profile kernel similarity 
of microbe

In the same way, we can calculate the gaussian interaction profile 
kernel similarity between any two microbes mi  and mj  as follows:

 
MD m m A i A ji j m, , ,( ) = − ( ) − ( )( )exp : :|| ||λ 2

 
(7)

Where A i: ,( )  and A j: ,( ) represent the ith and jth  columns of 
the adjacency matrix A  respectively, and λm  denotes the normalized 
kernel bandwidths that can be calculated as follows:

 

λm

m i
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n
A im
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(8)

3 https://www.inetbio.org/humannet
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2.3.2. Cosine similarity of microbe
Similarly, the cosine similarity between any two microbes mi and 

mj  can be obtained as follows:

 
CM m m A i A j A i A ji j, , , | , | | , |( ) = ( ) ⋅ ( )( ) ( ) × ( )( ): : / : :

 
(9)

The calculation process of cosine similarity between two 
microorganisms is the same as that of disease cosine similarity. Similarly, 
when the similarity between two microorganisms is extremely high, the 
calculation result tends to be  1. When the similarity between two 
microorganisms is very low, the calculation result tends to −1.

2.3.3. Functional similarity of microbe
In this section, we will calculate the functional similarity of microbe 

by using the following method proposed in the reference (Zhang et al., 
2018): for any given disease dt , it is first represented by a Directed 
Acyclic Graph DAG V Ed d dt t t

= ( ), , where Vdt  includes the disease dt  
and its ancestor diseases, Edt  contains all the directed edges from 
parent nodes to children nodes (Wang et  al., 2010), and then, the 
semantic contribution of the disease dl  in Vdt  to dt  is defined as:

 

SC d
if d d

SC d d children of d other

d i

l t

d l l l

t

t

( ) =
=

× ( ) ∈{ }′ ′

1

0 5max . |  wwise





  

(10)

The semantic value of disease dt  is formulated by:

 

SV SC dd
d V

d lt

l dt

t
= ( )

∈
∑

 

(11)

Then, the semantic similarity between any two diseases di and 
d j  can be defined as follows:

 
DSS d d

SC d SC d

SV SVi j
d V V d l d l

d d

l di d j
i j

i j

,( ) =
( ) + ( )( )
+

∈ ∩∑

 
(12)

Besides, based on above formulae, we  can further define the 
similarity between the disease di  and a set of diseases D as follows:

 
DS d D DSS d di

d D
i j

j

, ,( ) = ( )( )
∈

max

 
(13)

Hence, for any two given microbes mi  and mj , we can calculate 
the function similarity between them as follows:

 
MFS m m

DS d D DS d D

D Di j
d D j i d D j j

i j

j j j i,
, ,

( ) =
( ) + ( )

+
∈ ∈∑ ∑

 
(14)

Where Di  denotes the set of diseases associated with the microbe 
mi , and Dj  represents the set of diseases associated with the 
microbe mj .

Obviously, by combining above GIP kernel similarity, disease 
cosine similarity and functional similarity of microbe, we can obtain 
an integrated similarity matrix of microbe as follows:

 
MS MD CM MFS

=
+ +

3  
(15)

2.4. Construction of the heterogeneous 
network

Based on above descriptions, it is easy to see that we can construct 
a heterogeneous network Y  through integrating the integrated 
similarity matrix DS  of disease and the integrated similarity matrix 
MS  of microbe with the adjacency matrix A as follows:

 
Y

DS A

A MST=










  

(16)

3. Methods

The main framework of this paper is generative adversarial 
networks. A generative adversarial network consists of a generative 
network and a decision network, and it works by enhancing the model’s 
capabilities during the mutual gaming of the two networks. As shown 
in Figure 1, the information of known microbial-disease association 
data is extracted from the database, and after the calculation of 
similarity, it is input into the generative network. The core of the 
generative network consists of a GCN layer and an attention 
mechanism, which consists of a graph convolutional layer and a sparse 
graph convolutional layer. The data are passed through the generative 
network to generate prediction results, and the prediction results and 
the original sample data are input into the discriminator, which 
distinguishes the real results from the generated results and returns to 
update the model parameters of the generative network. This is a game 
process, in which the generative network needs to generate prediction 
results that are sufficient to confuse the judgment of the discriminator, 
while the discriminator needs to correctly distinguish the generated 
results from the true results. The ability of the generative network 
model is continuously improved during the game until the 
discriminator and the generative network reach an equilibrium, i.e., the 
probability of both the predicted and true outcomes is one half.

The generator network uses the information of the data set to 
output data samples, and the generator G •( )  obtains a random 
sample z  from the data samples, and z  conforms to the p z( )  
probability distribution. After the generator generates data, it will 
be sent to the discriminator D •( ) , and the discriminator will try 
to predict the authenticity of the data after receiving real data or 
generated data. At the same time, it also needs a sample x  from 
the real data distribution p xdata ( ) , the discriminator uses the 
activation function to solve a binary classification task, and 
outputs a value of 0–1 to distinguish the real result from the 
predicted result.
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The game process of generative adversarial networks can 
be expressed as follows:

 

min max

~ ~

V D G
E logD x E logD G zx p x z p zdata

,( ) =
( )  + − ( )( ) ( ) ( ) 1   

(17)

Among them, x is the real feature matrix, and G z( )  is the 
feature matrix generated by the generation network. p xdata ( )  is the 
probability distribution of x , and p z( )  is the probability 
distribution of z . The optimization goal of training D  to adjust its 
parameters is to maximize D x( )  and minimize D G x( )( ) , and the 
optimization goal of training G  to adjust its parameters is to 

minimize maxV D G,( ) . E  stands for entropy, x p xdata~ ( )  stands 
for x  is from p xdata ( )  real data distribution. The meaning 
represented by E logD xx p xdata~ ( ) ( )   is the entropy value from the 
real data distribution after passing the identifier. For data from the 
real data distribution, the ideal goal of the discriminator is to fully 
identify it, that is, predict the result as 1. Therefore, 
E logD xx p xdata~ ( ) ( )   can also be regarded as the probability of the 

discriminator to distinguish real data, and the higher the probability, 
the better. The log function does not affect the relationship between 
variables, and its function is to amplify our loss to facilitate the 
calculation and optimization of the model. E logD G zz p z~ ( ) − ( )( ) 1  
can be regarded as the entropy value after the input generated data 
passes through the discriminator, and also represents the probability 

FIGURE 1

The general framework of the model.
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of the discriminator to distinguish the fake sample data. The smaller 
the probability, the better. min maxV D G,( )  is expressed as a 
confrontation between the generator and the discriminator. The 
generator G •( )  hopes that the discriminator cannot distinguish fake 
samples, so it hopes to minimize the result of 1− ( )( )logD G z . The 
discriminator is the opposite, it hopes to better distinguish between 
true and false, that is, the result of maximizing 1− ( )( )logD G z . This 
is also the origin of this formula. At the end of training, there will 
often be a balanced form.

The core of the principle of generative adversarial networks 
lies in the game between the generative network and the decision 
network. The core of the generative network is composed of GCN 
layers. In order to deepen the model depth of the generative 
network and thus generate more accurate prediction results, 
we  use a residual network-like idea to optimize the model. 
We  deepen the network while retaining the shallow features 
according to the weights, which makes the model less susceptible 
to phenomena such as oversmoothing and gradient explosion 
during the iterative process. As shown in Figure  2, the direct 
mapping is shown on the left, and the associated graph 
convolution operation and activation function are shown on 
the right.

The purpose of adding this structure is to increase the depth of the 
network. Under this premise, problems such as over-smoothing and 
gradient explosion are avoided. At the same time, combined with the 
attention mechanism, we have carried out weight ratios on both sides 
on the basis of similar residual ideas to achieve better results. Its 
formula derivation is as follows:

 

h h F h Wl
i j

L
i j= + ( )

=
∑0

1,

,

 

(18)

Among them, hL  is the feature matrix output by each layer, and 
l L∈{ }1, ,.. . Wj  is the weight assigned to each layer, and F •( )  is the 
graph convolution function.

And the relevant formula of F •( )  is as follows:

 

F z W f F z Y D YD F z Wl l l l, ,( ) = ( )( ) = ( )












−

− −

− −1

1

2

1

2
1 1µ

 

(19)

Where l L∈{ }1, ,.. , F z l( )  is the feature matrix generated by the 

lth  layer GCN network, 
D diag Y

j

N N
i j

m d

=










=

+

∑
1

,
 is a diagonal matrix, 

and Wl  is the weight matrix trained on the lth  layer. And µ •( )  is an 
activation function. In this paper, the RELU function is used as the 
activation function. The formula is as follows:

 
RELU x

x x
x

( ) =
>
≤





,

,

0

0 0  
(20)

The weight calculation formula of Wl  is as follows:

 
W

Ll =
1

 
(21)

Graph Convolution (GCN) is a convolutional model applied by 
CNN in the field of graph structure. Different from CNN to achieve 
feature extraction by processing pixels, graph convolution uses spectral 
graph theory to map the graph structure transformation to the 
frequency domain through Fourier transform for processing, and 
finally perform inverse transformation. Compared with CNN that 
handles neat pixels, GCN can more effectively extract the correlation 
features between two points. For data with associated structures, the 
ability to effectively extract spatial features brought by GCN can better 
help them complete their tasks. In our model, the reconstructed 
heterogeneous network feature matrix is input into the generative 
network and processed as the input of the GCN model. Formula (19) 
reflects the training process of the GCN model, and z  is the input data. 
The function of D YD

− −
1

2

1

2  is to dilute the importance of nodes with 
high degrees, and to balance the weight information of nodes with 
different degrees. Therefore, formula (19) can also be simplified as:

 
F z W YF z Wl l l,( ) = ( )( )− −µ 

1 1  
(22)

Among them, the role of YF z l( ) −1  is to retain the information 
inherited by the upper layer nodes during the information 
transmission process, that is, to aggregate the information of the 
surrounding nodes to update the information of its own nodes.

The role of the discriminator is to distinguish between real and fake 
samples, and our discriminator consists of a fully connected feed-
forward network, a hidden layer and an output layer. The discriminator 
alternately receives generated samples and real samples, and updates the 
parameters of the generated network through the discriminative results. 
Here we  adopt the framework of WassersteinGAN to train the 
discriminator. The biggest difference between WGAN and traditional 
GAN is that the output layer is a linear layer and does not require a 
nonlinear activation function. Expressed in a formula it is:

 
D z z W b W bh h o o( ) = +( ) +′µ

 
(23)

Among them, z  is the input data, and z  is the long vector after 
dimension reconstruction. µ •( )  is the activation function of the 
hidden layer, Wh  and bh  are the hidden layer parameters, and Wo  
and bo  are the output layer parameters.

As shown in Algorithm 1, the input is a known microbial-disease 
association matrix A. The similarity matrix of microorganisms and 
diseases is computed to construct the heterogeneous network Y. The 
new feature matrix is fed into the generative network. After 
initializing the optimizer, the generated prediction results are output 
after N rounds of training. The generated prediction results and 
sample data are input into the discriminator, and the parameter 
information of the generative network is updated according to the 
output results of the discriminator, and the completed generative 
network model is saved after several rounds of training.
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Algorithm 1: Algorithm of our proposed method

Inputs: Known associations matrix A m dn n∈ × , microbe similarity matrix 
m mK m N Ns ∈ × , disease similarity matrix d dK d n ns ∈ × ;

Output: The completed training of the generative network model

Step 1: Constructing the heterogeneous network ( ) ( )m d d mY n n n n∈ + × +  

according to Formula (16);

Step 2: Input the feature matrix into the generative network, initializing Optimizer 

Parameter Information;

Step 3: for 1 doi N= →  (N is the number of training rounds of the generative 

adversarial network)

for 1 dol L= →  (L is the depth of the graph convolution model)

 Compute the feature embedding of the L layer and output the generated 

prediction results

end for

Input the generated results and sample data into the decision network

Update optimizer parameter information

end for

Step 4: Save the model of the generative network

4. Experiments and results

4.1. Experimental setup

In this section, we adopted 5-fold cross validation(5cv) and 2-fold 
cross validation to assess the performance of our model. In the k-fold 
cross validation framework, all known microbe-disease associations 
in HMDAD and Disbiome were divided to k-subsets. In the process 
of model training, (k-1)-subsets are selected as the training set, and 
the remaining one as the test set. It is worth noting that there are no 
known negative samples, we  regarded unknown associations as 
negative samples. After the training samples are input into MADGAN, 
all association pairs will get a predictive value. If the prediction score 
is higher than the given threshold, it will be considered as successful 
prediction. Obviously, different true positive rate and false positive 
rate can be obtained when setting different thresholds. The specific 
calculation formula is as follows:

 
TPR =

+
TP

TP FN

 
FPR =

+
FP

FP TN  
(24)

Where TP and TN represent the numbers of positive samples 
correctly judged as positive samples and negative samples correctly 
judged as negative samples, respectively; FP and FN are the numbers 
of negative samples incorrectly judged as positive samples and positive 
samples incorrectly judged as negative samples. By setting different 
thresholds, we can get multiple groups of different TPRs and FPRs. 
Then, TPR and FPR under different thresholds are taken as the x-axis 
and y-axis respectively, the receiver operating characteristics (ROC) 
can be further plotted, and the area under the line is taken to evaluate 
the prediction performance of the model.

4.2. Parameter analysis

We performed multiple experimental and parametric analyses on 
the HMDAD database and the Disbiome database, respectively. As 
shown in Figure 3, we analyzed the experimental results generated by 
HMDAD in terms of the number of layers and embedding. We used 
a similar idea of residual network to deepen the number of layers of 
GCN to 4. After several rounds of training, the experimental results 
and loss values were maintained at a certain level, but we could see 
from the experimental results that after the number of layers was 
raised to 5, the experimental results could not be maintained at a 
certain level as in the previous layers, which we judged to be due to 
the limitation of the size of the dataset that made it impossible to 
deepen the network further. We judge that this is due to the limitation 
of the dataset size, which makes it impossible to deepen the network 
further, otherwise the phenomenon of oversmoothing will occur. 
We also compared different embedding values. Different embedding 
values take different time to train. When the embedding value is 128, 
the training time cost is greater than when the embedding value is 32. 
However, when the model depth is deepened to 5 layers, the 
embedding value of 128 cannot maintain good experimental results, 
and the embedding values of 32 and 64 are not affected much, but 
we think that further deepening the model depth and embedding 
values of 32 and 64 is also oversmoothing can occur, resulting in 
poor results.

For the Disbiome database, we  also conducted multiple 
experiments, but the Disbiome database is much larger than the 
HMDAD database, and we  were able to maintain the results at a 
certain level after deepening the GCN layers with our network up to 
20 layers, without reaching the limit. We did not find the limit value 
due to the limitation of the experimental equipment, but we  can 
understand that the experimental results did not deteriorate after 
deepening to more than 20 layers.

4.3. Comparison with state-of-the-art 
methods

In order to evaluate the performance of MADGAN, we compare 
our model with six state-of-the-art methods that includes network-
based methods, binary local features-based methods, matrix 
factorization/completion-based methods and graph neural network-
based methods. KATZHMDA and NTSHMDA are network-based 
methods, NGRHMDA and BiRWMP are binary local features-based 
methods, GRNMFHMDA is matrix factorization-based method, and 
GATMDA is graph neural network-based method. The comparison 
results of all these methods were shown in Tables 1, 2 respectively.

As shown in Tables 1, 2, we used 5 times of cross-validation and 2 
times of cross-validation to conduct comparative experiments on the 
two databases. In experiments on the HMDAD database, our model 
performs better than other models. The 5-fold cross-validation method 
makes better use of the data set than the 2-fold cross-validation 
method, so it performs better. The data sample size of the Disbiome 
database is much larger than that of HMDAD, and its training time is 
also much longer than that of HMDAD. However, compared with 
HMDAD, the experimental results of all models have declined. 
We believe that part of the reason is that the depth of the model cannot 
support the training of a large number of sample data. Even if we use 
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FIGURE 3

Model parameters analysis on the HMDAD dataset.

FIGURE 2

Generate network core model structure diagram.
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the method to deepen the depth of the model, it can only slightly 
improve the experimental effect. Another part of the reason may 
be because of the equipment environment.

5. Case study

In this section, we  choose three diseases of asthma, Chronic 
Obstructive Pulmonary Disease (COPD) and Type 2 Diabetes (T2D) 
for case studies on the HMDAD to further verify the performance of 

our model. Specifically, we rank the above three related microorganisms 
in the predicted score results, and then select the top 20 microorganisms 
and evaluate the prediction performance of MADGAN through 
literature retrieval.

Asthma is a disease with heterogeneous process, accompanied by 
recurrent wheezing, chest tightness, dyspnea, indirect cough and other 
symptoms(Al-Moamary et al., 2021). It is reported that in 2010, about 
8% of people were affected by asthma, especially in children, and the 
incidence rate is still rising(Guilbert et  al., 2014). Asthma has been 
proved to be closely related to microorganisms(Çalışkan et al., 2013). For 
example, Haemophilia, Neisseria and Moraxella in the lungs of asthmatic 
patients have been proved to be closely related to the increased risk of 
neonatal oral and pharyngeal asthma, and Staphylococcus has been 
found in the respiratory tract of asthmatic children(Sullivan et al., 2016). 
These findings may provide a new method for the treatment of asthma. 
We choose the top 20 microorganisms related to asthma predicted by our 
model and then search the literature for further verification. The results 
are shown in the Table 3.

COPD is a lung disease that worsens over time, as long as the 
symptoms are shortness of breath and cough. By 2015, COPD patients 
accounted for about 2.4% of the global population (James et al., 2018). 
Due to the high smoking rate and aging population in developing 
countries, the death toll of COPD patients is rising rapidly. Although 
the treatment can delay the deterioration of COPD, there is no cure. 
Considering that there is a lot of evidence indicating the association 
between microbiome and COPD, for example, Galiana et al. (2014) 
found that the diversity of patients with high COPD was lower than 
that of patients with mild and moderate COPD. Therefore, we select 
the top 20 microorganisms related to COPD predicted by our model 
and then search the literature for further verification. The results are 
shown in the Table 4.

6. Conclusion

Deeply understanding the relationship between microorganisms 
and diseases can not only reveal the pathogenesis of more human 
diseases, but also provide new insights into disease prevention, diagnosis 
and treatment, thus promoting human health. Predicting the potential 
microbe-disease associations can help biologists to screen the most 
relevant microorganisms that cause diseases, thus reducing the time and 
cost of biological verification experiment (Zhou et al., 2017; Uchiyama 
et al., 2019). In this paper, we developed a deep learning model, named 
MADGAN, to predict potential microbe-disease associations. 
We  adequately exploit multi-sources of abundant biological data to 
capture similarity features of microbes and diseases. This helps to predict 
new microbes (or new diseases) with few or no known association. In 
order to derive more informative representations, we propose graph 
convoluted neural network to learn representations for microbes and 
diseases. Meanwhile, the model is trained through the game between the 
generation network and the decision network. Finally, we  utilized 
residual network and the cross-level weight distribution structure to 
enhance the depth of the network to prevent over-smoothing during 
model training. Comprehensive experiments demonstrated that 
MADGAN achieved satisfactory predictive performance.

However, although our model has good prediction performance, it 
still has some limitations and is expected to be further improved in the 
future. On the one hand, our model is a supervised learning framework, 
which means that our model cannot predict all new microorganisms 

TABLE 1 Comparison performance between our model and state-of-the-
art models based on HMDAD dataset.

Methods AUC(5-fold cv) AUC(2-fold cv)

KATZHMDA (Zhu et al., 

2021) (network-based)
0.8703±0.0199 0.8755±0.0103

NTSHMDA (Luo and 

Long, 2018) (network-

based)

0.8982±0.0312 0.8615±0.0151

NGRHMDA (Huang 

et al., 2017) (binary local 

features-based)

0.8921±0.0327 0.8929±0.0059

BiRWMP (Luo and Xiao, 

2017) (binary local 

features-based)

0.8777±0.0089 0.8698±0.0079

GRNMFHMDA (He 

et al., 2018) (matrix 

factorization-based)

0.8806±0.0156 0.8756±0.0164

GATMDA (Long et al., 

2021) (graph neural 

network-based)

0.9554±0.0184 0.9538±0.0049

Our model 0.9867±0.0078 0.9708±0.0117

TABLE 2 Comparison performance between our model and state-of-the-
art models based on Disbiome dataset.

Methods AUC(5-fold cv) AUC(2-fold cv)

KATZHMDA (Zhu et al., 

2021) (network-based)
0.6779±0.0141 0.6696±0.0058

NTSHMDA (Luo and 

Long, 2018) (network-

based)

0.8294±0.0071 0.8086±0.0058

NGRHMDA (Huang 

et al., 2017) (binary local 

features-based)

0.8313±0.0052 0.8233±0.0046

BiRWMP (Luo and Xiao, 

2017) (binary local 

features-based)

0.8344±0.0089 0.8139±0.0060

GRNMFHMDA (He 

et al., 2018) (matrix 

factorization-based)

0.8609±0.0047 0.8501±0.0017

GATMDA (Long et al., 

2021) (graph neural 

network-based)

0.9307±0.0079 0.9296±0.0154

Our model 0.9428±0.0026 0.9290±0.0068
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and diseases. In the future, we will consider integrating multiple prior 
biological information, such as microbe-drug disease association and 
drug-disease association, to develop an unsupervised learning 
framework. On the other hand, it is still a huge challenge for MADGAN 
to forecast on large-scale datasets. In the future, we  will consider 
integrating the results of multiple datasets to build datasets, so as to 
improve the prediction performance of the model on large datasets.
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TABLE 3 The top 20 asthma-associated microbes predicted by MADGAN.

Rank Microbe Evidence

1 Clostridium innocuum PMID:18672296

2 Staphylococcus epidermidis PMID:6694502

3 Streptobacillus PMID:6326694

4 Burkholderiales bacterium Smarlab 3,302,047 Unconfirmed

5 Dorea PMID:30937143

6 Stenotrophomonas maltophilia PMID:20537287

7 Mannheimia PMID:10967288

8 Rikenellaceae PMID:33204702

9 Streptococcus parasanguinis PMID:17950502

10 Yersinia PMID:10719781

11 Alistipes PMID:33759390

12 Corynebacterium PMID:22994424

13 Erysipelotrichales PMID:22994424

14 Mobiluncus Unconfirmed

15 Cronobacter Unconfirmed

17 Eubacteriaceae Unconfirmed

18 Unidentified bacterium ZF3 Unconfirmed

19 Prevotellaceae PMID: 34422359

20 Oxalobacteraceae PMID: 21194740

TABLE 4 The top 20 COPD-associated microbes predicted by MADGAN.

Rank Microbe Evidence

1 Bacteroides PMID: 36498063

2 Bacteroides sp. CJ78 Unconfirmed

3 Bacteroides vulgatus Unconfirmed

4 Bacteroidetes PMID: 33063421

5 Clostridiales bacterium 80/3 Unconfirmed

6 Clostridium cocleatum PMID:20857523

7 Clostridium ramosum Unconfirmed

8 Enterococcus PMID:24629344

9 Erwinia Unconfirmed

10 Escherichia PMID: 21605476

11 Eubacteriaceae Unconfirmed

12 Firmicutes PMID: 32353489

13 Firmicutes bacterium EG14 Unconfirmed

14 Fusobacterium PMID: 35034433

15 Verrucomicrobia PMID: 32295442

17 Actinomyces PMID: 31174538

18 Lachnospiraceae bacterium A2 Unconfirmed

19 Enterococcus faecalis PMID: 26623628

20 Clostridia bacterium TSW07CA7 Unconfirmeda
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